3.2 The Growth of Functions

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say f(x) is O(g(x)) if there are constants C and k such that

$$|f(x)| \le C|g(x)|$$

 $1, \log n, n, n \log n, n^2, 2^n, n!$

whenever x > k.

In other words, Big-O is the upper bound for the growth of a function.

Important Complexity Classes

These are common functions for big-*O* from least to greatest:

The Growth of Combinations of Functions

If $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$, then

- $(f_1 + f_2)(x) = O(\max(|g_1(x)|, |g_2(x)|))$
- $(f_1 f_2)(x) = O(g_1(x)g_2(x))$

Big- Ω Notation

Let f and q be functions from the set of integers or the set of real numbers to the set of real numbers. We say f(x) is $\Omega(q(x))$ if there are positive constants C and k such that

$$|f(x)| \ge C|g(x)|$$

whenever x > k.

Big-\Theta Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$. Note that f(x) is $\Theta(g(x))$ if and only if there are positive constants C_1, C_2 , and k such that

$$C_1|g(x)| \le f(x) \le C_2|g(x)|$$

whenever x > k.

3.2 pg 216 # 1

Determine whether each of these functions is O(x).

a) f(x) = 10

Yes. $|10| \le |x|$ for all x > 10 with our witnesses C = 1 and k = 10.

b) f(x) = 3x + 7

Yes. $|3x + 7| \le 4|x|$ for all x > 7 with our witnesses C = 4 and k = 7.

c) $f(x) = x^2 + x + 1$

No. There is no value C and no value k where $|x^2 + x + 1| \le C|x|$ for large values of x.

d) $f(x) = 5 \log x$

Yes. $|5 \log x| \le 5|x|$ for all x > 1 with our witnesses C = 5 and k = 1.

3.2 pg 216 # 5

Show that $(x^{2} + 1)/(x + 1)$ is O(x)

Simplify fraction first.

$$\frac{x^2 + 1}{x + 1} = \frac{x^2 - 1 + 2}{x + 1}$$

$$= \frac{x^2 - 1}{x + 1} + \frac{2}{x + 1}$$

$$= \frac{(x + 1)(x - 1)}{x + 1} + \frac{2}{x + 1}$$

$$= x - 1 + \frac{2}{x + 1}$$

Now that the fraction has been simplified, we can find the big-O. $x - 1 + \frac{2}{x + 1} \le x$ for x > 1

The function is O(x) with our witnesses C = 1 and k = 1.

3.2 pg 216 # 7

Find the least integer n such that f(x) is $O(x^n)$ for each of these functions.

- a) $f(x) = 2x^3 + x^2 \log x$ $2x^3 + x^2 \log x \le 2x^3 + x^3$ for x > 0 $2x^3 + x^2 \log x \le 3x^3$ $O(x^3)$ with our witnesses C = 3 and k = 0. Therefore, n = 3.
- b) $f(x) = 3x^3 + (\log x)^4$

 $\begin{array}{l} 3x^3+(\log x)^4\leq 3x^3+x^3 \mbox{ for }x>1\\ 3x^3+(\log x)^4\leq 4x^3\\ O(x^3) \mbox{ with our witnesses } C=4 \mbox{ and } k=1\\ \mbox{ Therefore, }n=3. \end{array}$

c)
$$f(x) = (x^4 + x^2 + 1)/(x^3 + 1)$$

Simplify fraction first. $\frac{x^4 + x^2 + 1}{x^3 + 1} = x + \frac{1}{x + 1}.$ Now that the fraction has been simplified, we can find the big-O. $x + \frac{1}{x + 1} \le x + x \text{ for } x > 1$ $x + \frac{1}{x + 1} \le 2x$ O(x) with our witnesses C = 2 and k = 1.Therefore, n = 1.

3.2 pg 217 # 25

Give as good a big-O estimate as possible for each of these functions

- a) $(n^2 + 8)(n + 1)$ = $n^3 + n^2 + 8n + 8$ Biggest term is n^3 so the function is $O(n^3)$.
- b) $(n \log n + n^2)(n^3 + 2)$ = $n^4 \log n + n^5 + 2n \log n + 2n^2$ Biggest term is n^5 so the function is $O(n^5)$.

3.2 pg 216 # 21

Arrange the functions \sqrt{n} , 1000 log n, $n \log n$, 2n!, 2^n , 3^n , and $n^2/1000000$ in a list so that each function is big-O of the next function.

 $1000 \log n, \sqrt{n}, n \log n, n^2/1000000, 2^n, 3^n, 2n!$

3.2 pg 217 # 29

Determine whether each of these functions is $\Omega(x^2)$

c) $f(x) = x \log x$

No. $x \log x$ grows more slowly than x^2 , since $\log x$ grows more slowly than x. Therefore f(x) is not $\Omega(x^2)$.

e) $f(x) = 2^x$

Yes. $|2^x| \ge |x^2|$ where x > 4 with our witnesses C = 1 and k = 4.