3.2 The Growth of Functions

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$
|f(x)| \leq C|g(x)|
$$

whenever $x>k$.
In other words, Big- O is the upper bound for the growth of a function.

Important Complexity Classes

These are common functions for big- O from least to greatest:

$$
1, \log n, n, n \log n, n^{2}, 2^{n}, n!
$$

The Growth of Combinations of Functions

If $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$, then

- $\left(f_{1}+f_{2}\right)(x)=O\left(\max \left(\left|g_{1}(x)\right|,\left|g_{2}(x)\right|\right)\right)$
- $\left(f_{1} f_{2}\right)(x)=O\left(g_{1}(x) g_{2}(x)\right)$

Big Ω Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say $f(x)$ is $\Omega(g(x))$ if there are positive constants C and k such that

$$
|f(x)| \geq C|g(x)|
$$

whenever $x>k$.

Big- Θ Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$. Note that $f(x)$ is $\Theta(g(x))$ if and only if there are positive constants C_{1}, C_{2}, and k such that

$$
C_{1}|g(x)| \leq f(x) \leq C_{2}|g(x)|
$$

whenever $x>k$.

3.2 pg 216 \# 1

Determine whether each of these functions is $O(x)$.
a) $f(x)=10$

Yes. $|10| \leq|x|$ for all $x>10$ with our witnesses $C=1$ and $k=10$.
b) $f(x)=3 x+7$

Yes. $|3 x+7| \leq 4|x|$ for all $x>7$ with our witnesses $C=4$ and $k=7$.
c) $f(x)=x^{2}+x+1$

No. There is no value C and no value k where $\left|x^{2}+x+1\right| \leq C|x|$ for large values of x.
d) $f(x)=5 \log x$

Yes. $|5 \log x| \leq 5|x|$ for all $x>1$ with our witnesses $C=5$ and $k=1$.

3.2 pg 216 \# 5

Show that $\left(x^{2}+1\right) /(x+1)$ is $O(x)$
Simplify fraction first.
$\frac{x^{2}+1}{x+1}=\frac{x^{2}-1+2}{x+1}$
$=\frac{x^{2}-1}{x+1}+\frac{2}{x+1}$
$=\frac{(x+1)(x-1)}{x+1}+\frac{2}{x+1}$
$=x-1+\frac{2}{x+1}$
Now that the fraction has been simplified, we can find the big- O.
$x-1+\frac{2}{x+1} \leq x$ for $x>1$
The function is $O(x)$ with our witnesses $C=1$ and $k=1$.

3.2 pg 216 \# 7

Find the least integer n such that $f(x)$ is $O\left(x^{n}\right)$ for each of these functions.
a) $f(x)=2 x^{3}+x^{2} \log x$
$2 x^{3}+x^{2} \log x \leq 2 x^{3}+x^{3}$ for $x>0$
$2 x^{3}+x^{2} \log x \leq 3 x^{3}$
$O\left(x^{3}\right)$ with our witnesses $C=3$ and $k=0$.
Therefore, $n=3$.
b) $f(x)=3 x^{3}+(\log x)^{4}$
$3 x^{3}+(\log x)^{4} \leq 3 x^{3}+x^{3}$ for $x>1$
$3 x^{3}+(\log x)^{4} \leq 4 x^{3}$
$O\left(x^{3}\right)$ with our witnesses $C=4$ and $k=1$
Therefore, $n=3$.
c) $f(x)=\left(x^{4}+x^{2}+1\right) /\left(x^{3}+1\right)$

Simplify fraction first.

$$
\frac{x^{4}+x^{2}+1}{x^{3}+1}=x+\frac{1}{x+1}
$$

Now that the fraction has been simplified, we can find the big- O.

$$
\begin{aligned}
& x+\frac{1}{x+1} \leq x+x \text { for } x>1 \\
& x+\frac{1}{x+1} \leq 2 x
\end{aligned}
$$

$O(x)$ with our witnesses $C=2$ and $k=1$.
Therefore, $n=1$.

3.2 pg 217 \# 25

Give as good a big- O estimate as possible for each of these functions
a) $\left(n^{2}+8\right)(n+1)$
$=n^{3}+n^{2}+8 n+8$
Biggest term is n^{3} so the function is $O\left(n^{3}\right)$.
b) $\left(n \log n+n^{2}\right)\left(n^{3}+2\right)$
$=n^{4} \log n+n^{5}+2 n \log n+2 n^{2}$
Biggest term is n^{5} so the function is $O\left(n^{5}\right)$.

3.2 pg 216 \# 21

Arrange the functions $\sqrt{n}, 1000 \log n, n \log n, 2 n!, 2^{n}, 3^{n}$, and $n^{2} / 1000000$ in a list so that each function is big- O of the next function.
$1000 \log n, \sqrt{n}, n \log n, n^{2} / 1000000,2^{n}, 3^{n}, 2 n!$

3.2 pg 217 \# 29

Determine whether each of these functions is $\Omega\left(x^{2}\right)$
c) $f(x)=x \log x$

No. $x \log x$ grows more slowly than x^{2}, since $\log x$ grows more slowly than x. Therefore $f(x)$ is not $\Omega\left(x^{2}\right)$.
e) $f(x)=2^{x}$

Yes. $\left|2^{x}\right| \geq\left|x^{2}\right|$ where $x>4$ with our witnesses $C=1$ and $k=4$.

