2.3 Functions

2.3 pg 153 # 13

Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is onto (surjective).

a) f(n) = n - 1

b)
$$f(n) = n^2 + 1$$

c)
$$f(n) = n^3$$

2.3 pg 153 # 23

Determine the type of each function from $\mathbb R$ to $\mathbb R$

a)
$$f(x) = 2x + 1$$

b) $f(x) = x^2 + 1$
c) $f(x) = x^3$
d) $f(x) = (x^2 + 1)/(x^2 + 2)$

Extra Problem

Given the following functions f and g, from \mathbb{R} to \mathbb{R} , find $f \circ g$.

a)
$$f(x) = x^2$$

 $g(x) = x + 1$

b)
$$f(x) = 2x + 1$$

 $g(x) = x^2 + 4x + 4$

c) $f(x) = \{(1,3), (2,4), (5,6), (4,8)\}$ $g(x) = \{(1,1), (4,5), (6,2)\}$

2.3 pg 154 # 31

Let
$$f(x) = \lfloor x^2/3 \rfloor$$
. Find $f(S)$ if
c) $S = \{1, 5, 7, 11\}$
d) $S = \{2, 6, 10, 14\}$

2.3 pg 154 # 43

Let
$$g(x) = \lfloor x \rfloor$$
. Find
a) $g^{-1}(\{0\})$
b) $g^{-1}(\{-1, 0, 1\})$
c) $g^{-1}(\{x \mid 0 < x < 1\})$

2.3 pg 155 # 69

Find the inverse function of $f(x) = x^3 + 1$.

Extra Problem

For each function from \mathbb{R} to \mathbb{R} , if the function has a defined inverse, find it.

- a) $f(x) = x^2 2$
- b) f(x) = 3