### 2.3 Functions

## 2.3 pg 153 \# 13

Determine whether each of these functions from $\mathbb{Z}$ to $\mathbb{Z}$ is onto (surjective).
a) $f(n)=n-1$
b) $f(n)=n^{2}+1$
c) $f(n)=n^{3}$

## 2.3 pg 153 \# 23

Determine the type of each function from $\mathbb{R}$ to $\mathbb{R}$
a) $f(x)=2 x+1$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{3}$
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

## Extra Problem

Given the following functions $f$ and $g$, from $\mathbb{R}$ to $\mathbb{R}$, find $f \circ g$.
a) $f(x)=x^{2}$ $g(x)=x+1$
b) $f(x)=2 x+1$ $g(x)=x^{2}+4 x+4$
c) $f(x)=\{(1,3),(2,4),(5,6),(4,8)\}$ $g(x)=\{(1,1),(4,5),(6,2)\}$

## 2.3 pg 154 \# 31

Let $f(x)=\left\lfloor x^{2} / 3\right\rfloor$. Find $f(S)$ if
c) $S=\{1,5,7,11\}$
d) $S=\{2,6,10,14\}$

## 2.3 pg 154 \# 43

Let $g(x)=\lfloor x\rfloor$. Find
a) $g^{-1}(\{0\})$
b) $g^{-1}(\{-1,0,1\})$
c) $g^{-1}(\{x \mid 0<x<1\})$

## 2.3 pg 155 \# 69

Find the inverse function of $f(x)=x^{3}+1$.

## Extra Problem

For each function from $\mathbb{R}$ to $\mathbb{R}$, if the function has a defined inverse, find it.
a) $f(x)=x^{2}-2$
b) $f(x)=3$

