2.3 Functions

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. If f is a function from A to B, wee write $f: A \rightarrow B$.

Domain, Codomain, Image, Preimage, Range

A function from A to B :
$f: A \rightarrow B$
A is the domain
B is the codomain
$a \in A, b \in B$ such that $f(a)=b$
a is the preimage of b under f b is the image of a under f

The range is a specific subset of the Codomain (B) containing the actual values the function outputs.
The range can be written as $f(A)$.

Injection (One-to-One)

A function where each element in the Domain maps to a single, unique element in the Codomain. [Domain and Range have the same cardinality]. Strictly increasing or strictly decreasing functions are one-to-one.

Surjection (Onto)

A function where every element in the Codomain is a valid output of the function. [Range is equal to Codomain].

Bijection

A function that is both an injection and a surjection.

Identity Function

A function that maps $f: A \rightarrow A$, such that $f(a)=a$ where $a \in A$.

Inverse Function

Given the bijective function f, such that $f: A \rightarrow B$ and $f(a)=b$ where $a \in A$ and $b \in B$, the inverse function is defined as f^{-1}, such that $f^{-1}: B \rightarrow A$ and $f^{-1}(b)=a$.

Composition

Given two functions, f and g, such that the range of g is a subset of the domain of f, the composition of f with $g(f \circ g)$ is defined as $f(g(x))$, with $x \in(g$'s domain).

Floor Function

$\lfloor x\rfloor$ returns the largest integer $\leq x$.

Ceiling Function

$\lceil x\rceil$ returns the smallest integer $\geq x$.

2.3 pg 153 \# 13

Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is onto (surjective).
a) $f(n)=n-1$

This is surjective since every integer is 1 less than some integer.
b) $f(n)=n^{2}+1$

Not surjective because the range cannot include negative integers.
c) $f(n)=n^{3}$

Not surjective because any element in the codomain that is not a perfect cube will not be mapped to.

2.3 pg 153 \# 23

Determine the type of each function from \mathbb{R} to \mathbb{R}
a) $f(x)=2 x+1$

Bijective. This is injective because for every $a \neq b$, we have $f(a) \neq f(b)$ (every number is 1 more than 2 times some number). We also know that the function is surjective because the range is all real numbers from $2((y-1) / 2)+1=y$.
b) $f(x)=x^{2}+1$

Not injective and not surjective. We know the function is not injective because we can have the same value for $f(x)$ given two different x values. For example, $f(2)=2^{2}+1=5$ and $f(-2)=(-2)^{2}+1=5$. The function is also not surjective because the range is all real numbers greater than or equal to 1 , or can be written as $[1, \infty)$.
c) $f(x)=x^{3}$

Bijective. This is injective because for every $a \neq b$, we have $f(a) \neq f(b)$ (every number is the cube of some number). We also know that the function is surjectve because the range is all real numbers from $\left(y^{1 / 3}\right)^{3}=y$.
d) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Not injective and not surjective. We know the function is not injective because we can have the same value for $f(x)$ given two different x values. The function is also not surjective because the range is only $[0.5,1)$.

Extra Problem

Given the following functions f and g, from \mathbb{R} to \mathbb{R}, find $f \circ g$.
a) $f(x)=x^{2}$
$g(x)=x+1$
$\left(f(g(x))=f(x+1)=(x+1)^{2}\right.$
b) $f(x)=2 x+1$
$g(x)=x^{2}+4 x+4$
$\left(f(g(x))=f\left(x^{2}+4 x+4\right)=2\left(x^{2}+4 x+4\right)+1=2 x^{2}+8 x+9\right.$
c) $f(x)=\{(1,3),(2,4),(5,6),(4,8)\}$
$g(x)=\{(1,1),(4,5),(6,2)\}$
$(f \circ g)=\{(1,3),(4,6),(6,4)\}$

2.3 pg 154 \# 31

Let $f(x)=\left\lfloor x^{2} / 3\right\rfloor$. Find $f(S)$ if
c) $S=\{1,5,7,11\}$
$f(1)=\left\lfloor 1^{2} / 3\right\rfloor=\lfloor 1 / 3\rfloor=0$
$f(5)=\left\lfloor 5^{2} / 3\right\rfloor=\lfloor 25 / 3\rfloor=8$
$f(7)=\left\lfloor 7^{2} / 3\right\rfloor=\lfloor 49 / 3\rfloor=16$
$f(11)=\left\lfloor 11^{2} / 3\right\rfloor=\lfloor 121 / 3\rfloor=40$
Therefore, $f(S)=\{0,8,16,40\}$
d) $S=\{2,6,10,14\}$
$f(2)=\left\lfloor 2^{2} / 3\right\rfloor=\lfloor 4 / 3\rfloor=1$
$f(6)=\left\lfloor 6^{2} / 3\right\rfloor=\lfloor 36 / 3\rfloor=12$
$f(10)=\left\lfloor 10^{2} / 3\right\rfloor=\lfloor 100 / 3\rfloor=33$
$f(14)=\left\lfloor 14^{2} / 3\right\rfloor=\lfloor 196 / 3\rfloor=65$
Therefore, $f(S)=\{1,12,33,65\}$

2.3 pg 154 \# 43

Let $g(x)=\lfloor x\rfloor$. Find
a) $g^{-1}(\{0\})$

We need to find the set of all numbers whose floor is 0 . Since all number from 0 to 1 (including 0 and excluding 1) round down to 0 , then $g^{-1}(\{0\})=\{x \mid 0 \leq x<1\}$
b) $g^{-1}(\{-1,0,1\})$

We know that the numbers from -1 to 2 (exclusive) round down to either $-1,0$, or 1 , then $g^{-1}(\{-1,0,1\})=\{x \mid-1 \leq x<2\}$
c) $g^{-1}(\{x \mid 0<x<1\})$

Since $g(x)=\lfloor x\rfloor$ will always result in an integer, no value of x will result in a number between 0 and 1 . Thus, the image of the inverse function is the empty set, \emptyset

2.3 pg 155 \# 69

Find the inverse function of $f(x)=x^{3}+1$.
Solve for x.
$y=x^{3}+1$
$y-1=x^{3}$
$(y-1)^{1 / 3}=x$
The inverse function function is $f^{-1}(x)=(x-1)^{1 / 3}$.

Extra Problem

For each function from \mathbb{R} to \mathbb{R}, if the function has a defined inverse, find it.
a) $f(x)=x^{2}-2$

This function is not bijective, so there is no inverse function.
b) $f(x)=3$

This function is not bijective, so there is no inverse function.

