4.1 Divisibility and Modular Arithmetic

Divides

 $a \mid b$ means "a divides b". That is, there exists an integer c such that b = ac. If $a \mid b$, then b/a is an integer.

If a does not divide b, we write $a \not\mid b$.

Properties of Divisibility

Let a, b, and c be integers where $a \neq 0$.

- *a* | 0
- $(a \mid b \land a \mid c) \rightarrow a \mid (b+c)$
- $a \mid b \rightarrow a \mid bc$ for all integer c
- $(a \mid b \land b \mid c) \rightarrow a \mid c$

Division Algorithm

If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, then there are unique integers q and r, with $0 \le r < d$, such that $a = d \cdot q + r$.

- d is called the divisor
- *a* is called the dividend
- q is called the quotient
- *r* is called the remainder

Mod and Div

 $a \mod d = r$ Note that the remainder is non-negative, and less than the divisor $a \dim d = q$

Modular Congruence

If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, then a is congruent to b modulo m if and only if $m \mid (a - b)$. Written as $a \equiv b \pmod{m}$ m is called the modulus

Two integers are congruent mod m if and only if they have the same remainder when divided by m.

If $a \equiv b \pmod{m}$, then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is an integer. If $a \equiv b \pmod{m}$, then $c + a \equiv c + b \pmod{m}$, where c is an integer.

4.1 pg 244 # 21

Evaluate these quantities.

- a) 13 mod 3 $13 = 3 \cdot 4 + 1$ $13 \mod 3 = 1$
- **b**) -97 mod 11 $-97 = 11 \cdot (-9) + 2$ $-97 \mod 11 = 2$
- c) 155 mod 19

 $155 = 19 \cdot 8 + 3$ $155 \mod 19 = 3$

d) -221 mod 23 $-221 = 23 \cdot (-10) + 9$ $-221 \mod 23 = 9$

4.1 pg 244 # 13

Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integers c with $0 \leq c \leq 12$ such that

$$c \equiv 13 \pmod{13}$$

$$0 \equiv 13 \pmod{13}$$
 because $13 = 13 \cdot 1$

$$c = 0$$

4.1 pg 245 # 29

Decide whether each of these integers is congruent to 5 modulo 17.

a) 80

 $80 = 17 \cdot 4 + 12$ (Also, we see that 17 does not divide 80-5) No

b) 103

 $103 = 17 \cdot 6 + 1$ (Also, we see that 17 does not divide 103 - 5) No

c) −29

 $-29 = 17 \cdot (-2) + 5$ (Also, we see that 17 divides -29 - 5) Yes

d) -122

 $-122 = 17 \cdot (-8) + 14$ (Also, we see that 17 does not divide -122 - 5) No