4.1 Divisibility and Modular Arithmetic

Divides

$a \mid b$ means " a divides b ". That is, there exists an integer c such that $b=a c$. If $a \mid b$, then b / a is an integer.
If a does not divide b, we write $a \nmid b$.

Properties of Divisibility

Let a, b, and c be integers where $a \neq 0$.

- $a \mid 0$
- $(a|b \wedge a| c) \rightarrow a \mid(b+c)$
- $a|b \rightarrow a| b c$ for all integer c
- $(a|b \wedge b| c) \rightarrow a \mid c$

Division Algorithm

If $a \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$, then there are unique integers q and r, with $0 \leq r<d$, such that $a=d \cdot q+r$.

- d is called the divisor
- a is called the dividend
- q is called the quotient
- r is called the remainder

Mod and Div

$a \bmod d=r$ Note that the remainder is non-negative, and less than the divisor $a \operatorname{div} d=q$

Modular Congruence

If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then a is congruent to b modulo m if and only if $m \mid(a-b)$.
Written as $a \equiv b(\bmod m)$
m is called the modulus

Two integers are congruent mod m if and only if they have the same remainder when divided by m.

If $a \equiv b(\bmod m)$, then $c \cdot a \equiv c \cdot b(\bmod m)$, where c is an integer.
If $a \equiv b(\bmod m)$, then $c+a \equiv c+b(\bmod m)$, where c is an integer.

4.1 pg 244 \# 21

Evaluate these quantities.
a) $13 \bmod 3$
$13=3 \cdot 4+1$
$13 \bmod 3=1$
b) $-97 \bmod 11$

$$
\begin{aligned}
& -97=11 \cdot(-9)+2 \\
& -97 \bmod 11=2
\end{aligned}
$$

c) $155 \bmod 19$

$$
155=19 \cdot 8+3
$$

$155 \bmod 19=3$
d) $-221 \bmod 23$

$$
-221=23 \cdot(-10)+9
$$

$$
-221 \bmod 23=9
$$

4.1 pg 244 \# 13

Suppose that a and b are integers, $a \equiv 4(\bmod 13)$, and $b \equiv 9(\bmod 13)$. Find the integers c with $0 \leq c \leq 12$ such that
a) $c \equiv 9 a(\bmod 13)$.
$c \equiv 9(4)(\bmod 13)$
$c \equiv 36(\bmod 13)$
$10 \equiv 36(\bmod 13)$ because $36=13 \cdot 2+10$
$c=10$
b) $c \equiv 11 b(\bmod 13)$.
$c \equiv 11(9)(\bmod 13)$
$c \equiv 99(\bmod 13)$
$8 \equiv 99(\bmod 13)$ because $99=13 \cdot 7+8$
$c=8$
c) $c \equiv a+b(\bmod 13)$.
$c \equiv 4+9(\bmod 13)$
$c \equiv 13(\bmod 13)$
$0 \equiv 13(\bmod 13)$ because $13=13 \cdot 1+0$
$c=0$

4.1 pg 245 \# 29

Decide whether each of these integers is congruent to 5 modulo 17 .
a) 80
$80=17 \cdot 4+12$ (Also, we see that 17 does not divide $80-5$)
No
b) 103
$103=17 \cdot 6+1$ (Also, we see that 17 does not divide $103-5$)
No
c) -29
$-29=17 \cdot(-2)+5$ (Also, we see that 17 divides $-29-5)$
Yes
d) -122
$-122=17 \cdot(-8)+14$ (Also, we see that 17 does not divide $-122-5$)
No

