4.3 Primes and Greatest Common Divisors

Primes

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not prime is called composite.

The Fundamental Theory of Arithmetic

Every integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Theorem 2

If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n}.

Greatest Common Divisor

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

Finding the Greatest Common Divisor using Prime Factorization

Suppose the prime factorizations of a and b are:

$$
\begin{gathered}
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}} \\
b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}
\end{gathered}
$$

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both, with zero exponents if necessary. Then:

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\min \left(a_{n}, b_{n}\right)}
$$

Relatively Prime

The integers a and b are relatively prime if their greatest common divisor is 1 .

Least Common Multiple

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. The least common multiple of a and b is denoted by $\operatorname{lcm}(a, b)$.

Finding the Least Common Multiple Using Prime Factorizations

Suppose the prime factorizations of a and b are:

$$
\begin{gathered}
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}} \\
b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}
\end{gathered}
$$

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both, with zero exponents if necessary. Then:

$$
\operatorname{lcm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \cdots p_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

Theorem 5

Let a and b be positive integers. Then $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$.

The Euclidean Algorithm

Let $a=b q+r$ where a, b, q, and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$. Also written as $\operatorname{gcd}(a, b)=\operatorname{gcd}((b,(a \bmod b))$.

4.3 pg 272 \# 3

Find the prime factorization of each of these integers.
a) 88
$\sqrt{88} \approx 9.38$
$88 / 2=44$
$44 / 2=22$
$22 / 2=11$
Therefore $88=2^{3} \cdot 11$
b) 126
$\sqrt{126} \approx 11.22$
$126 / 2=63$
$63 / 3=21$
$21 / 3=7$
Therefore $63=2 \cdot 3^{2} \cdot 7$
c) 729
$\sqrt{729}=27$
$729 / 3=243$
$243 / 3=81$
$81 / 3=27$
$27 / 3=9$
$9 / 3=3$
Therefore $729=3^{6}$

4.3 pg 272 \# 17

Determine whether the integers in each of these sets are pairwise relatively prime.
a) $11,15,19$
$\operatorname{gcd}(11,16)=1, \operatorname{gcd}(11,19)=1, \operatorname{gcd}(15,19)=1$
These numbers are pairwise relatively prime.
b) $14,15,21$
$\operatorname{gcd}(15,21)=3$. Since $3 \neq 1$, this set is not pairwise relatively prime.

4.3 pg 273 \# 25

What are the greatest common divisors of these pairs of integers?
a) $3^{7} \cdot 5^{3} \cdot 7^{3}, 2^{11} \cdot 3^{5} \cdot 5^{9}$
$2^{\min (0,11)} \cdot 3^{\min (7,5)} \cdot 5^{\min (3,9)} \cdot 7^{\min (3,0)}$
$=3^{5} \cdot 5^{3}$
b) $11 \cdot 13 \cdot 17,2^{9} \cdot 3^{7} \cdot 5^{5} \cdot 7^{3}$

1
c) $23^{31}, 23^{17}$
$23^{\min (31,17)}=23^{17}$
d) $41 \cdot 43 \cdot 53,41 \cdot 43 \cdot 53$
$41 \cdot 43 \cdot 53$

4.3 pg 273 \# 27

What is the least common multiple of these pairs of integers?
a) $3^{7} \cdot 5^{3} \cdot 7^{3}, 2^{11} \cdot 3^{5} \cdot 5^{9}$
$2^{\max (0,11)} \cdot 3^{\max (7,5)} \cdot 5^{\max (3,9)} \cdot 7^{\max (3,0)}$
$=2^{11} \cdot 3^{7} \cdot 5^{9} \cdot 7^{3}$
b) $11 \cdot 13 \cdot 17,2^{9} \cdot 3^{7} \cdot 5^{5} \cdot 7^{3}$
$11 \cdot 13 \cdot 17 \cdot 2^{9} \cdot 3^{7} \cdot 5^{5} \cdot 7^{3}$
c) $23^{31}, 23^{17}$
$23^{\max (31,17)}=23^{31}$
d) $41 \cdot 43 \cdot 53,41 \cdot 43 \cdot 53$
$41 \cdot 43 \cdot 53$

4.3 pg 273 \# 29

Find $\operatorname{gcd}(92928,123552)$ and $\operatorname{lcm}(92928,123552)$ and verify that $\operatorname{gcd}(92928,123552) \cdot \operatorname{lcm}(92928,123552)=$ $92928 \cdot 123552$. [Hint: First find the prime factorizations of 92928 and 123552.]
$92928=2^{8} \cdot 3 \cdot 11^{2}$
$123552=2^{5} \cdot 3^{3} \cdot 11 \cdot 13$
$\operatorname{gcd}(92928,123552)=2^{5} \cdot 3 \cdot 11$
$\operatorname{lcm}(92928,123552)=2^{8} \cdot 3^{3} \cdot 11^{2} \cdot 13$
$\operatorname{gcd}(92928,123552) \cdot \operatorname{lcm}(92928,123552)=92928 \cdot 123552$
$\left(2^{5} \cdot 3 \cdot 11\right) \cdot\left(2^{8} \cdot 3^{3} \cdot 11^{2} \cdot 13\right)=\left(2^{8} \cdot 3 \cdot 11^{2}\right) \cdot\left(2^{5} \cdot 3^{3} \cdot 11 \cdot 13\right)$
$2^{13} \cdot 3^{4} \cdot 11^{3} \cdot 13=2^{13} \cdot 3^{4} \cdot 11^{3} \cdot 13$

4.3 pg 273 \# 33

Use the Euclidean algorithm to find
c) $\operatorname{gcd}(1001,1331)$

$$
\begin{aligned}
& 1331=1001 \cdot 1+330 \\
& 1001=330 \cdot 3+11 \\
& 330=11 \cdot 30+0 \\
& \operatorname{gcd}(1001,1331)=\operatorname{gcd}(1001,330)=\operatorname{gcd}(330,11)=\operatorname{gcd}(11,0)=11
\end{aligned}
$$

f) $\operatorname{gcd}(9888,6060)$

$$
\begin{aligned}
& 9888=6060 \cdot 1+3828 \\
& 6060=3828 \cdot 1+2232 \\
& 3828=2232 \cdot 1+1596 \\
& 2232=1596 \cdot 1+636 \\
& 1596=636 \cdot 2+324 \\
& 636=324 \cdot 1+312 \\
& 324=312 \cdot 1+12 \\
& 312=12 \cdot 26+0 \\
& \operatorname{gcd}(9888,6060)=\operatorname{gcd}(6060,3820)=\operatorname{gcd}(3828,2232)=\operatorname{gcd}(2232,1596)=\operatorname{gcd}(1596,636)= \\
& \operatorname{gcd}(636,324)=\operatorname{gcd}(324,312)=\operatorname{gcd}(32,12)=\operatorname{gcd}(12,0)=12
\end{aligned}
$$

