1.5 Nested Quantifiers

Nested quantifiers are quantifiers that occur within the scope of other quantifiers.
Example: $\forall x \exists y P(x, y)$

Quantifier order matters!

$\forall x \exists y P(x, y) \neq \exists y \forall x P(x, y)$

1.5 pg. 65 \# 9

Let $L(x, y)$ be the statement " x loves y," where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements.
a) Everybody loves Jerry.

$$
\forall x L(x, \text { Jerry })
$$

b) Everybody loves somebody.
$\forall x \exists y L(x, y)$
c) There is somebody whom everybody loves.

$$
\exists y \forall x L(x, y)
$$

d) Nobody loves everybody.
$\forall x \exists y \neg L(x, y)$ or $\neg \exists x \forall y L(x, y)$
i Everyone loves himself or herself
$\forall x L(x, x)$

1.5 pg. 64 \# 5

Let $W(x, y)$ mean that student x has visited website y, where the domain for x consists of all students in your school and the domain for y consists of all websites. Express each of these statements by a simple English sentence.
d $\exists y(W($ Ashok Puri, $y) \wedge W($ Cindy Yoon, $y))$
There is a website that both Ashok and Cindy have visited.
e $\exists y \forall z(y \neq($ David Belcher $) \wedge(W($ David Belcher, $z) \rightarrow W(y, z)))$
There is a person besides David who has visited all the websites that David has visited.
f $\exists x \exists y \forall z(((x \neq y) \wedge(W(x, z) \leftrightarrow W(y, z))))$
There are two distinct people who have visited exactly the same sites.

1.5 pg. 66 \# 13

Let $M(x, y)$ be " x has sent y an e-mail message" and $T(x, y)$ be " x has telephoned y," where the domain consists for all students in your class. Use quantifiers to express each of these statements.
k There is a student in your class who has not received an e-mail message from anyone else in the class and who has not been called by any other student in the class.

$$
\exists x \forall y((x \neq y) \rightarrow(\neg M(y, x) \wedge \neg T(y, x)))
$$

1 Every student in the class has either received an e-mail message or received a telephone call from another student in the class.

$$
\forall x \exists y((x \neq y) \wedge(M(y, x) \vee T(y, x)))
$$

m There are at least two students in your class such that one student has sent the other e-mail and the second student has telephoned the first student

$$
\exists x \exists y((x \neq y) \wedge(M(x, y) \wedge T(y, x)))
$$

1.5 pg. 67 \# 33

Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).
a) $\neg \forall x \forall y P(x, y)$
$\neg \forall x \forall y P(x, y)$
$\equiv \exists x \neg \forall y P(x, y) \quad$ De Morgan's laws for quantifiers
$\equiv \exists x \exists y \neg P(x, y) \quad$ De Morgan's laws for quantifiers
$\begin{array}{rlrl}\mathrm{d} & \neg(\exists x \exists y \neg P(x, y) \wedge \forall x \forall y(Q(x, y)) & & \\ & \neg(\exists x \exists y \neg P(x, y) \wedge \forall x \forall y(Q(x, y)) & & \\ & \equiv(\neg \exists x \exists y \neg P(x, y)) \vee(\neg \forall x \forall y Q(x, y)) & & \text { De Morgan's Law } \\ & \equiv(\forall x \neg \exists y \neg P(x, y)) \vee(\neg \forall x \forall y Q(x, y)) & \text { De Morgan’s laws for quantifiers } \\ & \equiv(\forall x \forall y \neg \neg P(x, y)) \vee(\neg \forall x \forall y Q(x, y)) & \text { De Morgan's laws for quantifiers } \\ & \equiv(\forall x \forall y P(x, y)) \vee(\neg \forall x \forall y Q(x, y)) & & \text { Double Negation } \\ & \equiv(\forall x \forall y P(x, y)) \vee(\exists x \neg \forall y Q(x, y)) & & \text { De Morgan’s laws for quantifiers } \\ & \equiv(\forall x \forall y P P(x, y)) \vee(\exists x \exists y \neg Q(x, y)) & & \text { De Morgan's laws for quantifiers }\end{array}$

