5.4 Recursive Algorithms

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

5.4 pg 370 \# 3

Trace Algorithm 3 when it finds $\operatorname{gcd}(8,13)$. That is, show all the steps used by Algorithm 3 to find $\operatorname{gcd}(8,13)$.

```
Algorithm \(31 \operatorname{gcd}(a, b\) : nonnegative integers with \(a<b\) )
    if \(a=0\) then
        return \(b\)
    else
        return \(\operatorname{gcd}(b \bmod a, a)\)
    end if
    \(\{\) output is \(\operatorname{gcd}(a, b)\}\)
\(\operatorname{gcd}(8,13)\)
    \(\operatorname{gcd}(13 \bmod 8=\mathbf{5}, 8)\)
        \(\operatorname{gcd}(8 \bmod 5=\mathbf{3}, \mathbf{5})\)
            \(\operatorname{gcd}(5 \bmod 3=\mathbf{2 , 3})\)
                \(\operatorname{gcd}(3 \bmod 2=\mathbf{1 , 2})\)
                        \(\operatorname{gcd}(2 \bmod 1=\mathbf{0}, \mathbf{1})\)
                        return 1
```


5.4 pg 370 \# 7

Give a recursive algorithm for computing $n x$ whenever n is a positive integer and x is an integer, using just addition.

```
Procedure 2 product ( \(n\) : positive integer, \(x\) : integer)
    if \(n=1\) then
        return \(x\)
    else
        return \(x+\operatorname{product}(n-1, x)\)
    end if
    \{output is \(n x\) \}
```


5.4 pg 370 \# 9

Give a recursive algorithm for finding the sum of the first n odd positive integers.

```
Procedure 3 oddSum( \(n\) : positive integer)
    if \(n=1\) then
        return 1
    else
        return \(2(n-1)+1+\operatorname{oddSum}(n-1)\)
    end if
    \{output is sum for first \(n\) odd positive integers \}
```


5.4 pg 370 \# 11

Give a recursive algorithm for finding the minimum of a finite set of integers, making use of the fact that the minimum of n integers is the smaller of the last integer in the list and the minimum of the first $n-1$ integers in the list.

```
Procedure 4 recursive_min( \(n\) : positive integer, \(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\) : integers)
    if \(n=1\) then
        return \(a_{1}\)
    else
        return \(\min \left(a_{n}\right.\), recursive_min \(\left.\left(n-1, a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}\right)\right)\)
    end if
    \{output is the minimum integer\}
```


5.4 pg 371 \# 45

Use a merge sort to sort $b, d, a, f, g, h, z, p, o, k$ into alphabetic order. Show all the steps used by the algorithm

```
Procedure 5 mergesort \(\left(L=a_{1}, \ldots a_{n}\right)\)
    if \(n>1\) then
        \(m:=\lceil n / 2\rceil\)
        \(L_{1}:=a_{1}, a_{2}, \ldots, a_{m}\)
        \(L_{2}:=a_{m+1}, a_{m+2}, \ldots, a_{n}\)
        \(L:=\operatorname{merge}\left(\right.\) mergesort \(\left(L_{1}\right)\), mergesort \(\left.\left(L_{2}\right)\right)\)
    end if
    \(\{L\) is now sorted into elements in nondecreasing order \(\}\)
```


