5.3 Recursive Definitions

5.3 pg 357 \# 1

Find $f(1), f(2), f(3)$, and, $f(4)$ if $f(n)$ is defined recursively by $f(0)=1$ and for $n=0,1,2, \ldots$
a) $f(n+1)=f(n)+2$
b) $f(n+1)=3 f(n)$

5.3 pg 358 \# 7

Give a recursive definition of the sequence $\left\{a_{n}\right\}, n=1,2,3, \ldots$ if
a) $a_{n}=6 n$
b) $a_{n}=2 n+1$

5.3 pg 358 \# 25

Give a recursive definition of
a) the set of even integers.
b) the set of positive integers congruent to 2 modulo 3 .
c) the set of positive integers not divisible by 5 .

5.3 pg 358 \# 27

Let S be the subset of the set of ordered pairs of integers defined recursively by

- Basis Step: $(0,0) \in S$
- Recursive Step: If $(a, b) \in S$, then $(a, b+1) \in S,(a+1, b+1) \in S$, and $(a+2, b+1) \in S$.
a) List the elements of S produced by the first four applications of the recursive definition.
c) Use structural induction to show that $a \leq 2 b$ whenever $(a, b) \in S$.

5.3 pg 359 \# 37

Give a recursive definition of w^{i}, where w is a string and i is a nonnegative integer. (Here w^{i} represents the concatenation of i copies of the string w.)

