5.3 Recursive Definitions

5.3 pg 357 # 1

Find f(1), f(2), f(3), and, f(4) if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, ...

a) f(n+1) = f(n) + 2

b)
$$f(n+1) = 3f(n)$$

5.3 pg 358 # 7

Give a recursive definition of the sequence $\{a_n\}, n = 1, 2, 3, ...$ if

a) $a_n = 6n$

b) $a_n = 2n + 1$

5.3 pg 358 # 25

Give a recursive definition of

- a) the set of even integers.
- b) the set of positive integers congruent to 2 modulo 3.
- c) the set of positive integers not divisible by 5.

5.3 pg 358 # 27

Let S be the subset of the set of ordered pairs of integers defined recursively by

- Basis Step: $(0,0) \in S$
- Recursive Step: If $(a, b) \in S$, then $(a, b+1) \in S$, $(a+1, b+1) \in S$, and $(a+2, b+1) \in S$.
- a) List the elements of S produced by the first four applications of the recursive definition.
- c) Use structural induction to show that $a \leq 2b$ whenever $(a, b) \in S$.

5.3 pg 359 # 37

Give a recursive definition of w^i , where w is a string and i is a nonnegative integer. (Here w^i represents the concatenation of i copies of the string w.)