5.2 Strong Induction and Well-Ordering

Strong Induction

To prove that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function, complete two steps:

- Basis Step: Verify that the proposition $P(1)$ is true.
- Inductive Step: Show the conditional statement $[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Generalizing Strong Induction

- Handle cases where the inductive step is valid only for integers greater than a particular integer
- $P(n)$ is true for $\forall n \geq b$ (b : fixed integer)
- Basis Step: Verify that $P(b), P(b+1), \ldots, P(b+j)$ are true (j : a fixed positive integer)
- Inductive Step: Show that the conditional statement $[P(b) \wedge P(b+1) \wedge \cdots \wedge P(k)] \rightarrow$ $P(k+1)$ is true for all positive integers $k \geq b+j$

5.2 pg 341 \# 3

Let $P(n)$ be the statement that a postage of n cents can be formed using just 3-cent stamps and 5-cent stamps. The parts of this exercise outline a strong induction proof that $P(n)$ is true for $n \geq 8$.
a) Show that the statements $P(8), P(9)$, and $P(10)$ are true, completing the basis step of the proof.
$8=3 \cdot 1+5 \cdot 1$
$9=3 \cdot 3+5 \cdot 0$
$10=3 \cdot 0+5 \cdot 2$
b) What is the inductive hypothesis of the proof?

Any value $j(8 \leq j \leq k)$ where $k \geq 10$, can be expressed as $j=3 a+5 b$ with a and b being non-negative integers.
c) What do you need to prove in the inductive step?

Assuming the inductive hypothesis, we want to show that we can express $k+1$ as $3 a+5 b$ with a and b being nonnegative integers.
d) Complete the inductive step for $k \geq 10$.

Since we want to show $P(k+1)$, we can use $P(k-2)$, which is true by inductive hypothesis since $8 \leq k-2 \leq k$.
$k-2=3 a+5 b$
$k-2+3=3 a+4 b+3$
$k+1=3(a+1)+5 b$

Explanation:
Our base cases: 8,9 , and 10 can generate any integer value when a multiple of three is added.
e.g.
$8+3=11$
$9+3=12$
$10+3=13$
$8+6=14$
$9+6=15$
$10+6=16$
Therefore, by assuming $k-2$ and adding a 3 -cent stamp, we can get to $k+1$ cents of postage.
e) Explain why these steps show that this statement is true whenever $n \geq 8$.

We have completed both the basis step and the inductive step, so by the principle of strong induction, the statement is true for every integer n greater than or equal to 8 .

5.2 pg 342 \# 7

What amounts of money can be formed using just two-dollar bills and five-dollar bills? Prove your answer using strong induction.

2 dollars can also be formed, which can be proved separately.
$4=2 \cdot 2+5 \cdot 0$
$5=2 \cdot 0+5 \cdot 1$
$6=2 \cdot 3+5 \cdot 0$
$7=2 \cdot 1+5 \cdot 1$
$8=2 \cdot 4+5 \cdot 0$
$9=2 \cdot 2+5 \cdot 1$
$10=2 \cdot 5+5 \cdot 0$
Inductive hypothesis: $P(j)=$ any value $j(4 \leq j \leq k)$, can be expressed as $j=2 a+5 b$ with a and b being non-negative integers.

Basis Step: $P(4)$ and $P(5)$ are true (see above).
Inductive step:
Assume that for $5 \leq k, P(k-1)$ is true.
$k-1=2 a+5 b$
$k-1+2=2 a+5 b+2$
$k+1=2(a+1)+5 b$
This completes the inductive step.
Therefore, by the principle of strong induction, $P(n)$ is true for all $n \geq 4$.
Explanation:
From $P(4)$ and $P(5)$, we can add a multiple of two (using 2-dollar bills) and reach any positive integer value ≥ 4.

5.2 pg 343 \# 25

Suppose that $P(n)$ is a propositional function. Determine for which positive integers n the statement $P(n)$ must be true, and justify your answer, if
a) $P(1)$ is true; for all positive integers n, if $P(n)$ is true, then $P(n+2)$ is true.
$P(1)$ is true, so $P(1+2)$ is true, according to the statement.
$P(3)$ is true, so $P(3+2)$ is true.
$P(5)$ is true, so $P(5+2)$ is true.
$P(n)$ is true when $n=1,3,5,7,9, \ldots$
b) $P(1)$ and $P(2)$ are true; for all positive integers n, if $P(n)$ and $P(n+1)$ are true, then $P(n+2)$ is true.
$P(1)$ and $P(1+1)$ are true, so $P(1+2)$ is true too.
$P(2)$ and $P(2+1)$ are true, so $P(2+2)$ is true too.
$P(3)$ and $P(3+1)$ are true, so $P(3+2)$ is true too.
$P(4)$ and $P(4+1)$ are true, so $P(4+2)$ is true too.
$P(n)$ is true when n is any positive integer.
c) $P(1)$ is true; for all positive integers n, if $P(n)$ is true, then $P(2 n)$ is true.
$P(1)$ is true, so $P(2 \cdot 1)$ is true.
$P(2)$ is true, so $P(2 \cdot 2)$ is true.
$P(4)$ is true, so $P(2 \cdot 4)$ is true.
$P(8)$ is true, so $P(2 \cdot 8)$ is true.
$P(n)$ is true when n is an integer and a power of 2. (i.e. $n=2,4,8,16, \ldots$)

