2.4 Sequences and Summations

2.4 pg 167 \# 1

Find these terms of the sequence $\left\{a_{n}\right\}$, where $a_{n}=2 \cdot(-3)^{n}+5^{n}$.
a) a_{0}
b) a_{1}
c) a_{4}

2.4 pg 168 \# 13

Is the sequence $\left\{a_{n}\right\}$ a solution of the recurrence relation $a_{n}=8 a_{n-1}-16 a_{n-2}$ if
a) $a_{n}=0$?
b) $a_{n}=1$?
c) $a_{n}=2^{n}$?
d) $a_{n}=4^{n}$?

2.4 pg 168 \# 17

Find the solution to each of these recurrence relations and initial conditions. Use an iterative approach.
a) $a_{n}=3 a_{n-1}, a_{0}=2$
b) $a_{n}=a_{n-1}+2, a_{0}=3$

2.4 pg 168 \# 19

Suppose that the number of bacteria in a colony triples every hour.
a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

2.4 pg 169 \# 29

What are the values of these sums?
a) $\sum_{k=1}^{5}(k+1)$
d) $\sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)$

2.4 pg 169 \# 33

Compute each of these double sums.
a) $\sum_{i=1}^{2} \sum_{j=1}^{3}(i+j)$
c) $\sum_{i=1}^{3} \sum_{j=0}^{2} i$

2.4 pg 169 \# 39

Find $\sum_{k=100}^{200} k$.

