2.4 Sequences and Summations

2.4 pg 167 # 1

Find these terms of the sequence $\{a_n\}$, where $a_n = 2 \cdot (-3)^n + 5^n$.

- a) *a*₀
- b) *a*₁
- c) *a*₄

2.4 pg 168 # 13

Is the sequence $\{a_n\}$ a solution of the recurrence relation $a_n = 8a_{n-1} - 16a_{n-2}$ if

- a) $a_n = 0?$
- b) $a_n = 1?$
- c) $a_n = 2^n$?
- d) $a_n = 4^n$?

2.4 pg 168 # 17

Find the solution to each of these recurrence relations and initial conditions. Use an iterative approach.

- a) $a_n = 3a_{n-1}, a_0 = 2$
- b) $a_n = a_{n-1} + 2, a_0 = 3$

2.4 pg 168 # 19

Suppose that the number of bacteria in a colony triples every hour.

- a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.
- b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

2.4 pg 169 # 29

What are the values of these sums?

a)
$$\sum_{k=1}^{5} (k+1)$$

d) $\sum_{j=0}^{8} (2^{j+1} - 2^j)$

2.4 pg 169 # 33

Compute each of these double sums.

a)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$$

c) $\sum_{i=1}^{3} \sum_{j=0}^{2} i$

2.4 pg 169 # 39

Find $\sum_{k=100}^{200} k$.