2.4 Sequences and Summations

Sequences

Sequences are ordered lists of elements.

Geometric Progression

A geometric progression is a sequence of the form

 $a, ar, ar^2, \ldots, ar^n$

where the initial term a and the common ratio r are real numbers.

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd$$

where the initial term a and the common difference d are real numbers.

Recurrence Relation

A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, \ldots, a_{n-1}$, for all integers n with $n \ge n_0$ is a nonnegative integer. A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.

Fibonacci Sequence

The *Fibonacci sequence*, f_0, f_1, f_2, \ldots , is defined by the initial condition $f_0 = 0, f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$

for $n = 2, 3, 4, \ldots$

Summations

 $\sum_{i=k}^{n} a_i \text{ means "} a_k + a_{k+1} + a_{k+2} + a_{k+3} + \ldots + a_n$ " for each *i* from *k* to *n*, find a_i and sum the results.

Sum	Closed Form
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\boxed{\sum_{k=0}^{\infty} x^k, x < 1}$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1} , x < 1$	$\frac{1}{(1-x)^2}$

Common Summations and Closed Forms

2.4 pg 167 # 1

Find these terms of the sequence $\{a_n\}$, where $a_n = 2 \cdot (-3)^n + 5^n$.

a)
$$a_0$$

 $2 \cdot (-3)^0 + 5^0 = 3$
b) a_1
 $2 \cdot (-3)^1 + 5^1 = -1$
c) a_4
 $2 \cdot (-3)^4 + 5^4 = 2 \cdot 81 + 625 = 162 + 625 = 787$

2.4 pg 168 # 13

Is the sequence $\{a_n\}$ a solution of the recurrence relation $a_n = 8a_{n-1} - 16a_{n-2}$ if

a) $a_n = 0?$

To solve these problems, we need to substitute the value of a_n into the recurrence relation and see if they are equal.

 $0 = 8 \cdot 0 - 16 \cdot 0$ = 0 Yes b) $a_n = 1?$

$$1 = 8 \cdot 1 - 16 \cdot 1 = 8 - 16 = -8 No.$$

c) $a_n = 2^n$? $2^n = 8 \cdot 2^{n-1} - 16 \cdot 2^{n-2}$ $= 8 \cdot 2 \cdot 2^{n-2} - 16 \cdot 2^{n-2}$ $= 2^{n-2}(8 * 2 - 16)$ $=2^{n-2}(16-16)$ $=2^{n-2}(0)$ = 0No. d) $a_n = 4^n$? $4^n = 8 \cdot 4^{n-1} - 16 \cdot 4^{n-2}$ $= 8 \cdot 4 \cdot 4^{n-2} - 16 \cdot 4^{n-2}$ $= 4^{n-2}(8 \cdot 4 - 16)$ $=4^{n-2}(8\cdot 4-16)$ $=4^{n-2}(32-16)$ $=4^{n-2}(16)$ $=4^{n-2} \cdot 4^2$ $= 4^{n}$ Yes.

2.4 pg 168 # 17

Find the solution to each of these recurrence relations and initial conditions. Use an iterative approach.

a)
$$a_n = 3a_{n-1}, a_0 = 2$$

 $a_1 = a_0 \cdot 3 = (2) \cdot 3$
 $a_2 = a_1 \cdot 3 = (2 \cdot 3) \cdot 3$
 $a_3 = a_2 \cdot 3 = (2 \cdot 3 \cdot 3) \cdot 3$
...
 $a_n = 3 \cdot a_{n-1} = 2 \cdot 3^n$

In a_1, a_2, a_3 , we see that the number of times we multiply by three is equal to the value of our subscript. We also see that a_0 is included once in each of our terms. so, $a_n = 2 \cdot 3^n$. **Note:** Since we can express this relation in the form $a \cdot r^n$, it is a geometric progression.

b)
$$a_n = a_{n-1} + 2, a_0 = 3$$

 $a_1 = a_0 + 2 = (3) + 2$
 $a_2 = a_1 + 2 = (3 + 2) + 2$
 $a_3 = a_2 + 2 = (3 + 2 + 2) + 2$
...
 $a_n = a_{n-1} + 2 = 3 + 2n$

Again, in a_1, a_2, a_3 , we see that the number of times we add two is equal to the value of our subscript. And again a_0 is included once in each of our terms. So, $a_n = 3 + 2 \cdot n$. Note: Since we can express this relation in the form $a + d \cdot n$, it is an arithmetic progression.

2.4 pg 168 # 19

Suppose that the number of bacteria in a colony triples every hour.

a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.

Since the number of bacteria at n hours is three times the bacteria at n - 1 hours, our recurrence relation is $a_n = 3a_{n-1}$

b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

We first solve the recurrence relation by iteration.

 $a_{1} = 3 \cdot a_{0} = 3 \cdot (100)$ $a_{2} = 3 \cdot a_{1} = 3 \cdot (3 \cdot 100)$ $a_{3} = 3 \cdot a_{2} = 3 \cdot (3 \cdot 3 \cdot 100)$... $a_{n} = 3 \cdot a_{n-1} = 3^{n} \cdot 100$ So, $a_{10} = 3^{10} \cdot 100 = 5,904,900$

2.4 pg 169 # 29

What are the values of these sums?

a)
$$\sum_{k=1}^{5} (k+1)$$

= $(1+1) + (2+1) + (3+1) + (4+1) + (5+1)$
= $2+3+4+5+6$
= 20
d)
$$\sum_{j=0}^{8} (2^{j+1}-2^j)$$

= $(2^{0+1}-2^0) + (2^{1+1}-2^1) + (2^{2+1}-2^2) + (2^{3+1}-2^3) + (2^{4+1}-2^4) + (2^{5+1}-2^5) + (2^{6+1}-2^6) + (2^{7+1}-2^7) + (2^{8+1}-2^8)$
= $(2^1-2^0) + (2^2-2^1) + (2^3-2^2) + (2^4-2^3) + (2^5-2^4) + (2^6-2^5) + (2^7-2^6) + (2^8-2^7) + (2^9-2^8)$
= $-2^0 + 2^9$
= $-1 + 512$
= 511

2.4 pg 169 # 33

Compute each of these double sums.

a)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j)$$

$$= \sum_{i=1}^{2} ((i+1) + (i+2) + (i+3))$$

$$= \sum_{i=1}^{2} (3i+6)$$

$$= (3(1)+6) + (3(2)+6)$$

$$= 3+6+6+6$$

$$= 21$$

c)
$$\sum_{i=1}^{3} \sum_{j=0}^{2} i$$

$$= \sum_{i=1}^{3} (i+i+i)$$

$$= (1+1+1) + (2+2+2) + (3+3+3)$$

$$= 3+6+9$$

$$= 18$$

2.4 pg 169 # 39

Find
$$\sum_{k=100}^{200} k$$
.

$$\sum_{k=100}^{200} k$$

$$= \sum_{k=1}^{200} k - \sum_{k=1}^{99} k$$

$$= \frac{200(200+1)}{2} - \frac{99(99+1)}{2}$$

$$= \frac{200(201)}{2} - \frac{99(100)}{2}$$

$$= \frac{40200}{2} - \frac{9900}{2}$$

$$= 20100 - 4950$$

$$= 15150$$