2.4 Sequences and Summations

Sequences

Sequences are ordered lists of elements.

Geometric Progression

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{n}
$$

where the initial term a and the common ratio r are real numbers.

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$
a, a+d, a+2 d, \ldots, a+n d
$$

where the initial term a and the common difference d are real numbers.

Recurrence Relation

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms of the sequence, namely, $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$ is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

Fibonacci Sequence

The Fibonacci sequence, $f_{0}, f_{1}, f_{2}, \ldots$, is defined by the initial condition $f_{0}=0, f_{1}=1$, and the recurrence relation

$$
f_{n}=f_{n-1}+f_{n-2}
$$

for $n=2,3,4, \ldots$.

Summations

$\sum_{i=k}^{n} a_{i}$ means " $a_{k}+a_{k+1}+a_{k+2}+a_{k+3}+\ldots+a_{n}$ "
for each i from k to n, find a_{i} and sum the results.

Common Summations and Closed Forms

Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$

2.4 pg 167 \# 1

Find these terms of the sequence $\left\{a_{n}\right\}$, where $a_{n}=2 \cdot(-3)^{n}+5^{n}$.
a) a_{0}
$2 \cdot(-3)^{0}+5^{0}=3$
b) a_{1}
$2 \cdot(-3)^{1}+5^{1}=-1$
c) a_{4}
$2 \cdot(-3)^{4}+5^{4}=2 \cdot 81+625=162+625=787$

2.4 pg 168 \# 13

Is the sequence $\left\{a_{n}\right\}$ a solution of the recurrence relation $a_{n}=8 a_{n-1}-16 a_{n-2}$ if
a) $a_{n}=0$?

To solve these problems, we need to substitute the value of a_{n} into the recurrence relation and see if they are equal.
$0=8 \cdot 0-16 \cdot 0$
$=0$
Yes
b) $a_{n}=1$?
$1=8 \cdot 1-16 \cdot 1$
$=8-16$
$=-8$
No.
c) $a_{n}=2^{n}$?

$$
\begin{aligned}
& 2^{n}=8 \cdot 2^{n-1}-16 \cdot 2^{n-2} \\
& =8 \cdot 2 \cdot 2^{n-2}-16 \cdot 2^{n-2} \\
& =2^{n-2}(8 * 2-16) \\
& =2^{n-2}(16-16) \\
& =2^{n-2}(0) \\
& =0
\end{aligned}
$$

No.
d) $a_{n}=4^{n}$?
$4^{n}=8 \cdot 4^{n-1}-16 \cdot 4^{n-2}$
$=8 \cdot 4 \cdot 4^{n-2}-16 \cdot 4^{n-2}$
$=4^{n-2}(8 \cdot 4-16)$
$=4^{n-2}(8 \cdot 4-16)$
$=4^{n-2}(32-16)$
$=4^{n-2}(16)$
$=4^{n-2} \cdot 4^{2}$
$=4^{n}$
Yes.

2.4 pg 168 \# 17

Find the solution to each of these recurrence relations and initial conditions. Use an iterative approach.
a) $a_{n}=3 a_{n-1}, a_{0}=2$
$a_{1}=a_{0} \cdot 3=(2) \cdot 3$
$a_{2}=a_{1} \cdot 3=(2 \cdot 3) \cdot 3$
$a_{3}=a_{2} \cdot 3=(2 \cdot 3 \cdot 3) \cdot 3$
...
$a_{n}=3 \cdot a_{n-1}=2 \cdot 3^{n}$
In a_{1}, a_{2}, a_{3}, we see that the number of times we multiply by three is equal to the value of our subscript. We also see that a_{0} is included once in each of our terms. so, $a_{n}=2 \cdot 3^{n}$. Note: Since we can express this relation in the form $a \cdot r^{n}$, it is a geometric progression.
b) $a_{n}=a_{n-1}+2, a_{0}=3$
$a_{1}=a_{0}+2=(3)+2$
$a_{2}=a_{1}+2=(3+2)+2$
$a_{3}=a_{2}+2=(3+2+2)+2$
...
$a_{n}=a_{n-1}+2=3+2 n$
Again, in a_{1}, a_{2}, a_{3}, we see that the number of times we add two is equal to the value of our subscript. And again a_{0} is included once in each of our terms. So, $a_{n}=3+2 \cdot n$. Note:
Since we can express this relation in the form $a+d \cdot n$, it is an arithmetic progression.

2.4 pg 168 \# 19

Suppose that the number of bacteria in a colony triples every hour.
a) Set up a recurrence relation for the number of bacteria after n hours have elapsed.

Since the number of bacteria at n hours is three times the bacteria at $n-1$ hours, our recurrence relation is $a_{n}=3 a_{n-1}$
b) If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?
We first solve the recurrence relation by iteration.

$$
\begin{aligned}
& a_{1}=3 \cdot a_{0}=3 \cdot(100) \\
& a_{2}=3 \cdot a_{1}=3 \cdot(3 \cdot 100) \\
& a_{3}=3 \cdot a_{2}=3 \cdot(3 \cdot 3 \cdot 100)
\end{aligned}
$$

...

$$
a_{n}=3 \cdot a_{n-1}=3^{n} \cdot 100
$$

$$
\text { So, } a_{10}=3^{10} \cdot 100=5,904,900
$$

2.4 pg 169 \# 29

What are the values of these sums?
a) $\sum_{k=1}^{5}(k+1)$

$$
\begin{aligned}
& =(1+1)+(2+1)+(3+1)+(4+1)+(5+1) \\
& =2+3+4+5+6 \\
& =20
\end{aligned}
$$

d) $\sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)$

$$
\begin{aligned}
& =\left(2^{0+1}-2^{0}\right)+\left(2^{1+1}-2^{1}\right)+\left(2^{2+1}-2^{2}\right)+\left(2^{3+1}-2^{3}\right)+\left(2^{4+1}-2^{4}\right)+\left(2^{5+1}-2^{5}\right)+ \\
& \left(2^{6+1}-2^{6}\right)+\left(2^{7+1}-2^{7}\right)+\left(2^{8+1}-2^{8}\right) \\
& =\left(2^{1}-2^{0}\right)+\left(2^{2}-2^{1}\right)+\left(2^{3}-2^{2}\right)+\left(2^{4}-2^{3}\right)+\left(2^{5}-2^{4}\right)+\left(2^{6}-2^{5}\right)+\left(2^{7}-2^{6}\right)+\left(2^{8}-\right. \\
& \left.2^{7}\right)+\left(2^{9}-2^{8}\right) \\
& =-2^{0}+2^{9} \\
& =-1+512 \\
& =511
\end{aligned}
$$

2.4 pg 169 \# 33

Compute each of these double sums.
a) $\sum_{i=1}^{2} \sum_{j=1}^{3}(i+j)$

$$
\begin{aligned}
&=\sum_{i=1}^{2}((i+1)+(i+2)+(i+3)) \\
&=\sum_{i=1}^{2}(3 i+6) \\
&=(3(1)+6)+(3(2)+6) \\
&=3+6+6+6 \\
&= 21 \\
& \text { c) } \sum_{i=1}^{3} \sum_{j=0}^{2} i \\
&=\sum_{i=1}^{3}(i+i+i) \\
&=(1+1+1)+(2+2+2)+(3+3+3) \\
&=3+6+9 \\
&=18
\end{aligned}
$$

2.4 pg 169 \# 39

Find $\sum_{k=100}^{200} k$.

$$
\begin{aligned}
& \sum_{k=100}^{200} k \\
& =\sum_{k=1}^{200} k-\sum_{k=1}^{99} k
\end{aligned}
$$

$$
=\frac{200(200+1)}{2}-\frac{99(99+1)}{2}
$$

$$
=\frac{200(201)}{2}-\frac{99(100)}{2}
$$

$$
=\frac{40200}{2}-\frac{9900}{2}
$$

$$
=20100-4950
$$

$$
=15150
$$

