2.2 Set Operations

Union

The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both. $A \cup B=\{x \mid x \in A \vee x \in B\}$

Intersection

The intersection of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and $B . A \cap B=\{x \mid x \in A \wedge x \in B\}$.

Disjoint

Two sets A, B are said to be disjoint if and only if their intersection is empty. $A \cap B=\emptyset$.

Complement

The complement of A (with respect to U), denoted by \bar{A}, is the set of elements not in A. (i.e. $U-A$). $\bar{A}=\{x \mid x \notin A\}$

Set Difference

The difference of A and B, denoted by $A-B$, is the set containing the elements of A that are not in B. $A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}$

Set Identities
TABLE 1 Set Identities.

Identity	Name
$\begin{aligned} & A \cap U=A \\ & A \cup \emptyset=A \end{aligned}$	Identity laws
$\begin{aligned} & A \cup U=U \\ & A \cap \emptyset=\emptyset \end{aligned}$	Domination laws
$\begin{aligned} & A \cup A=A \\ & A \cap A=A \end{aligned}$	Idempotent laws
$\overline{(\bar{A})}=A$	Complementation law
$\begin{aligned} & A \cup B=B \cup A \\ & A \cap B=B \cap A \end{aligned}$	Commutative laws
$\begin{aligned} & A \cup(B \cup C)=(A \cup B) \cup C \\ & A \cap(B \cap C)=(A \cap B) \cap C \end{aligned}$	Associative laws
$\begin{aligned} & A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\ & A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \end{aligned}$	Distributive laws
$\begin{aligned} & \overline{A \cap B}=\bar{A} \cup \bar{B} \\ & \overline{A \cup B}=\bar{A} \cap \bar{B} \end{aligned}$	De Morgan's laws
$\begin{aligned} & A \cup(A \cap B)=A \\ & A \cap(A \cup B)=A \end{aligned}$	Absorption laws
$\begin{aligned} & A \cup \bar{A}=U \\ & A \cap \bar{A}=\emptyset \end{aligned}$	Complement laws

2.2 pg 136 \# 3

Let $A=\{1,2,3,4,5\}$ and $B=\{0,3,6\}$. Find
a $A \cup B$
$\{0,1,2,3,4,5,6\}$
b $A \cap B$
\{3\}
c $A-B$
$\{1,2,4,5\}$
d $B-A$
$\{0,6\}$

2.2 pg 136 \# 15

Prove the second De Morgan law in Table 1 by showing that if A and B are sets, then $\overline{A \cup B}=$ $\bar{A} \cap \bar{B}$
a by showing each side is a subset of the other side.

$$
\overline{A \cup B}
$$

$$
=\{x \mid x \notin A \cup B\} \quad \text { by definition of compliment }
$$

$$
=\{x \mid \neg(x \in(A \cup B))\} \quad \text { by definition of does not belong symbol }
$$

$$
=\{x \mid \neg(x \in A \vee x \in B)\}
$$

$$
=\{x \mid \neg(x \in A) \wedge \neg(x \in B)\}
$$

by definition of union
by De Morgan's law (for logical equivalence)

$$
=\{x \mid x \notin \underline{A} \wedge x \notin \underline{B}\}
$$

by definition of does not belong symbol

$$
=\{x \mid x \in \bar{A} \wedge x \in \bar{B}\}
$$

$$
=\{x \mid x \in \bar{A} \cap \bar{B}\}
$$

by definition of complement
by definition of intersection

$$
=\bar{A} \cap \bar{B}
$$

by set builder notation
b using a membership table

A	B	\bar{A}	\bar{B}	$A \cup B$	$\overline{A \cup B}$	$\bar{A} \cap \bar{B}$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

2.2 pg 136 \# 19

Show that if A and B are sets, then
a $A-B=A \cap \bar{B}$
Both represent $\{x \mid x \in A \wedge x \notin B\}$
$\mathrm{b}(A \cap B) \cup(A \cap \bar{B})=A$

$$
\begin{array}{ll}
(A \cap B) \cup(A \cap \bar{B}) & \\
=A \cap(B \cup \bar{B}) & \text { by distributive law } \\
=A \cap U & \text { by complement law } \\
=A & \text { by identity law }
\end{array}
$$

2.2 pg 136 \# 27

Draw the Venn diagrams for each of these combinations of the sets A, B, C.
a $A \cap(B-C)$
The double shaded portion is the desired set.

$\mathrm{b}(A \cap B) \cup(A \cap C)$
The entire shaded portion is the desired set.

