2.2 Set Operations

Union

The *union* of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both. $A \cup B = \{x \mid x \in A \lor x \in B\}$

Intersection

The *intersection* of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B. $A \cap B = \{x \mid x \in A \land x \in B\}.$

Disjoint

Two sets A, B are said to be *disjoint* if and only if their intersection is empty. $A \cap B = \emptyset$.

Complement

The complement of A (with respect to U), denoted by \overline{A} , is the set of elements not in A. (i.e. U - A). $\overline{A} = \{x \mid x \notin A\}$

Set Difference

The difference of A and B, denoted by A - B, is the set containing the elements of A that are not in B. $A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$

Set Identities

TABLE 1 Set Identities.				
Identity	Name			
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws			
$\begin{aligned} A \cup U &= U \\ A \cap \emptyset &= \emptyset \end{aligned}$	Domination laws			
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws			
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws			
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

2.2 pg 136 # 3

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find a $A \cup B$

- $\{0, 1, 2, 3, 4, 5, 6\}$
- b $A \cap B$

{3} c A - B{1,2,4,5} d B - A{0,6}

2.2 pg 136 # 15

Prove the second De Morgan law in Table 1 by showing that if A and B are sets, then $\overline{A \cup B} = \overline{A} \cap \overline{B}$

a by showing each side is a subset of the other side.

$$\begin{array}{ll} \overline{A \cup B} \\ = \{x \mid x \notin A \cup B\} & \text{by definition of compliment} \\ = \{x \mid \neg(x \in (A \cup B))\} & \text{by definition of does not belong symbol} \\ = \{x \mid \neg(x \in A \lor x \in B)\} & \text{by definition of union} \\ = \{x \mid \neg(x \in A) \land \neg(x \in B)\} & \text{by De Morgan's law (for logical equivalence)} \\ = \{x \mid x \notin A \land x \notin B\} & \text{by definition of does not belong symbol} \\ = \{x \mid x \in \overline{A} \land x \in \overline{B}\} & \text{by definition of complement} \\ = \{x \mid x \in \overline{A} \land \overline{B}\} & \text{by definition of intersection} \\ = \overline{A} \cap \overline{B} & \text{by set builder notation} \end{array}$$

b using a membership table

A	В	\overline{A}	\overline{B}	$A \cup B$	$\overline{A \cup B}$	$\overline{A} \cap \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

2.2 pg 136 # 19

Show that if A and B are sets, then

a $A - B = A \cap \overline{B}$

Both represent $\{x | x \in A \land x \notin B\}$

b
$$(A \cap B) \cup (A \cap \overline{B}) = A$$

 $(A \cap B) \cup (A \cap \overline{B})$
 $= A \cap (B \cup \overline{B})$ by distributive law
 $= A \cap U$ by complement law
 $= A$ by identity law

2.2 pg 136 # 27

Draw the Venn diagrams for each of these combinations of the sets A, B, C.

a $A \cap (B - C)$

The double shaded portion is the desired set.

 $\mathbf{b} \ (A \cap B) \cup (A \cap C)$

The entire shaded portion is the desired set.

