2.1 Sets

2.1 pg 125 # 1

List the members of these sets.

- c { $x \mid x$ is the square of an integer and x < 100}
- d $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

2.1 pg 125 # 5

Determine whether each pairs of sets are equal.

a {1,3,3,3,5,5,5,5,5}, {5,3,1}
b {{1}}, {1, {1}}
c Ø, {Ø}

2.1 pg 125 # 9

Determine whether each of these statements is true or false.

a $0 \in \emptyset$ b $\emptyset \in \{0\}$ d $\emptyset \subset \{0\}$ e $\{0\} \in \{0\}$ f $\{0\} \subset \{0\}$ g $\{\emptyset\} \subseteq \{\emptyset\}$

2.1 pg 125 # 11

Determine whether each of these statements is true or false.

a $x \in \{x\}$ b $\{x\} \subseteq \{x\}$ c $\{x\} \in \{x\}$ d $\{x\} \in \{\{x\}\}$ e $\emptyset \subseteq \{x\}$ f $\emptyset \in \{x\}$

2.1 pg 126 # 19

What is the cardinality of each of of these sets?

- $b \{\{a\}\}$
- **c** $\{a, \{a\}\}$
- d $\{a, \{a\}, \{a, \{a\}\}\}$

2.1 pg 126 # 21

Find the power set of each of these sets, where a and b are distinct elements.

- a $\{a\}$
- $b \{a, b\}$

2.1 pg 126 # 39

Explain why $A \times B \times C$ and $(A \times B) \times C$ are not the same.