2.1 Sets

A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements.

We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Two sets are equal if and only if they have the same elements. We write $A=B$ if A and B are equal sets.

Empty Set

The empty set or null set is the set with no elements. Denoted by \emptyset or $\}$.

Other Special Sets

$\mathbb{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers
$\mathbb{Z}^{+}=\{1,2,3, \ldots\}$, the set of positive integers
$\mathbb{Q}=\{p / q \mid p \in \mathbb{Z}, q \in \mathbb{Z}$, and $q \notin 0\}$, the set of rational numbers
\mathbb{R}, the set of real numbers
\mathbb{R}^{+}, the set of positive real numbers
\mathbb{C}, the set of complex numbers.

Subset

The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

To show that $A \nsubseteq B$, find a single $x \in A$ such that $x \notin B$.
Note that \emptyset is the subset of every set.

Proper Subset

To show that A is a subset of B and $A \neq B$, we use \subset to denote proper subset. $A \subset B$ says that A is a proper subset of B.

Cardinality

The cardinality of a set is the number of distinct elements within the set. The cardinality of set A is $|A|$. Note that $|\emptyset|=0$.

Power Sets

The set of all subsets of a set A, denoted $\rho(A)$, is called the power set of A.

Cartesian Product

The Cartesian Product of two sets A and B, denoted by $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Note that $A \times B \neq B \times A$.

2.1 pg 125 \# 1

List the members of these sets.
c $\{x \mid x$ is the square of an integer and $x<100\}$ $\{0,1,4,9,16,25,36,49,64,81\}$
d $\left\{x \mid x\right.$ is an integer such that $\left.x^{2}=2\right\}$ \emptyset or $\}$

2.1 pg 125 \# 5

Determine whether each pairs of sets are equal.
a $\{1,3,3,3,5,5,5,5,5\},\{5,3,1\}$
Yes
b $\{\{1\}\},\{1,\{1\}\}$
No
c $\emptyset,\{\emptyset\}$
No

2.1 pg 125 \# 9

Determine whether each of these statements is true or false.
a $0 \in \emptyset$
False
b $\emptyset \in\{0\}$
False
$\mathrm{d} \emptyset \subset\{0\}$
True
e $\{0\} \in\{0\}$
False
f $\{0\} \subset\{0\}$
False

$$
\begin{aligned}
& \operatorname{g}\{\emptyset\} \subseteq\{\emptyset\} \\
& \text { True }
\end{aligned}
$$

2.1 pg 125 \# 11

Determine whether each of these statements is true or false.
a $x \in\{x\}$
True
b $\{x\} \subseteq\{x\}$
True
c $\{x\} \in\{x\}$
False
d $\{x\} \in\{\{x\}\}$
True
$\mathrm{e} \emptyset \subseteq\{x\}$
True
f $\emptyset \in\{x\}$
False

2.1 pg 126 \# 19

What is the cardinality of each of of these sets?
b $\{\{a\}\}$ 1
c $\{a,\{a\}\}$
2
$\mathrm{d}\{a,\{a\},\{a,\{a\}\}\}$
3

2.1 pg 126 \# 21

Find the power set of each of these sets, where a and b are distinct elements.

```
a \(\{a\}\)
    \(\{\emptyset,\{a\}\}\)
b \(\{a, b\}\)
    \(\{\emptyset,\{a\},\{b\},\{a, b\}\}\)
```


2.1 pg 126 \# 39

Explain why $A \times B \times C$ and $(A \times B) \times C$ are not the same.
First, $A \times B \times C$ consists of 3-tuples (a, b, c), where $a \in A, b \in B$, and $c \in C$. Next, $(A \times B) \times C$ contains the elements $((a, b), c)$, which is a set of ordered pairs with one of them being an ordered pair. An ordered pair and a 3-tuple are two different collections.

