2.1 Sets

A *set* is an unordered collection of objects, called *elements* or *members* of the set. A *set* is said to contain its elements.

We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Two sets are equal if and only if they have the same elements. We write A = B if A and B are equal sets.

Empty Set

The *empty set* or *null set* is the set with no elements. Denoted by \emptyset or $\{\}$.

Other Special Sets

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$, the set of natural numbers

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, the set of integers

 $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$, the set of positive integers

 $\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \notin 0\}$, the set of rational numbers

 \mathbb{R} , the set of real numbers

 \mathbb{R}^+ , the set of positive real numbers

 \mathbb{C} , the set of complex numbers.

Subset

The set A is a subset of B if and only if every element of A is also an element of B. We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

To show that $A \not\subseteq B$, find a single $x \in A$ such that $x \notin B$.

Note that \emptyset is the subset of every set.

Proper Subset

To show that A is a subset of B and $A \neq B$, we use \subset to denote *proper subset*. $A \subset B$ says that A is a proper subset of B.

Cardinality

The *cardinality* of a set is the number of distinct elements within the set. The cardinality of set A is |A|. Note that $|\emptyset| = 0$.

Power Sets

The set of all subsets of a set A, denoted $\rho(A)$, is called the *power set* of A.

Cartesian Product

The Cartesian Product of two sets A and B, denoted by $A \times B$, is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Note that $A \times B \neq B \times A$.

2.1 pg 125 # 1

List the members of these sets.

c {x | x is the square of an integer and x < 100} {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
d {x | x is an integer such that x² = 2} Ø or {}

2.1 pg 125 # 5

Determine whether each pairs of sets are equal.

a {1,3,3,3,5,5,5,5,5}, {5,3,1}
Yes
b {{1}}, {1, {1}}
No
c Ø, {Ø}
No

2.1 pg 125 # 9

Determine whether each of these statements is true or false.

a $0 \in \emptyset$ False b $\emptyset \in \{0\}$ False d $\emptyset \subset \{0\}$ True e $\{0\} \in \{0\}$ False f $\{0\} \subset \{0\}$ False g $\{\emptyset\} \subseteq \{\emptyset\}$ True

2.1 pg 125 # 11

Determine whether each of these statements is true or false.

a $x \in \{x\}$ True b $\{x\} \subseteq \{x\}$ True c $\{x\} \in \{x\}$ False d $\{x\} \in \{\{x\}\}$ True e $\emptyset \subseteq \{x\}$ True f $\emptyset \in \{x\}$ False

2.1 pg 126 # 19

What is the cardinality of each of of these sets?

```
b {{a}}
1
c {a, {a}}
2
d {a, {a}, {a, {a}}}
3
```

2.1 pg 126 # 21

Find the power set of each of these sets, where a and b are distinct elements.

a {a} {Ø, {a}}
b {a, b} {Ø, {a}, {b}, {a, b}}

2.1 pg 126 # 39

Explain why $A \times B \times C$ and $(A \times B) \times C$ are not the same.

First, $A \times B \times C$ consists of 3-tuples (a, b, c), where $a \in A, b \in B$, and $c \in C$. Next, $(A \times B) \times C$ contains the elements ((a, b), c), which is a set of ordered pairs with one of them being an ordered pair. An ordered pair and a 3-tuple are two different collections.