8.2 Solving Linear Recurrence Relations

- Determine if recurrence relation is homogeneous or nonhomogeneous.
- Determine if recurrence relation is linear or nonlinear.
- Determine whether or not the coefficients are all constants.
- Determine what is the degree of the recurrence relation.
- Need to know the general solution equations.
- Need to find characteristic equation.
- Need to find characteristic roots (can use determinant to help).

Determinants (optional)

When finding characteristic roots and determining which general solution to use for a recurrence relation of degree 2 , using determinants can be helpful. From the quadratic equation, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, the determinant is $b^{2}-4 a c$.
Case 1: $b^{2}-4 a c>0$
You have two distinct real roots, r_{1} and r_{2}, your general solution is $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$. (Theorem 1)

Case 2: $b^{2}-4 a c=0$
You have one root with multiplicity $2, r_{0}$, your general solution is $a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$. (Theorem 2)

Summary of general solutions

Theorem	Degree	Characteristic Roots	General Solution
1	2	$r_{1} \neq r_{2}$	$a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$
2	2	r_{0} with multiplicity 2	$a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$
3	k	k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$	$a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}$
4	k	t distinct roots $\left(r_{1}, r_{2}, \ldots r_{t}\right)$ with multiplicities $\left(m_{1}, m_{2}, \ldots, m_{t}\right)$	$a_{n}=\left(\alpha_{1,0}+\alpha_{1,1} n+\ldots+\alpha_{1, m_{1}-1} n^{m_{1}-1}\right) \cdot r_{1}^{n}+$ $\left(\alpha_{2,0}+\alpha_{2,1} n+\ldots+\alpha_{2, m_{2}-1} n^{m_{2}-1}\right) \cdot r_{2}^{n}+\ldots+$ $\left(\alpha_{t, 0}+\alpha_{t, 1} n+\ldots+\alpha_{t, m_{t}-1} n^{m_{t}-1}\right) \cdot r_{t}^{n}$

Nonhomogenous recurrence relations

Theorem 5: If $a_{n}^{(p)}$ is a particular solution to the linear nonhomogeneous recurrence relation with constant coefficients, $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)$, then every solution is of the form $a_{n}^{(p)}+a_{n}^{(h)}$ where $a_{n}^{(h)}$ is a solution of the associated homogeneous recurrence relation, $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$.

Theorem 6: Assume that a_{n} satisfies the linear nonhomogeneous recurrence relation with constant coefficients:
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)$
with $F(n)$ of the form:
$F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}$
where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers.
Case 1: If s is not a characteristic root of the associated linear homogeneous recurrence relation with constant coefficients, there is a particular solution of the form

$$
\left(\alpha_{t} n^{t}+\alpha_{t-1} n^{t-1}+\ldots+\alpha_{1} n+\alpha_{0}\right) s^{n}
$$

Case 2: If s is a characteristic root of multiplicity m, there is a particular solution of the form

$$
n^{m}\left(\alpha_{t} n^{t}+\alpha_{t-1} n^{t-1}+\ldots+\alpha_{1} n+\alpha_{0}\right) s^{n}
$$

8.2 pg. 524 \# 1

Determine which of these are linear homogeneous recurrence relations with constant coefficients. Also, find the degree of those that are.
a $a_{n}=3 a_{n-1}+4 a_{n-2}+5 a_{n-3}$
Yes. Degree 3.
b $a_{n}=2 n a_{n-1}+a_{n-2}$
No. $2 n$ is not a constant coefficient.
c $a_{n}=a_{n-1}+a_{n-4}$
Yes. Degree 4.
d $a_{n}=a_{n-1}+2$
No. This is nonhomogeneous because of the 2 .
e $a_{n}=a_{n-1}^{2}+a_{n-2}$
No. This is not linear because of a_{n-1}^{2}.
f $a_{n}=a_{n-2}$
Yes. Degree 2.
g $a_{n}=a_{n-1}+n$
No. This is nonhomogeneous because of the n.

8.2 pg. 524 \# 3

Solve these recurrence relations together with the initial conditions given.
a $a_{n}=2 a_{n-1}$ for $n \geq 1, a_{0}=3$
Characteristic equation: $r-2=0$
Characteristic root: $r=2$
By using Theorem 3 with $k=1$, we have $a_{n}=\alpha 2^{n}$ for some constant α. To find α, we can use the initial condition, $a_{0}=3$, to find it.
$3=\alpha 2^{0}$
$3=\alpha 1$
$3=\alpha$
So our solution to the recurrence relation is $a_{n}=3 \cdot 2^{n}$.
b $a_{n}=a_{n-1}$ for $n \geq 1, a_{0}=2$
Same as problem (a).
Characteristic equation: $r-1=0$
Characteristic root: $r=1$
Use Theorem 3 with $k=1$ like before, $a_{n}=\alpha 1^{n}$ for some constant α.
Find α.
$2=\alpha 1^{0}$
$2=\alpha$
So the solution is $a_{n}=2 \cdot 1^{n}$. But we can simplify this since $1^{n}=1$ for any n, so our solution is $a_{n}=2$ for any n.
c $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2, a_{0}=1, a_{1}=0$
Characteristic equation: $r^{2}-5 r+6=0$
Determinant: $5^{2}-4(1)(6)=25-24=1$
Since our determinant is greater than 0 , we know we can use Theorem 1 .
Find the characteristic root.
We can factor $r^{2}-5 r+6=0$ into $(r-2)(r-3)=0$.
So our roots are $r_{1}=2$ and $r_{2}=3$.
Use Theorem 1 to find our general solution: $a_{n}=\alpha_{1} 2^{n}+\alpha_{2} 3^{n}$ for some constants α_{1} and α_{2}.
Find α_{1} and α_{2} by using our initial conditions.
For $a_{0}=1$
$1=\alpha_{1} 2^{0}+\alpha_{2} 3^{0}$
$1=\alpha_{1}+\alpha_{2}$
For $a_{1}=0$
$0=\alpha_{1} 2^{1}+\alpha_{2} 3^{1}$
$0=2 \alpha_{1}+3 \alpha_{2}$

Solve the system of equations:
$\alpha_{1}=1-\alpha_{2}$
$0=2\left(1-\alpha_{2}\right)+3 \alpha_{2}$
$0=2-2 \alpha_{2}+3 \alpha_{2}$
$0=2+\alpha_{2}$
$\alpha_{2}=-2$
$\alpha_{1}=1-(-2)$
$\alpha_{1}=3$
Our solution is $a_{n}=3 \cdot 2^{n}-2 \cdot 3^{n}$
d $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geq 2, a_{0}=6, a_{1}=8$
Characteristic equation: $r^{2}-4 r+4=0$.
Determinant: $16-4(1)(4)=16-16=0$.
Determinant is 0 , we can use Theorem 2.
Find the characteristic root.
Factor $r^{2}-4 r+4=0$ to $(r-2)^{2}=0$.
Our root is $r=2$ with multiplicity 2.
Use Theorem 2 to find our general solution: $a_{n}=\alpha_{1} 2^{n}+\alpha_{2} n 2^{n}$ for some constants α_{1} and α_{2}.
Find α_{1} and α_{2} by using our initial conditions.
For $a_{0}=6$
$6=\alpha_{1} 2^{0}+\alpha_{2} \cdot 0 \cdot 2^{0}$
$6=\alpha_{1}$
For $a_{1}=8$
$8=\alpha_{1} 2^{1}+\alpha_{2} \cdot 1 \cdot 2^{1}$
$8=2 \alpha_{1}+2 \alpha_{2}$

Solve the system of equations:
$8=2(6)+2 \alpha_{2}$
$8=12+2 \alpha_{2}$
$-4=2 \alpha_{2}$
$\alpha_{2}=-2$
Our solution is $a_{n}=6 \cdot 2^{n}-2 n \cdot 2^{n}=(6-2 n) 2^{n}$.
e $a_{n}=-4 a_{n-1}-4 a_{n-2}$ for $n \geq 2, a_{0}=0, a_{1}=1$
Characteristic equation: $r^{2}+4 r+4=0$.
We can factor $r^{2}+4 r+4=0$ into $(r+2)^{2}=0$
So our characteristic roots are -2 with multiplicity 2 .
Use Theorem 2: $a_{n}=\alpha_{1}(-2)^{n}+\alpha_{2} n(-2)^{n}$ for some constants α_{1} and α_{2}.
Find α_{1} and α_{2}
For $a_{0}=0$
$0=\alpha_{1}(-2)^{0}+\alpha_{2} 0(-2)^{0}$
$\alpha_{1}=0$
For $a_{1}=1$
$1=\alpha_{1}(-2)^{1}+\alpha_{2} \cdot 1 \cdot(-2)^{1}$
$1=-2 \alpha_{1}-2 \alpha_{2}$

Solve the systems of equation and you get $\alpha_{1}=0$ and $\alpha_{2}=-1 / 2$.
Our solution is $a_{n}=(-1 / 2) n(-2)^{n}=n(-2)^{n-1}$.
f $a_{n}=4 a_{n-2}$ for $n \geq 2, a_{0}=0, a_{1}=4$
Characteristic equation: $r^{2}-4=0$.
Factor the equation and you get $(r-2)(r+2)=0$.
The characteristic roots are $r_{1}=2$ and $r_{2}=-2$.
Use Theorem 1: $a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-2)^{n}$.
By using initial conditions, you'll get $0=\alpha_{1}+\alpha_{2}$ and $4=2 \alpha_{1}-2 \alpha_{2}$. When solved, $\alpha_{1}=1$ and $\alpha_{2}=-1$
So the solution is $a_{n}=2^{n}-(-2)^{n}$.
g $a_{n}=a_{n-2} / 4$ for $n \geq 2, a_{0}=1, a_{1}=0$
Characteristic equation: $r^{2}-1 / 4=0$.
Factor to get $(r-1 / 2)(r+1 / 2)=0$.
the characteristic roots are $r_{1}=1 / 2$ and $r_{2}=-1 / 2$.
Use Theorem 1: $a_{n}=\alpha_{1}(1 / 2)^{n}+\alpha_{2}(-1 / 2)^{n}$.
By using initial conditions, you'll get $1=\alpha_{1}+\alpha_{2}$ and $0=\alpha_{1} / 2-\alpha_{2} / 2$. When solved, $\alpha_{1}=1 / 2$ and $\alpha_{2}=1 / 2$.
So the solution is $a_{n}=(1 / 2)(1 / 2)^{n}+(1 / 2)(-1 / 2)^{n}$.

8.2 pg. 525 \# 13

Find the solution to $a_{n}=7 a_{n-2}+6 a_{n-3}$ with $a_{0}=9, a_{1}=10, a_{2}=32$.
Characteristic equation: $r^{3}-7 r-6=0$.
This is a 3rd degree equation, so we have to use Theorem 3 or 4 .
Need to find roots. Use rational root test.
We know our possible roots are $\pm 1, \pm 2, \pm 3, \pm 6$.
Test to see which of these number will be our root for the equation.
Test -1 .
$(-1)^{3}-7(-1)-6=-1+7-6=0$ Good! We know -1 is a root.
Factor out $(r-(-1))$ in $r^{3}-7 r-6=0$ to get $(r+1)\left(r^{2}-r-6\right)=0$. Continue factoring and we get $(r+1)(r-3)(r+2)=0$.
We know our characteristic roots: $r_{1}=-1, r_{2}=3, r_{3}=-2$.
Our general solution using Theorem 3 is: $a_{n}=\alpha_{1}(-1)^{n}+\alpha_{2} 3^{n}+\alpha_{3}(-2)^{n}$.
Find $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by using the initial conditions.
For $a_{0}=9$
$9=\alpha_{1}(-1)^{0}+\alpha_{2} 3^{0}+\alpha_{3}(-2)^{0}$
$9=\alpha_{1}+\alpha_{2}+\alpha_{3}$
For $a_{1}=10$
$10=\alpha_{1}(-1)^{1}+\alpha_{2} 3^{1}+\alpha_{3}(-2)^{1}$
$10=-\alpha_{1}+3 \alpha_{2}-2 \alpha_{3}$
For $a_{2}=32$
$32=\alpha_{1}(-1)^{2}+\alpha_{2} 3^{2}+\alpha_{3}(-2)^{2}$
$32=\alpha_{1}+9 \alpha_{2}+4 \alpha_{3}$

Solve the system of equations:
$9=\alpha_{1}+\alpha_{2}+\alpha_{3}$
$10=-\alpha_{1}+3 \alpha_{2}-2 \alpha_{3}$
$32=\alpha_{1}+9 \alpha_{2}+4 \alpha_{3}$
Add the first equation and second equation together to get:
$19=4 \alpha_{2}-\alpha_{3}$
Add the second equation and third equation together to get:
$42=12 \alpha_{2}+2 \alpha_{3}$
Multiply $19=4 \alpha_{2}-\alpha_{3}$ by 2 and add with $41=12 \alpha_{2}+2 \alpha_{3}$ to get:
$80=20 \alpha_{2}$
$4=\alpha_{2}$
Substitute α_{2} back in.
$19=4(4)-\alpha_{3}$
$19=16-\alpha_{3}$
$-3=\alpha_{3}$
With α_{2} and α_{3}, we can find α_{1}
$9=\alpha_{1}+4-3$
$9=\alpha_{1}+1$
$8=\alpha_{1}$
Our solution is $a_{n}=8(-1)^{n}+4(3)^{n}+(-3)(-2)^{n}$.

8.2 pg. 525 \# 21

What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has roots $1,1,1,1,-2,-2,-2,3,3,-4$?

Use Theorem 4 with 4 roots that have multiple multiplicities.
$r_{1}=1$ with multiplicity $4, r_{2}=-2$ with multiplicity $3, r_{3}=3$ with multiplicity 2 , and $r_{4}=-4$ with multiplicity 1.
So our general solution is of the form:
$a_{n}=\left(\alpha_{1,0}+\alpha_{1,1} n+\alpha_{1,2} n^{2}+\alpha_{1,3} n^{3}\right)(1)^{n}+\left(\alpha_{2,0}+\alpha_{2,1} n+\alpha_{2,2} n^{2}\right)(-2)^{n}+\left(\alpha_{3,0}+\alpha_{3,1} n\right)(3)^{n}+$ $\left(\alpha_{4,0}\right)(-4)^{n}$

8.2 pg. 525 \# 27

What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_{n}=8 a_{n-2}-16 a_{n-4}+F(n)$ if
a $F(n)=n^{3}$?
We first need to find the associated homogeneous recurrence relation.
Associated homogeneous recurrence relation: $a_{n}=8 a_{n-2}-16 a_{n-4}$.

Characteristic equation: $r^{4}-8 r^{2}+16=0$
Factor to find roots.
$r^{4}-8 r^{2}+16=0$
$\left(r^{2}-4\right)\left(r^{2}-4\right)=0$
$(r+2)(r-2)(r+2)(r-2)=0$
Our roots are $r_{1}=2$ with multiplicity 2 and $r_{2}=-2$ with multiplicity 2 .
By Theorem 6, we know that in $s^{n}, s=1$. Since 1 is not a root, we know the particular solution is of the form $\left(p_{3} n^{3}+p_{2} n^{2}+p_{1} n+p_{0}\right) 1^{n}$. Simplified, $p_{3} n^{3}+p_{2} n^{2}+p_{1} n+p_{0}$.
b $F(n)=(-2)^{n}$?
Using Theorem 6, we know that $s=-2$ and -2 is a root with multiplicity 2 , so the particular solution is of the form $n^{2} p_{0}(-2)^{n}$.
c $F(n)=n 2^{n}$?
Using Theorem $6, s=2$ and 2 is a root with multiplicity 2 , so the particular solution is of the form $n^{2}\left(p_{1} n+p_{0}\right) 2^{n}$.
d $F(n)=n^{2} 4^{n}$?
Using Theorem 6, $s=4$ and 4 is not a root, so the particular solution is of the form $\left(p_{2} n^{2}+\right.$ $\left.p_{1} n+p_{0}\right) 4^{n}$.
e $F(n)=\left(n^{2}-2\right)(-2)^{n}$?
Using Theorem 6,s $=-2$ and -2 is a root with multiplicity 2 , so the particular solution is of the form $n^{2}\left(p_{2} n^{2}+p_{1} n+p_{0}\right)(-2)^{n}$.
f $F(n)=n^{4} 2^{n}$?
Using Theorem $6, s=2$ and 2 is a root with multiplicity 2 , so the particular solution is of the form $n^{2}\left(p_{4} n^{4}+p_{3} n^{3}+p_{2} n^{2}+p_{1} n+p_{0}\right) 2^{n}$.
g $F(n)=2$?
Using Theorem $6, s=1$ and 1 is not a root, so the particular solution is of the form p_{0}.

8.2 pg. 525 \# 29

a Find all solutions of the recurrence relation $a_{n}=2 a_{n-1}+3^{n}$.
The associated homogeneous recurrence relation is $a_{n}=2 a_{n-1}$.
The characteristic equation is $r-2=0$.
Since our characteristic root is $r=2$, we know by Theorem 3 that $a_{n}^{(h)}=\alpha 2^{n}$.
Note that $F(n)=3^{n}$, so we know by Theorem 6 that $s=3$ and 3 is not a root, the particular solution is of the form $a_{n}^{(p)}=c \cdot 3^{n}$. Plug $a_{n}^{(p)}=c \cdot 3^{n}$ into the recurrence relation and you'll get $c \cdot 3^{n}=2 c \cdot 3^{n-1}+3^{n}$.
Simplify $c \cdot 3^{n}=2 c \cdot 3^{n-1}+3^{n}$:
$c \cdot 3=2 c+3$
$3 c=2 c+3$
$c=3$
Therefore, the particular solution that we seek is $a_{n}^{(p)}=3 \cdot 3^{n}=3^{n+1}$.
So the general solution is the sum of the homogeneous solution and the particular solution: $a_{n}=\alpha 2^{n}+3^{n+1}$.
b Find the solution of the recurrence relation in part (a) with initial condition $a_{1}=5$.
Plug the initial condition in and solve.
$5=\alpha 2^{1}+3^{1+1}$
$5=2 \alpha+9$
$-4=2 \alpha$
$\alpha=-2$
So the solution is $a_{n}=-2 \cdot 2^{n}+3^{n+1}=-2^{n+1}+3^{n+1}$.
Need to check answer!
Let's check a_{2}.
By the recurrence relation, we know $a_{2}=2 a_{1}+3^{2}=2(5)+9=19$.
By the solution, we know $a_{2}=-2^{2+1}+3^{2+1}=-2^{3}+3^{3}=-8+27=19$
Since they both agree, we can be fairly confident that the answer is correct.

8.2 pg. 525 \# 33

Find all solutions of the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+(n+1) 2^{n}$.
Associated homogeneous recurrence relation is $a_{n}=4 a_{n-1}-4 a_{n-2}$.
Characteristic equation: $r^{2}-4 r+4=0$
Factor.
$r^{2}-4 r+4=0$
$(r-2)^{2}=0$
Characteristic root is $r_{0}=2$ with multiplicity 2 .
By Theorem 2, $a_{n}^{(h)}=\alpha 2^{n}+\beta n 2^{n}$.
Note that $F(n)=(n+1) 2^{n}$, so we know by Theorem 6 that $s=2$ and 2 is a root with multiplicity 2, the particular solution is of the form $a_{n}^{(p)}=n^{2}(c n+d) 2^{n}$.
Plug $a_{n}^{(p)}=n^{2}(c n+d) 2^{n}$ into the recurrence relation and you'll get $n^{2}(c n+d) 2^{n}=4(n-1)^{2}(c n+$ $d-c) 2^{n-1}-4(n-2)^{2}(c n+d-2 c) 2^{n-2}+(n+1) 2^{n}$.
Simplify.
$n^{2}(c n+d) 2^{n}=4(n-1)^{2}(c n+d-c) 2^{n-1}-4(n-2)^{2}(c n+d-2 c) 2^{n-2}+(n+1) 2^{n}$
$n^{2}(c n+d) 2^{n}=(n-1)^{2}(c n+d-c) 2^{n+1}-(n-2)^{2}(c n+d-2 c) 2^{n}+(n+1) 2^{n}$
$n^{2}(c n+d)=(n-1)^{2}(c n+d-c) 2-(n-2)^{2}(c n+d-2 c)+(n+1)$
$c n^{3}+d n^{2}=2\left(n^{2}-2 n+1\right)(c n+d-c)-\left(n^{2}-4 n+4\right)(c n+d-2 c)+(n+1)$
$c n^{3}+d n^{2}=2 c n^{3}-6 c n^{2}+2 d n^{2}+6 c n-4 d n-2 c+2 d-c n^{3}+6 c n^{2}-d n^{2}-12 c n+4 d n+8 c-4 d+n+1$
$c n^{3}+d n^{2}=c n^{3}+d n^{2}-6 c n+6 c-2 d+n+1$
$c n^{3}+d n^{2}=c n^{3}+d n^{2}-6 c n+n+6 c-2 d+1$
$c n^{3}+d n^{2}=c n^{3}+d n^{2}+n(-6 c+1)+(6 c-2 d+1)$
Solve $-6 c+1=0$ to find c.
$c=1 / 6$.
Plug $c=1 / 6$ into $6 c-2 d+1=0$ to find d.
$6(1 / 6)-2 d+1=0$
$1-2 d+1=0$
$-2 d=-2$
$d=1$
Therefore the particular solution that we seek is $a_{n}^{(p)}=n^{2}(n / 6+1) 2^{n}$.
So the general solution is the sum of the homogeneous solution and particular solution: $a_{n}=\alpha 2^{n}+\beta n 2^{n}+n^{2} \cdot 2^{n}+n^{3} / 6 \cdot 2^{n}=\left(\alpha+\beta n+n^{2}+n^{3} / 6\right) 2^{n}$.

