
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

The x86
Architecture

The 80x86 Architecture
 To learn assembly programming we need to pick a

processor family with a given ISA (Instruction Set
Architecture)

 We will use the Intel 80x86 ISA (x86 for short)
 The most common today in existing personal computers
 Although now all Apple machines have an ARM processor

 We could have picked other ISAs
 ARM, MIPS

 In ICS331/ICS431/EE460 you’d (likely) be exposed to MIPS
 Some courses in some curricula subject students to two

or even more ISAs in a single semester, but in this
course we’ll just focused on one
 If you know one kind of assembly, it’s not that hard

to pick up another

x86 History (partial)
 In the late 70s Intel creates the 8088 and 8086 processors

 16-bit registers, 1 MiB of memory, divided into 64KiB segments

 In 1982: the 80286
 New instructions, 16 MiB of memory, divided

into 64KiB segments
 In 1985: the 80386

 32-bit registers, 5 GiB of memory, divided
into 4GiB segments

 1989: 486; 1992: Pentium; 1995: P6
 Only incremental changes to the architecture

x86 History (partial)
 1997 - now: improvements, new features galore

 MMX and 3DNow! extensions
 New instructions to speed up graphics (integer and float)
 New cache instructions, new floating point operations
 Virtualization extensions
 etc..

 2021: the “Golden Cove” code name (12th generation)
 “All models support: AES-NI, CLMUL, RDRAND, SHA, TXT,

MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX,
AVX2, FMA3, AVX-512, AVX-VNNI, TSX, VT-x, VT-d”

Several manufacturers build
x86-compliant processors

 And have been for a long time

x86 History
 It’s quite amazing that this architecture has witnessed so little

(fundamental) change since the 8086
 All in the name of backward compatibility
 Imposed early as “the one ISA” (Intel was the first company to

produce a 16-bit architecture, which secured its success)
 Many argue that it’s an unsightly ISA

 Due to it being a set of add-ons rather than a modern re-design
 Famous quote by Mike Johnson (AMD): “The x86 isn’t all that

complex… it just doesn’t make a lot of sense” (1994)
 But it’s relatively easy to implement in hardware, and constructors

have been successfully making faster and faster x86 processors
for decades, explaining its wide adoption

 This architecture is still in use today in 64-bit processors (dubbed
x86-64)

 In this course we do 32-bit x86 though

The 8086 Registers
 To write assembly code for an ISA you must know

the name of registers
 Because registers are places in which you put data to

perform computation and in which you find the result of the
computation

 The registers are identified by binary numbers, but
assembly languages give them “easy-to-remember” names

 The 8086 offered 16-bit registers
 Four general purpose 16-bit registers

 AX
 BX
 CX
 DX

 Each of the 16-bit registers consists of 8 “low bits”
and 8 “high bits”
 Low: least significant
 High: most significant

AX BX CX DX
AH AL BH BL CH CL DH DL

 The ISA makes it possible to refer to the low or high
bits individually
 AH, AL
 BH, BL
 CH, CL
 DH, DL

The 8086 Registers

The 8086 Registers

 The xH and xL registers can be used as 1-
byte registers to store 1-byte values

 Important: both are “tied” to the 16-bit register
 Changing the value of AX will change the values

of AH and/or AL
 Changing the value of AH or AL will change the

value of AX

AX BX CX DX
AH AL BH BL CH CL DH DL

The 8086 Registers

 Two 16-bit index registers:
 SI
 DI

 These are general-purpose registers
 But by convention they are often used as

“pointers”, i.e., they contain addresses
instead of data

 And they cannot be decomposed into High
and Low 1-byte registers

The 8086 Registers

 Two 16-bit special registers:
 BP: Base Pointer
 SP: Stack Pointer
 We’ll discuss these at length later

 Four 16-bit segment registers:
 CS: Code Segment
 DS: Data Segment
 SS: Stack Segment
 ES: Extra Segment
 We’ll discuss these soon a little bit, but won’t use

them at all

The 8086 Registers
 The 16-bit Instruction Pointer (IP) register:

 Points to the next instruction to execute
 Typically not used directly when writing assembly code

 The 16-bit FLAGS registers
 The bits of the FLAGS register contain “status bits” that

each has its individual name and meaning
 It’s really a collection of bits, not a multi-bit value

 Whenever an instruction is executed and produces a result,
it may modify some bit(s) of the FLAGS register

 Example: Z (or ZF) denotes one bit of the FLAGS register,
which is set to 1 if the previously executed instruction
produced 0, or 0 otherwise

 We’ll see many uses of the FLAGS registers

The 8086 Registers

Control
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits

The 8086 Registers

Control
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits

The registers
you can use in
any way you
want for holding
(some of) your
program’s data

Addresses in Memory

 We mentioned several registers that are used for
holding addresses of memory locations

 Segments:
 CS, DS, SS, ES

 Pointers:
 SI, DI: indices (typically used for pointers)
 SP: Stack pointer
 BP: (Stack) Base pointer
 IP: pointer to the next instruction

 Let’s look at the structure of the address space

Code, Data, Stack
 The address space has three logical regions
 Therefore, the program constantly references

bytes in three different segments
 For now let’s assume that each region is fully

contained in a single segment, which is in fact
not always the case

 CS: points to the beginning of the code
segment

 DS: points to the beginning of the data
segment

 SS: points to the beginning of the stack
segment

 ES: points to the beginning of an “extra”
segment
 used to store/address temporary data

code

data

stack

address space

The trouble with segments
 It is well-known that programming with segmented

architectures is really a pain
 In the 8086 you constantly had to make sure segment

registers are set up correctly
 But if your data/code is more than 64KiB then it becomes

awkward
 You must then switch back and forth between so-called selector

values to reference different segments at runtime
 There is an interesting on-line article on the topic called “the

curse of segments”
 http://world.std.com/~swmcd/steven/rants/pc.html

http://world.std.com/~swmcd/steven/rants/pc.html

How come it ever survived?
 If you code and your data are <64KiB, segments are great
 Otherwise, they are a pain
 And of course, our code and data are way bigger!
 Given the horror of segmented programming, one may wonder how

come it stuck?
 From the “curse of segments” article: “Under normal circumstances, a

design so twisted and flawed as the 8086 would have simply been ignored
by the market and faded away.”

 But in 1980, Intel was lucky that IBM picked it for the PC!
 Not to criticize IBM or anything, but they were also the reason

why we got stuck with FORTRAN for so many years :/
 Big companies making “wrong” decisions has impact

 Luckily (for you) in this course we use 32-bit x86...

32-bit x86

 With the 80386 Intel introduced a processor
with 32-bit registers

 Addresses are 32-bit long
 Segments are 4GiB
 Meaning that we don’t really need to modify the

segment registers very often (or at all), and in fact
we’ll call assembly from C so that we won’t see
segments at all (you can thank me later)

 Let’s have a look at the 32-bit registers

The 80386 32-bit registers
 The general purpose registers: extended to 32-bit

 EAX, EBX, ECX, EDX
 For backward compatibility, AX, BX, CX, and DX refer to

the 16 low bits of EAX, EBX, ECX, and EDX
 AH and AL are as before
 There is no way to access the high 16 bits of EAX

separately
 Similarly, other registers are extended

 EBX, EDX, ESI, EDI, EBP, ESP, EFLAGS
 For backward compatibility, the previous names are used

to refer to the low 16 bits

The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the
value of AH, have I then
necessarily changed the
value of EAX?

The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the
value of AH, have I then
necessarily changed the
value of EAX? YES

The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the
value of EAX, have I
then necessarily
changed the value of
AX?

The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the
value of EAX, have I
then necessarily
changed the value of
AX? NO

“But my machine is 64-bit”
 We now all have 64-bit machines
 So you may wonder why we’re using a 32-bit architecture

 Of course, a 64-bit machine can handle 32-bit code
 Basically, for what we need to do in this course it does

not matter whatsoever
 For the code we’ll write, we wouldn’t learn anything interesting/

different by going from 32-bit to 64-bit
 Going to 64-bit would just add more things that are

conceptually the same
 e.g., we’d have 64-bit RAX, RBX, etc. registers that each

contain EAX, EBX, etc.
 just like EAX, EBX, etc. contain AX, BX, etc.

 So for now in this course I am sticking to 32-bit x86

Conclusion
 From now on I’ll keep referring to the register names,

so make sure you absolutely know them
 It’s tempting to think of the registers as variables
 But they have no “data type” and you can do absolutely

whatever you want with them, including horrible mistakes
 So, really, registers are not variables, which will be

painfully clear as you do programming assignments
 We’re now almost ready to move on to writing

assembly code for the 32-bit x86 architecture
 But before, you have a screencast to watch before

the next lecture…
 Let’s start on these lectures now in case we have time

remaining today

