The x86

Architecture

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" A
The 80x86 Architecture

® Jo learn assembly programming we need to pick a
processor family with a given ISA (Instruction Set

Architecture)
® \We will use the Intel 80x86 ISA (x86 for short)

The most common today in existing personal computers
Although now all Apple machines have an ARM processor

® \We could have picked other ISAs
ARM, MIPS
® |n ICS331/ICS431/EE460 you'd (likely) be exposed to MIPS
B Some courses in some curricula subject students to two

or even more ISAs in a single semester, but in this
course we'll just focused on one

If you know one kind of assembly, it's not that hard
to pick up another

"
x86 History (partial)

® |n the late 70s Intel creates the 8088 and 8086 processors
16-bit registers, 1 MiB of memory, divided into 64KiB segments

intel

® |n 1982: the 80286 E 386 £X
New instructions, 16 MiB of memory, divided : _[{‘gﬁ%ﬁ&%”’
|}«§©'85'91

into 64KiB segments

® [n 1985: the 80386

32-bit registers, 5 GiB of memory, divided
into 4GiB segments

m 1989: 486; 1992: Pentium; 1995: P6
Only incremental changes to the architecture

"
x86 History (partial)

m 1997 - now: improvements, new features galore
MMX and 3DNow! extensions
New instructions to speed up graphics (integer and float)
New cache instructions, new floating point operations
Virtualization extensions
etc..

m 2021: the “Golden Cove” code name (12th generation)

“All models support: AES-NI, CLMUL, RDRAND, SHA, TXT,
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX,
AVX2 FMA3 AVX- 512, AVX- VNNI TSX, VT—X VT—d”

® Several manufacturers build
x86-compliant processors

And have been for a long time

"
x86 History

® |t's quite amazing that this architecture has witnessed so little
(fundamental) change since the 8086

All in the name of backward compatibility

Imposed early as “the one ISA” (Intel was the first company to
produce a 16-bit architecture, which secured its success)

® Many argue that it's an unsightly ISA
Due to it being a set of add-ons rather than a modern re-design

Famous quote by Mike Johnson (AMD): “The x86 isn’t all that
complex... it just doesn’t make a lot of sense” (1994)

m But it's relatively easy to implement in hardware, and constructors
have been successfully making faster and faster x86 processors
for decades, explaining its wide adoption

® This architecture is still in use today in 64-bit processors (dubbed
x86-64)

In this course we do 32-bit x86 though

" JE
The 8086 Registers

® To write assembly code for an ISA you must know
the name of registers

Because registers are places in which you put data to
perform computation and in which you find the result of the
computation

The registers are identified by binary numbers, but
assembly languages give them “easy-to-remember” names

®m The 8086 offered 16-bit registers

m Four general purpose 16-bit registers
AX
BX
CX
DX

The 8086 Registers

AX BX CX DX
AH | AL BH [BL CH]| CL DH | DL

® Each of the 16-bit registers consists of 8 “low bits”
and 8 “high bits”
Low: least significant
High: most significant
® The ISA makes it possible to refer to the low or high
bits individually
AH, AL
BH, BL
CH, CL
DH, DL

" JE
The 8086 Registers

AX BX CX DX
AH | AL BH [BL CH]| CL DH | DL

® The xH and xL registers can be used as 1-
byte registers to store 1-byte values
B |[mportant: both are “tied” to the 16-bit register

Changing the value of AX will change the values
of AH and/or AL

Changing the value of AH or AL will change the
value of AX

" J
The 8086 Registers

m Two 16-bit index registers:
S|
DI

B These are general-purpose registers

®m But by convention they are often used as
“pointers”, i.e., they contain addresses
instead of data

® And they cannot be decomposed into High
and Low 1-byte registers

" JEE
The 8086 Registers

m Two 16-bit special registers:
BP: Base Pointer
SP: Stack Pointer
We'll discuss these at length later

m Four 16-bit segment registers:
CS: Code Segment
DS: Data Segment
SS: Stack Segment
ES: Extra Segment

We'll discuss these soon a little bit, but won’t use
them at all

" JE
The 8086 Registers

®m The 16-bit Instruction Pointer (IP) register:
Points to the next instruction to execute
Typically not used directly when writing assembly code

m The 16-bit FLAGS registers

The bits of the FLAGS register contain “status bits” that
each has its individual name and meaning

= |t's really a collection of bits, not a multi-bit value

Whenever an instruction is executed and produces a result,
it may modify some bit(s) of the FLAGS register

Example: Z (or ZF) denotes one bit of the FLAGS register,
which is set to 1 if the previously executed instruction
produced 0, or O otherwise

We'll see many uses of the FLAGS registers

The 8086 Registers

AH AL = AX
BH BL = BX
CH CL =CX
DH DL = DX
Sl
DI
BP
SP
(IP
(= FLAGS
CS
DS
SS

ES
.
~
\ 16 bits

N

Control]
Unit

The 8086 Registers

AH

AL

BH BL = BX
CH CL = CX
DH DL = DX
S
DI
BP
SP
(P
[= FLAGS
CS
DS
SS
ES
J
~
16 bits /
Control
—))
Unit

; The registers
' you can use in
N anywayyou
~want for holding |
- (some of) your

program’s data

" JE
Addresses in Memory

® \We mentioned several registers that are used for
holding addresses of memory locations

B Segments:
CS, DS, SS, ES
® Pointers:

Sl, DI: indices (typically used for pointers)
SP: Stack pointer

BP: (Stack) Base pointer

IP: pointer to the next instruction

m | et’s look at the structure of the address space

" J——
Code, Data, Stack

® The address space has three logical regions

® Therefore, the program constantly references
bytes in three different segments
For now let’'s assume that each region is fully

contained in a single segment, which is in fact
not always the case

®m (CS: points to the beginning of the code \J

segment

®m DS: points to the beginning of the data
segment

m SS: points to the beginning of the stack , _

code

data

S

segment

®m ES: points to the beginning of an “extra”
segment

used to store/address temporary data

stack

Y

aoeds ssalppe

" J
The trouble with segments

® |t is well-known that programming with segmented
architectures is really a pain

® |n the 8086 you constantly had to make sure segment
registers are set up correctly

m But if your data/code is more than 64KiB then it becomes
awkward

You must then switch back and forth between so-called selector
values to reference different segments at runtime

® There is an interesting on-line article on the topic called “the
curse of segments”

http://world.std.com/~swmcd/steven/rants/pc.html

http://world.std.com/~swmcd/steven/rants/pc.html

" A
How come it ever survived?

If you code and your data are <64KiB, segments are great
Otherwise, they are a pain
And of course, our code and data are way bigger!

Given the horror of segmented programming, one may wonder how
come it stuck?

® From the “curse of segments” article: “Under normal circumstances, a
design so twisted and flawed as the 8086 would have simply been ignored
by the market and faded away.”

m But in 1980, Intel was lucky that IBM picked it for the PC!

Not to criticize IBM or anything, but they were also the reason
why we got stuck with FORTRAN for so many years :/

Big companies making “wrong” decisions has impact

m |_uckily (for you) in this course we use 32-bit x86...

"
32-bit x86

m \With the 80386 Intel introduced a processor
with 32-bit registers
B Addresses are 32-bit long
Segments are 4GiB

Meaning that we don’t really need to modify the
segment registers very often (or at all), and in fact
we’ll call assembly from C so that we won'’t see
segments at all (you can thank me later)

m | et’'s have a look at the 32-bit registers

" JE
The 80386 32-bit registers

® The general purpose registers: extended to 32-bit

EAX, EBX, ECX, EDX

For backward compatibility, AX, BX, CX, and DX refer to
the 16 low bits of EAX, EBX, ECX, and EDX

AH and AL are as before
There is no way to access the high 16 bits of EAX
separately
m Similarly, other registers are extended
EBX, EDX, ESI, EDI, EBP, ESP, EFLAGS

For backward compatibility, the previous names are used
to refer to the low 16 bits

" JE
The 8386 Registers

AX
A
14 \
| AH AL = EAX
BX
A
14 \
BH BL] = EBX
CX
A
14 \
| CH cL - ECX
DX
A
14 \
| DH DL = EDX
Sl = ESI
DI = EDI
BP = EBP
SP =ESP
FLAGS = EFLAGS
P = EIP
|\ J

32 bits

" J
The 8386 Registers

AX
A

14 \

(AH AL - EAX
BX
A

14 \

BH BL] = EBX

Poll: If | change the
[value of AH, have | then
1 necessarily changed the

~

l value of EAX?
S| = ESI
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
IP = EIP
“ J
Y~

32 bits

" JE
The 8386 Registers

AX
A

14 \

(AH AL - EAX
BX
A

14 \

BH BL] = EBX

Poll: If | change the
[value of AH, have | then
1 necessarily changed the

~

l value of EAX? YES
S| = ESI
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
P = EIP
i\ ~ J

32 bits

"
The 8386 Registers

AX
Al

AL

BX
A

BH

|

BL

= EAX

| =EBX

~

Poll: If | change the

(value of EAX, have |

~

then necessarily
changed the value of

| AX?
Ol =y |
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
IP = EIP

32 bits

"
The 8386 Registers

AX
Al

(AH

AL

BX
A

BH

|

BL

= EAX

| =EBX

~

Poll: If | change the

(value of EAX, have |

~

then necessarily
changed the value of
AX? NO

DI

BP

SP

FLAGS

IP

32 bits

| === |

= EDI
= EBP
= ESP
= EFLAGS
= EIP

"
“But my machine is 64-bit”

® \We now all have 64-bit machines
B S0 you may wonder why we're using a 32-bit architecture
Of course, a 64-bit machine can handle 32-bit code

m Basically, for what we need to do in this course it does
not matter whatsoever

For the code we'll write, we wouldn’t learn anything interesting/
different by going from 32-bit to 64-bit

® Going to 64-bit would just add more things that are
conceptually the same

e.g., we'd have 64-bit RAX, RBX, etc. registers that each
contain EAX, EBX, etc.

just like EAX, EBX, etc. contain AX, BX, etc.
m So for now in this course | am sticking to 32-bit x86

" A
Conclusion

® From now on I'll keep referring to the register names,
SO make sure you absolutely know them
It's tempting to think of the registers as variables

But they have no “data type” and you can do absolutely
whatever you want with them, including horrible mistakes

So, really, registers are not variables, which will be
painfully clear as you do programming assignments

® \We're now almost ready to move on to writing
assembly code for the 32-bit x86 architecture

m But before, you have a screencast to watch before
the next lecture...

Let’s start on these lectures now in case we have time
remaining today

