
Henri Casanova (henric@hawaii.edu)

ICS312 
Machine-Level and 

Systems Programming 

The x86 
Architecture



The 80x86 Architecture
 To learn assembly programming we need to pick a 

processor family with a given ISA (Instruction Set 
Architecture) 

 We will use the Intel 80x86 ISA (x86 for short)  
 The most common today in existing personal computers 
 Although now all Apple machines have an ARM processor 

 We could have picked other ISAs 
 ARM, MIPS 

 In ICS331/ICS431/EE460 you’d (likely) be exposed to MIPS 
 Some courses in some curricula subject students to two 

or even more ISAs in a single semester, but in this 
course we’ll just focused on one 
 If you know one kind of assembly, it’s not that hard 

to pick up another



x86 History (partial)
 In the late 70s Intel creates the 8088 and 8086 processors 

 16-bit registers, 1 MiB of memory, divided into 64KiB segments 

 In 1982: the 80286 
 New instructions, 16 MiB of memory, divided                                                         

into 64KiB segments 
 In 1985: the 80386 

 32-bit registers, 5 GiB of memory, divided                                                          
into 4GiB segments 

 1989: 486; 1992: Pentium; 1995: P6 
 Only incremental changes to the architecture



x86 History (partial)
 1997 - now:  improvements, new features galore 

 MMX and 3DNow! extensions 
 New instructions to speed up graphics (integer and float) 
 New cache instructions, new floating point operations 
 Virtualization extensions 
 etc.. 

 2021: the “Golden Cove” code name (12th generation) 
 “All models support: AES-NI, CLMUL, RDRAND, SHA, TXT, 

MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX, 
AVX2, FMA3, AVX-512, AVX-VNNI, TSX, VT-x, VT-d” 

Several manufacturers build 	 	 	 	 	
x86-compliant processors 

 And have been for a long time



x86 History
 It’s quite amazing that this architecture has witnessed so little 

(fundamental) change since the 8086 
 All in the name of backward compatibility 
 Imposed early as “the one ISA” (Intel was the first company to 

produce a 16-bit architecture, which secured its success) 
 Many argue that it’s an unsightly ISA 

 Due to it being a set of add-ons rather than a modern re-design 
 Famous quote by Mike Johnson (AMD): “The x86 isn’t all that 

complex… it just doesn’t make a lot of sense” (1994) 
 But it’s relatively easy to implement in hardware, and constructors 

have been successfully making faster and faster x86 processors 
for decades, explaining its wide adoption 

 This architecture is still in use today in 64-bit processors (dubbed 
x86-64) 

 In this course we do 32-bit x86 though



The 8086 Registers
 To write assembly code for an ISA you must know 

the name of registers 
 Because registers are places in which you put data to 

perform computation and in which you find the result of the 
computation 

 The registers are identified by binary numbers, but 
assembly languages give them “easy-to-remember” names 

 The 8086 offered 16-bit registers 
 Four general purpose 16-bit registers 

 AX 
 BX 
 CX 
 DX



 Each of the 16-bit registers consists of 8 “low bits” 
and 8 “high bits” 
 Low: least significant 
 High: most significant

AX BX CX DX
AH AL BH BL CH CL DH DL

 The ISA makes it possible to refer to the low or high 
bits individually 
 AH, AL 
 BH, BL 
 CH, CL 
 DH, DL 

The 8086 Registers



The 8086 Registers

 The xH and xL registers can be used as 1-
byte registers to store 1-byte values 

 Important: both are “tied” to the 16-bit register 
 Changing the value of AX will change the values 

of AH and/or AL 
 Changing the value of AH or AL will change the 

value of AX

AX BX CX DX
AH AL BH BL CH CL DH DL



The 8086 Registers

 Two 16-bit index registers: 
 SI 
 DI 

 These are general-purpose registers 
 But by convention they are often used as 

“pointers”, i.e., they contain addresses 
instead of data 

 And they cannot be decomposed into High 
and Low 1-byte registers 



The 8086 Registers

 Two 16-bit special registers: 
 BP: Base Pointer 
 SP: Stack Pointer 
 We’ll discuss these at length later 

 Four 16-bit segment registers: 
 CS: Code Segment 
 DS: Data Segment 
 SS: Stack Segment 
 ES: Extra Segment 
 We’ll discuss these soon a little bit, but won’t use 

them at all



The 8086 Registers
 The 16-bit  Instruction Pointer (IP) register: 

 Points to the next instruction to execute 
 Typically not used directly when writing assembly code 

 The 16-bit FLAGS registers 
 The bits of the FLAGS register contain “status bits” that 

each has its individual name and meaning 
 It’s really a collection of bits, not a multi-bit value 

 Whenever an instruction is executed and produces a result, 
it may modify some bit(s) of the FLAGS register 

 Example: Z (or ZF) denotes one bit of the FLAGS register, 
which is set to 1 if the previously executed instruction 
produced 0, or 0 otherwise 

 We’ll see many uses of the FLAGS registers



The 8086 Registers

Control 
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits



The 8086 Registers

Control 
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits

The registers 
you can use in 
any way you 
want for holding 
(some of) your 
program’s data



Addresses in Memory

 We mentioned several registers that are used for 
holding addresses of memory locations 

 Segments: 
 CS, DS, SS, ES 

 Pointers: 
 SI, DI: indices (typically used for pointers) 
 SP: Stack pointer 
 BP: (Stack) Base pointer 
 IP: pointer to the next instruction 

 Let’s look at the structure of the address space



Code, Data, Stack
 The address space has three logical regions 
 Therefore, the program constantly references 

bytes in three different segments 
 For now let’s assume that each region is fully 

contained in a single segment, which is in fact 
not always the case 

 CS: points to the beginning of the code 
segment 

 DS: points to the beginning of the data 
segment 

 SS: points to the beginning of the stack 
segment 

 ES: points to the beginning of an “extra” 
segment 
 used to store/address temporary data

code

data

stack

address space



The trouble with segments
 It is well-known that programming with segmented 

architectures is really a pain 
 In the 8086 you constantly had to make sure segment 

registers are set up correctly 
 But if your data/code is more than 64KiB then it becomes 

awkward 
 You must then switch back and forth between so-called selector 

values to reference different segments at runtime 
 There is an interesting on-line article on the topic called “the 

curse of segments”  
 http://world.std.com/~swmcd/steven/rants/pc.html

http://world.std.com/~swmcd/steven/rants/pc.html


How come it ever survived?
 If you code and your data are <64KiB, segments are great 
 Otherwise, they are a pain 
 And of course, our code and data are way bigger! 
 Given the horror of segmented programming, one may wonder how 

come it stuck? 
 From the “curse of segments” article: “Under normal circumstances, a 

design so twisted and flawed as the 8086 would have simply been ignored 
by the market and faded away.”

 But in 1980, Intel was lucky that IBM picked it for the PC! 
 Not to criticize IBM or anything, but they were also the reason 

why we got stuck with FORTRAN for so many years :/ 
 Big companies making “wrong” decisions has impact 

 Luckily (for you) in this course we use 32-bit x86... 



32-bit x86

 With the 80386 Intel introduced a processor 
with 32-bit registers 

 Addresses are 32-bit long 
 Segments are 4GiB 
 Meaning that we don’t really need to modify the 

segment registers very often (or at all), and in fact 
we’ll call assembly from C so that we won’t see 
segments at all  (you can thank me later) 

 Let’s have a look at the 32-bit registers



The 80386 32-bit registers
 The general purpose registers: extended to 32-bit 

 EAX, EBX, ECX, EDX 
 For backward compatibility, AX, BX, CX, and DX refer to 

the 16 low bits of EAX, EBX, ECX, and EDX 
 AH and AL are as before 
 There is no way to access the high 16 bits of EAX 

separately 
 Similarly, other registers are extended 

 EBX, EDX, ESI, EDI, EBP, ESP, EFLAGS 
 For backward compatibility, the previous names are used 

to refer to the low 16 bits



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of AH, have I then 
necessarily changed the 
value of EAX? 



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of AH, have I then 
necessarily changed the 
value of EAX?  YES



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of EAX, have I 
then necessarily 
changed the value of 
AX?



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of EAX, have I 
then necessarily 
changed the value of 
AX?  NO



“But my machine is 64-bit”
 We now all have 64-bit machines 
 So you may wonder why we’re using a 32-bit architecture 

 Of course, a 64-bit machine can handle 32-bit code 
 Basically, for what we need to do in this course it does 

not matter whatsoever 
 For the code we’ll write, we wouldn’t learn anything interesting/

different by going from 32-bit to 64-bit  
 Going to 64-bit would just add more things that are 

conceptually the same 
 e.g., we’d have 64-bit RAX, RBX, etc. registers that each 

contain EAX, EBX, etc. 
 just like EAX, EBX, etc. contain AX, BX, etc. 

 So for now in this course I am sticking to 32-bit x86



Conclusion
 From now on I’ll keep referring to the register names, 

so make sure you absolutely know them 
 It’s tempting to think of the registers as variables 
 But they have no “data type” and you can do absolutely 

whatever you want with them, including horrible mistakes 
 So, really, registers are not variables, which will be 

painfully clear as you do programming assignments 
 We’re now almost ready to move on to writing 

assembly code for the 32-bit x86 architecture 
 But before, you have a screencast to watch before 

the next lecture… 
 Let’s start on these lectures now in case we have time 

remaining today


