Modifying Data

Sizes (Casting)

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

"
Casting

m Statically typed programming languages (C/C++, Java, Rust, Go,
etc.) all provide “casting” to convert a value from one type for another

Other languages automatically adjust data size/type based on values, e.g.,
Python, which is both good and bad

m Casting has many uses and is often necessary

An external library produces values of some type, and you want to pass
them to another external library that expects values of some other type

Some method returns a 4-byte integer, but from application logic you know
that the value is necessarily between 61 and 80, and you want to pass it
as a 1-byte ASCII code to some other method

m Casting can be problematic

If you need to cast values all the time in your program, perhaps your
design/approach is flawed

Casting a lot also prevents the compiler from detecting type errors

If you don’t know what you’re doing you will break things because casts
can lead to wrong (numerical) results

"
Casting Integers

m Casting can be implicit or explicit (see next slides)
m Casting can change

The size of a value (remove / add bits)

The interpretation of a value

® |n these lectures notes we only consider casts of

values interpreted as integers into values also
iInterpreted as integers

To make values smaller / bigger
To make signed / unsigned values unsigned / signed

m | et’s start with making values smaller (in number
of bits), which is sometimes called type narrowing

"
High-Level Type Narrowing

int a = 65535; // 4-byte
short b = a; // Implicit cast to a 2-byte value
// no compiler error/warning

printf ("%d\n",b) ;

int x = -50000;
short y = x;
printf ("%d\n",y) ;

65535;
a; // Implicit cast
// Compiler error: “incompatible types:
// possible lossy conversion from int to short”

short ¢ = (short)a; // Explicit cast: no error/warning
System.out.println(c) ;

int x = -50000;
short y = (short)x;
System.out.println(y) ;

® The goal will be to figure out what happens here

Type Narrowing: Dropping Bits

B Type narrowing: drop the most significant byte(s)

and keep the least significant byte(s)

® Example: casting from a 4-byte int to a 2-byte int

0100 1001 | 1111 1000 | 0101 0110 | 1011 1111
0101 0110 | 1011 1111

= How would we do this in assembly?

" JE
Type Narrowing in Assembly

® \Ve can use the the fact that we can access lower bits of some registers

m Example:
mov AX, [L] ;load 16 bits in AX
mov BL,AL ;take the lower 8 bits of AX and puts them in BL

AL

AX

BL

®m \We have “cast” a 2-byte value into a 1-byte value

m |f the 2-byte value is in a register like ESI or EDI, then we'd have to
move the value into a register where we can access the lower bytes

m |f the 2-byte value is in memory, then we could “just” read the 1-byte
value into a 1-byte register (but watch out for Little Endianness!!)

Type Narrowing Correctness?

® \When doing type narrowing one loses bits, and thus
perhaps information

® Based on our signed / unsigned interpretation of the number,
then we may get a result that is not equal numerically to the
original number

m |et’s consider the following 2-byte values, which we cast into
1-byte values:

005116 — 5116
FFA216 — A216
00B116 — B11s
FF7A16 — TA16

® \Which ones of the above make sense numerically?

Type Narrowing Correctness?

Unsigned

2-byte

1-byte

0051 (8110)

51 (8110)

FFA2 (6544210)

A2 (16210)

00B1 (17710)

B1 (17710)

FF7A (6540210)

7A (12210)

x N > N

Signed
2-byte 1-byte
0051 (8110) 51 (8110)
FFA2 (-9510) A2 (-9510)
00B1 (17740) B1 (-7910)
FF7A (-13410) |7A (12210)

x X N

Type Narrowing Correctness?

Unsigned Signed
2-byte 1-byte 2-byte 1-byte
0051 (8110) 51 (8110) v 0051 (8110) 51 (8110)
FFAZ2 (6544210) A2 (16210) X FFA2 (-9510) A2 (-9410)
00B1 (17710) B1 (17710) V4 00B1 (17740) B1 (-7910)
FF7A (6540210) |7A (12210) X FF7A (-13410) |7A (12210)

x X N

Values are too large
to be encoded with
only 8 bits (we lost
bits that were set to 1)

We lost mostly “useless”
bits, but the remaining
sign bit is wrong, so the
results is wrongly positive
or negative

= B
Two “Rules” to Remember

® [For unsigned numbers: size reduction leads to a numerically
consistent result if all removed bits are 0

00| 0]|0[O0JO0|0]O0|X|X|X|X|X|X|X|X

X X X[X| X| X| X[X

B [For signed numbers: size reduction leads to a numerically
consistent result if all removed bits are all O’'s or if all removed
bits are all 1's, AND if the highest bit not removed is equal to

the removed bits
This highest remaining bit is the new sign bit, and thus must be
the same as the original sign bit

alalalalalalalalal X| X X|X|X|X| X

a=0or1 a| X| X| X X| X|X|X

Type Narrowing in High-Level PLs

// 4-byte (0x0000FFFF)

printf ("%

int x = -50000; // 4-byte (O0xFFFF3CBO)
short y = x;

printf ("$d\n",y) ;

® Any ideas?

" J
Type Narrowing in High-Level PLs

int a = 65535; // 4-byte (0x0000FFFF)
short b = a;
printf ("%d\n" ,b) ;

int x ; // 4-byte (OxXFFFF3CBO)

® Same outcome for the Java version (of course!)

" J
Type Widening: Size Increase

B Sometimes we need to increase the size of values
using a cast

® This is called type widening

short a = ; // 2-byte, signed
int b = a;
printf ("$d\n",b) ;

unsigned short x = 12; // 2-byte, unsigned
unsigned int y = x;
printf (“%d\n",y) ;

Type Widening: Adding Bits

® Type widening: add most significant bits
® Example: casting from a 2-byte int to a 4-byte int

0101 0110 1011 111
2?7?72 272272 | ??272? 27?27?? | 0101 0110 1011 111

®m\\WVhat should the new bits be?

" JE
Unsigned/Signed Type Widening

® Unsigned quantities: just add a bunch of O’s

® Signed quantities: perform sign extension
Add a bunch of replicas of the sign bit

= Unsigned 1101 0110 | 1011 1111
0000 0000 | 0000 0000 1101*0110 1011+1111
= Signed 1101 0110 | 1011 1111
1111 1111 | 1111 1111 1101*0110 1011+1111

0101 0110 | 1011 1111
0000 0000 | 0000 0000 0101+0110 1011+1111

" JE
Unsigned/Signed Type Widening

® Unsigned quantities: just add a bunch of O’s

® Signed quantities: perform sign extension
Add a bunch of replicas of the sign bit

®m Unsigned D 6 B F
v v

00 00 D 6 B F

= Signed D 6 B F
v v

F F F F D 6 B F

7 6 B F

v v

00 00 7 6 B F

" JE
Unsigned Type Widening in Assembly

® To increase a 1-byte value into a 2-byte value, one can play a trick:

Put the 1-byte value into AL, set AH to 0, AX now contains the
2-byte value

m But not for casting a 2-byte value into a 4-byte value: there is no
way to access the 16 high bit of register eax separately!

AX
A

AH AL = EAX

®m There is an instruction called movzx (Zero eXtend), which takes two
operands:

Destination: 16- or 32-bit register

Source: 8- or 16-bit register, or 1 byte in memory, or 1 word in memory
The destination must be larger than the source!

Using movzx

mOVzZX eax, ax ,; zero extends ax 1into
movzx eax, al ; zero extends al into
movzx ax, al ,; zero extends al into
movzx ebx, ax ; zero extends ax into

leads to a “size not
specified” error

movzx ebx, [L]

e

movzx ebx, byte [L] ; zero extends 1-
byte value at address L into ebx
movzx eax, word [L] ; zero extends 2-

byte value at address L into eax

eax
eax
ax

ebx

"
Signed Type Widening in Assembly

m There is no (easy) way to use mov or movzx
instructions to increase the size of signed
numbers, because of the needed sign extension

Sometimes we want to add O’s (like mowvzx), but
sometimes we want to add 1’s (unlike movzx)

m For this reason, we have a new instruction: movsx
(Sign eXtend)

Works just like movzx, but does sign extension

m | et's see an example..

Example

mov al, OA7h ;

mov cl, OA7h ;

movzX eax,

movsx ebx,

as a programmer, I view this
as an unsigned, l-byte
quantity (decimal 167)

as a programmer, I view this
as a signed l-byte
quantity (decimal -89)

al ; extend to a 4-byte value

.
’

(000000A7)

cl ; extend to a 4-byte value

.
14

(FFFFFFAT)

" A
In-class Exercise

®m Consider the following code
mov al, OB2h
movsx eax, al
mov bx, ax

movzx ebx, bx
m \What's the final value of eax?
m \What's the final value of ebx?

" A
In-class Exercise Solution

mov

movsx

mov

movzx

al, OB2h

eax, al

bx, ax

ebx, bx

EAX EBX
72| 22| 22 B2| | 22| 22| 22| 22
FF|FF|FF|B2| | 22| 22| 22| 22
FF| FF| FF|B2| | 72| 22| FF| B2
FF| FF| FF[B2| |00] 00| FF|B2

"
Type Widening in High-Level PLs
short a = -60; // OxXFFC4

int b = a;
printf ("%$d\n" ,b) ;

unsigned short x = 12; // 0x000C
unsigned int y = x;
printf (“%d\n",y) ;

® Any ideas?

" J
Type Widening in High-Level PLs

The compiler will
generate a movsx short a = -60; // OxFFC4

instruction int b = a;
printf ("%d\n" ,b) ;

unsigned short x = 12; // 0x000C
unsigned int y = x;
printf (“%d\n",y) ;

The compiler will
generate a movzx
instruction

" JE
Another Example

unsigned char uchar = OxFF;
signed char schar = OxFF;
int a uchar;

int b = schar;

printf ("%$d\n",a) ;
printf ("%d\n",b) ;

® Any ideas?

" J
Another Example

unsigned char uchar = OxFF;
signed char schar = OxFF;
int a = uchar;

The compiler with The compiler with

generate a movzx generate a movsx
instruction instruction

"
How printf works

® By declaring variables as “signed” or “unsigned” you define
which of movsx or movzx will be used for type widening

This happens when you do an implicit or explicit cast
m |t also happens with printf
m Say you pass a n-byte argument x to print£, and that you
print it using some “%X" format string
®m What printf does is:

If “%X” is for a larger data size, then printf uses movzx or movsx to
cast the value to a larger size

Then the number is printed based on the “%X” format string,
regardless of how it was declared

® Good luck understanding this if you have never studied
assembly at all...

m | et's see a few examples...

"
Understanding printf

unsigned char uc = 0xA0; // hex

printf (“%d\n”, uc);

® The argument to printf£ is a 1-byte value

® The format string “%d” is for a 4-byte value

® S0 printf will increase the size to a 4-byte value
® Variable uc is declared as an unsigned value

® S0 the size increase will be done using movzx

® So the hex value will be 00 00 00 AO

® printf then interprets this value as a signed value (since the
format string is “%d” and not “%u”)

® S0 so, the above prints 160

"
Understanding printf

signed char sc = 0xA0; // hex

printf (“%u\n”, sc);

® The argument to printf£ is a 1-byte value

® The format string “%u” is for a 4-byte value

® S0 printf will increase the size to a 4-byte value
® Variable uc is declared as a signed value

B S0 the size increase will be done using movsx

® So the hex value will be FF FF FF AQ

B printf then interprets this value as an unsigned value (since
the format string is “%u” and not “%d")

® S0 the above prints some huge number (4294967200)

" A
In-Class Exercise

unsigned short us 259; // 0x0103
signed short ss = -45; // OXFFD3

printf (“*%d %d\n”, us, ss);
printf (“$u %u\n”, us, ss);

®m \What does the above print?

" A
Solution

unsigned short us 259; // 0x0103
signed short ss = -45; // OXFFD3

printf (“*%d %d\n”, us, ss);
printf (“$u %u\n”, us, ss);

" J
A “kitchen sink” example

unsigned short ushort; // 2-byte quantity
signed char schar; // l-byte quantity
int integer; // 4-byte quantity

schar = OxAF;

integer = (int) schar;
integer++;

ushort = integer;

printf (“%d\n”, ushort);

m \What does this code print?
Or what's the hex value of the value it prints?

m | et's do this together...

" J—
A “kitchen sink” example

unsigned short ushort;
signed char schar;
int integer;

schar | AF

integer | FF | FF | FF | AF

schar = OxAF;

integer | FF | FF | FF | BO

integer = (int) schar;

ushort | FF | BO

integer++;

Because printf£ doesn'’t specify “h”
ushort = integer; ushort is size augmented to 4-bytes
using movzx (because declared as
unsigned): 00 00 FF BO

The number is then printed as a signed
integer (“%d”): 65456

printf (“$d\n”, ushort);

"
More Signed/Unsigned in C

® On page 32 of the textbook there is an
interesting example about the use of the
fgetc() function

fgetc reads a 1-byte character from a file but
returns it as a 4-byte quantity!

B This is a good example of how understanding
low-level details can be necessary to
understand high-level constructs

m | et's go through the example...

" JE
The Trouble with fgetc

® The £getc function in the standard C /O library takes as

argument a file opened for reading, and returns a character,
l.e., an ASCII code

® This function is often used to read in all characters of the file
® The prototype of the function is:
int fgetc (FILE *)
® One may have expected for £getc to return a char rather than
an int, since it's used to “get a character”

m But if the end of the file is reached, £getc returns a special
value called EOF (End Of File)

Typically defined to be -1 (#define EOF -1)
m So f£fgetc returns either

A character zero-extended into a 4-byte int (i.e., 000000xx), or
Integer -1 (i.e., FFFFFFFF)

" J
The Trouble with fgetc

® Buggy code to compute the sum of ASCII codes in a text file:
char c¢;
while ((c = fgetc(file)) != EOF) {
sum += C;
}
® |n this code we have mistakenly declared c as a char

® C being C (and not Java), it thinks we know what we’re doing and does a type
narrowing of a 4-byte int into a 1-byte char when doing the assignment into ¢

m | et’'s say we just read in a character with ASCII code FF (decimal 255, “y)
m fgetc returned 000000FF, but it was truncated into 1-byte integer c=0xFF
FF is -1 in decimal

® So we then compare 1-byte value FF to 4-byte value FFFFFFFF

C allows comparing signed integer values of different byte sizes, for convenience, by
internally sign-extending the shorter value

mint x=-1; char y=-1; // (x == y) returns TRUE
So FF is sign-extended into FFFFFFFF

® Therefore, the above code will “miss” all characters after ASCIl code FF and
mistake them for an end of file

m Solution: declare ¢ as an int (which may seem counter-intuitive)

"
Example: Type Widening Bug

® |f you search around, you’ll find bug reports about type
widening pretty frequently

® For instance, https://unspecified.wordpress.com/2011/08/08/
integer-conversions-in-c/
m | ast paragraph is particularly illuminating
There’s an implicit type widening of a signed char, that then can add
a bunch of 1’s when the intent was to always add a bunch of O’s
® This bug was for a popular password encryption library, which
weakens its security

“This can result in passwords being even easier to crack than expected. This is
due to a char signedness bug in crypt_blowfish.”

B There are many more recent examples out there

https://sourceforge.net/p/perfmon2/bugs/11/

“I was able to squelch the error by adding a cast everywhere: = (unsigned
long) -1;”

https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://sourceforge.net/p/perfmon2/bugs/11/

" J
Should you care?

® |t all depends of what kind of work you do and what kind
of software you deal with

Some codes will have stuff like that all over with signed/
unsigned declarations and casts galore

Some codes will have none of that ever

m |f all you do is JavaScript Web app development, you
likely will rarely care

® |f you do lower-level development, you may care every
single day

Or rather, if you don’t know all this, your life will be very difficult
for understanding, debugging, etc.

m Qverall, it's pretty rare to completely avoid it for your entire
life
In part due to binary data formats used all over the place

"
Important Takeaways

m Casting is often needed but is a bit “sketchy” and
shouldn’t be overly used
® |t can be used for decreasing data size (type narrowing)
Just drop bits
For unsigned values, correct if dropping only zeros

For signed values, correct if dropping only all zeros or all
ones, without changing the sign of the value

® |t can be used for increasing data size (type widening)
Implemented via movzx or movsx instructions for unsigned

or signed values

The compilers of high-level languages translate explicit/
Implement tasks into movzx and movsx instructions

m Printf is more complicated than you think :)

" A
Conclusion

® Being aware of data sizes and of data size
extension/reduction behaviors is important when
doing lower-level development

® Unfortunately, almost every developer at some
point is confronted with data size issues and
having studied a bit of assembly is the only way to
resolve mysteries

Important to know that a cast isn't magical, and can do
the "wrong” thing

B | et’s look at some of the practice problems...

