
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Modifying Data
Sizes (Casting)

 Casting
 Statically typed programming languages (C/C++, Java, Rust, Go,

etc.) all provide “casting” to convert a value from one type for another
 Other languages automatically adjust data size/type based on values, e.g.,

Python, which is both good and bad
 Casting has many uses and is often necessary

 An external library produces values of some type, and you want to pass
them to another external library that expects values of some other type

 Some method returns a 4-byte integer, but from application logic you know
that the value is necessarily between 61 and 80, and you want to pass it
as a 1-byte ASCII code to some other method

 Casting can be problematic
 If you need to cast values all the time in your program, perhaps your

design/approach is flawed
 Casting a lot also prevents the compiler from detecting type errors
 If you don’t know what you’re doing you will break things because casts

can lead to wrong (numerical) results

Casting Integers
 Casting can be implicit or explicit (see next slides)
 Casting can change

 The size of a value (remove / add bits)
 The interpretation of a value

 In these lectures notes we only consider casts of
values interpreted as integers into values also
interpreted as integers
 To make values smaller / bigger
 To make signed / unsigned values unsigned / signed

 Let’s start with making values smaller (in number
of bits), which is sometimes called type narrowing

High-Level Type Narrowing
int a = 65535; // 4-byte
short b = a; // Implicit cast to a 2-byte value
 // no compiler error/warning
printf("%d\n",b); // prints ????

int x = -50000;
short y = x;
printf("%d\n",y); // prints ????

 The goal will be to figure out what happens here

int a = 65535;
short b = a; // Implicit cast
 // Compiler error: “incompatible types:
 // possible lossy conversion from int to short”

short c = (short)a; // Explicit cast: no error/warning
System.out.println(c); // prints ???

int x = -50000;
short y = (short)x;
System.out.println(y); // prints ???

Type Narrowing: Dropping Bits

Type narrowing: drop the most significant byte(s)
and keep the least significant byte(s)

Example: casting from a 4-byte int to a 2-byte int

0100 1001 1111 1000 0101 0110 1011 1111

0101 0110 1011 1111

How would we do this in assembly?

Type Narrowing in Assembly
 We can use the the fact that we can access lower bits of some registers
 Example:

 mov AX, [L] ; load 16 bits in AX
 mov BL, AL ; take the lower 8 bits of AX and puts them in BL

AX

BL

AL

 We have “cast” a 2-byte value into a 1-byte value
 If the 2-byte value is in a register like ESI or EDI, then we’d have to

move the value into a register where we can access the lower bytes
 If the 2-byte value is in memory, then we could “just” read the 1-byte

value into a 1-byte register (but watch out for Little Endianness!!)

Type Narrowing Correctness?
 When doing type narrowing one loses bits, and thus

perhaps information
 Based on our signed / unsigned interpretation of the number,

then we may get a result that is not equal numerically to the
original number

 Let’s consider the following 2-byte values, which we cast into
1-byte values:

 005116 ⇨ 5116

 FFA216 ⇨ A216

 00B116 ⇨ B116

 FF7A16 ⇨ 7A16

 Which ones of the above make sense numerically?

Type Narrowing Correctness?

Unsigned Signed

2-byte 1-byte 2-byte 1-byte

0051 (8110) 51 (8110) ✓ 0051 (8110) 51 (8110) ✓

FFA2 (6544210) A2 (16210) ✗ FFA2 (-9510) A2 (-9510) ✓

00B1 (17710) B1 (17710) ✓ 00B1 (17710) B1 (-7910) ✗

FF7A (6540210) 7A (12210) ✗ FF7A (-13410) 7A (12210) ✗

Type Narrowing Correctness?

Values are too large
to be encoded with
only 8 bits (we lost
bits that were set to 1)

We lost mostly “useless”
bits, but the remaining
sign bit is wrong, so the
results is wrongly positive
or negative

Unsigned Signed

2-byte 1-byte 2-byte 1-byte

0051 (8110) 51 (8110) ✓ 0051 (8110) 51 (8110) ✓

FFA2 (6544210) A2 (16210) ✗ FFA2 (-9510) A2 (-9410) ✓

00B1 (17710) B1 (17710) ✓ 00B1 (17710) B1 (-7910) ✗

FF7A (6540210) 7A (12210) ✗ FF7A (-13410) 7A (12210) ✗

Two “Rules” to Remember
 For unsigned numbers: size reduction leads to a numerically

consistent result if all removed bits are 0

 For signed numbers: size reduction leads to a numerically
consistent result if all removed bits are all 0’s or if all removed
bits are all 1’s, AND if the highest bit not removed is equal to
the removed bits
 This highest remaining bit is the new sign bit, and thus must be

the same as the original sign bit

0 0 0 0 0 0 0 0 X X X X X X X X

X X X X X X X X

a a a a a a a a a X X X X X X X

a X X X X X X Xa = 0 or 1

Type Narrowing in High-Level PLs

int a = 65535; // 4-byte (0x0000FFFF)
short b = a;
printf("%d\n",b); // prints ????

int x = -50000; // 4-byte (0xFFFF3CB0)
short y = x;
printf("%d\n",y); // prints ????

 Any ideas?

Type Narrowing in High-Level PLs

int a = 65535; // 4-byte (0x0000FFFF)
short b = a;
printf("%d\n",b); // prints -1

int x = -50000; // 4-byte (0xFFFF3CB0)
short y = x;
printf("%d\n",y); // prints 15536

 Same outcome for the Java version (of course!)

Type Widening: Size Increase

 Sometimes we need to increase the size of values
using a cast

 This is called type widening

short a = -60; // 2-byte, signed
int b = a;
printf("%d\n",b); // prints ????

unsigned short x = 12; // 2-byte, unsigned
unsigned int y = x;
printf(“%d\n",y); // prints ????

Type Widening: Adding Bits

Type widening: add most significant bits
Example: casting from a 2-byte int to a 4-byte int

???? ???? ???? ???? 0101 0110 1011 111

0101 0110 1011 111

What should the new bits be?

Unsigned/Signed Type Widening
 Unsigned quantities: just add a bunch of 0’s
 Signed quantities: perform sign extension

 Add a bunch of replicas of the sign bit

0000 0000 0000 0000 1101 0110 1011 1111

1101 0110 1011 1111

1111 1111 1111 1111 1101 0110 1011 1111

1101 0110 1011 1111

 Unsigned

 Signed

0000 0000 0000 0000 0101 0110 1011 1111

0101 0110 1011 1111

Unsigned/Signed Type Widening
 Unsigned quantities: just add a bunch of 0’s
 Signed quantities: perform sign extension

 Add a bunch of replicas of the sign bit

0 0 0 0 D 6 B F

D 6 B F

F F F F D 6 B F

D 6 B F

 Unsigned

 Signed

0 0 0 0 7 6 B F

7 6 B F

Unsigned Type Widening in Assembly
 To increase a 1-byte value into a 2-byte value, one can play a trick:

 Put the 1-byte value into AL, set AH to 0, AX now contains the
2-byte value

 But not for casting a 2-byte value into a 4-byte value: there is no
way to access the 16 high bit of register eax separately!

= EAXALAH

AX

 There is an instruction called movzx (Zero eXtend), which takes two
operands:
 Destination: 16- or 32-bit register
 Source: 8- or 16-bit register, or 1 byte in memory, or 1 word in memory
 The destination must be larger than the source!

Using movzx
 movzx eax, ax ; zero extends ax into eax
 movzx eax, al ; zero extends al into eax
 movzx ax, al ; zero extends al into ax
 movzx ebx, ax ; zero extends ax into ebx
 movzx ebx, [L]; leads to a “size not	 	
	 	 	 specified” error

 movzx ebx, byte [L] ; zero extends 1-
byte value at address L into ebx

 movzx eax, word [L] ; zero extends 2-
byte value at address L into eax

Signed Type Widening in Assembly

 There is no (easy) way to use mov or movzx
instructions to increase the size of signed
numbers, because of the needed sign extension
 Sometimes we want to add 0’s (like movzx), but

sometimes we want to add 1’s (unlike movzx)

 For this reason, we have a new instruction: movsx
(Sign eXtend)
 Works just like movzx, but does sign extension

 Let’s see an example..

Example
mov al, 0A7h ; as a programmer, I view this
 ; as an unsigned, 1-byte
 ; quantity (decimal 167)

mov cl, 0A7h ; as a programmer, I view this
 ; as a signed 1-byte
 ; quantity (decimal -89)

movzx eax, al ; extend to a 4-byte value
	 	 	 ; (000000A7)
movsx ebx, cl ; extend to a 4-byte value
	 	 	 ; (FFFFFFA7)

In-class Exercise

 Consider the following code
	 	 	 mov al, 0B2h

movsx eax, al
mov bx, ax
movzx ebx, bx

 What’s the final value of eax?
 What’s the final value of ebx?

	 	 	

In-class Exercise Solution

mov al, 0B2h

movsx eax, al

mov bx, ax

movzx ebx, bx

?? ?? ?? B2 ?? ?? ?? ??

FF FF FF B2 ?? ?? ?? ??

FF FF FF B2 ?? ?? FF B2

FF FF FF B2 00 00 FF B2

EAX EBX

Type Widening in High-Level PLs

short a = -60; // 0xFFC4
int b = a;
printf("%d\n",b); // prints ????

unsigned short x = 12; // 0x000C
unsigned int y = x;
printf(“%d\n",y); // prints ????

 Any ideas?

Type Widening in High-Level PLs

short a = -60; // 0xFFC4
int b = a;
printf("%d\n",b); // prints -60 (0xFFFFFFC4)

unsigned short x = 12; // 0x000C
unsigned int y = x;
printf(“%d\n",y); // prints 12 (0x0000000C)

The compiler will
generate a movsx
instruction

The compiler will
generate a movzx
instruction

Another Example

unsigned char uchar = 0xFF;
signed char schar = 0xFF;
int a = uchar;
int b = schar;

printf("%d\n",a); // prints ????
printf("%d\n",b); // prints ????

 Any ideas?

Another Example

unsigned char uchar = 0xFF;
signed char schar = 0xFF;
int a = uchar;
int b = schar;

printf("%d\n",a); // prints 255
printf("%d\n",b); // prints -1

The compiler with
generate a movzx
instruction

The compiler with
generate a movsx
instruction

How printf works
 By declaring variables as “signed” or “unsigned” you define

which of movsx or movzx will be used for type widening
 This happens when you do an implicit or explicit cast

 It also happens with printf
 Say you pass a n-byte argument x to printf, and that you

print it using some “%X” format string
 What printf does is:

 If “%X” is for a larger data size, then printf uses movzx or movsx to
cast the value to a larger size

 Then the number is printed based on the “%X” format string,
regardless of how it was declared

 Good luck understanding this if you have never studied
assembly at all…

 Let’s see a few examples…

Understanding printf	

 The argument to printf is a 1-byte value
 The format string “%d” is for a 4-byte value
 So printf will increase the size to a 4-byte value
 Variable uc is declared as an unsigned value
 So the size increase will be done using movzx
 So the hex value will be 00 00 00 A0
 printf then interprets this value as a signed value (since the

format string is “%d” and not “%u”)
 So so, the above prints 160

unsigned char uc = 0xA0; // hex
printf(“%d\n”, uc); // prints 160

Understanding printf	

 The argument to printf is a 1-byte value
 The format string “%u” is for a 4-byte value
 So printf will increase the size to a 4-byte value
 Variable uc is declared as a signed value
 So the size increase will be done using movsx
 So the hex value will be FF FF FF A0
 printf then interprets this value as an unsigned value (since

the format string is “%u” and not “%d”)
 So the above prints some huge number (4294967200)

signed char sc = 0xA0; // hex
printf(“%u\n”, sc); // prints a large >0 number

In-Class Exercise

 What does the above print?

unsigned short us = 259; // 0x0103
signed short ss = -45; // 0xFFD3

printf(“%d %d\n”, us, ss); // prints ????
printf(“%u %u\n”, us, ss); // prints ????

Solution

unsigned short us = 259; // 0x0103
signed short ss = -45; // 0xFFD3

printf(“%d %d\n”, us, ss); // 259 -45
printf(“%u %u\n”, us, ss); // 259 4294967251

A “kitchen sink” example

 What does this code print?
 Or what’s the hex value of the value it prints?

 Let’s do this together…

unsigned short ushort; // 2-byte quantity
signed char schar; // 1-byte quantity
int integer; // 4-byte quantity

schar = 0xAF;
integer = (int) schar;
integer++;
ushort = integer;

printf(“%d\n”, ushort); // prints ????

A “kitchen sink” example

AFschar

FFinteger FF FF AF

FFinteger FF FF B0

FFushort B0

Because printf doesn’t specify “h”
ushort is size augmented to 4-bytes
using movzx (because declared as
unsigned): 00 00 FF B0
The number is then printed as a signed
integer (“%d”): 65456

unsigned short ushort;
signed char schar;
int integer;

schar = 0xAF;

integer = (int) schar;

integer++;

ushort = integer;

printf(“%d\n”, ushort);

More Signed/Unsigned in C

 On page 32 of the textbook there is an
interesting example about the use of the
fgetc() function
 fgetc reads a 1-byte character from a file but

returns it as a 4-byte quantity!
 This is a good example of how understanding

low-level details can be necessary to
understand high-level constructs

 Let’s go through the example...

The Trouble with fgetc
 The fgetc function in the standard C I/O library takes as

argument a file opened for reading, and returns a character,
i.e., an ASCII code

 This function is often used to read in all characters of the file
 The prototype of the function is:
	 	 	 int fgetc(FILE *)
 One may have expected for fgetc to return a char rather than

an int, since it’s used to “get a character”
 But if the end of the file is reached, fgetc returns a special

value called EOF (End Of File)
 Typically defined to be -1 (#define EOF -1)

 So fgetc returns either
 A character zero-extended into a 4-byte int (i.e., 000000xx), or
 Integer -1 (i.e., FFFFFFFF)

The Trouble with fgetc
 Buggy code to compute the sum of ASCII codes in a text file:
	 	 	 char c;
	 	 	 while ((c = fgetc(file)) != EOF) {
	 	 	 	 sum += c;
	 	 	 }
 In this code we have mistakenly declared c as a char
 C being C (and not Java), it thinks we know what we’re doing and does a type

narrowing of a 4-byte int into a 1-byte char when doing the assignment into c
 Let’s say we just read in a character with ASCII code FF (decimal 255, “ÿ“)
 fgetc returned 000000FF, but it was truncated into 1-byte integer c=0xFF

 FF is -1 in decimal
 So we then compare 1-byte value FF to 4-byte value FFFFFFFF

 C allows comparing signed integer values of different byte sizes, for convenience, by
internally sign-extending the shorter value

 int x=-1; char y=-1; // (x == y) returns TRUE
 So FF is sign-extended into FFFFFFFF

 Therefore, the above code will “miss” all characters after ASCII code FF and
mistake them for an end of file

 Solution: declare c as an int (which may seem counter-intuitive)

Example: Type Widening Bug
 If you search around, you’ll find bug reports about type

widening pretty frequently
 For instance, https://unspecified.wordpress.com/2011/08/08/

integer-conversions-in-c/
 Last paragraph is particularly illuminating

 There’s an implicit type widening of a signed char, that then can add
a bunch of 1’s when the intent was to always add a bunch of 0’s

 This bug was for a popular password encryption library, which
weakens its security

 “This can result in passwords being even easier to crack than expected. This is
due to a char signedness bug in crypt_blowfish.”

 There are many more recent examples out there
 https://sourceforge.net/p/perfmon2/bugs/11/
 “I was able to squelch the error by adding a cast everywhere: = (unsigned

long) -1;”

https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://unspecified.wordpress.com/2011/08/08/integer-conversions-in-c/
https://sourceforge.net/p/perfmon2/bugs/11/

Should you care?
 It all depends of what kind of work you do and what kind

of software you deal with
 Some codes will have stuff like that all over with signed/

unsigned declarations and casts galore
 Some codes will have none of that ever

 If all you do is JavaScript Web app development, you
likely will rarely care

 If you do lower-level development, you may care every
single day

 Or rather, if you don’t know all this, your life will be very difficult
for understanding, debugging, etc.

 Overall, it’s pretty rare to completely avoid it for your entire
life

 In part due to binary data formats used all over the place

Important Takeaways
 Casting is often needed but is a bit “sketchy” and

shouldn’t be overly used
 It can be used for decreasing data size (type narrowing)

 Just drop bits
 For unsigned values, correct if dropping only zeros
 For signed values, correct if dropping only all zeros or all

ones, without changing the sign of the value
 It can be used for increasing data size (type widening)

 Implemented via movzx or movsx instructions for unsigned
or signed values

 The compilers of high-level languages translate explicit/
implement tasks into movzx and movsx instructions

 Printf is more complicated than you think :)

Conclusion
 Being aware of data sizes and of data size

extension/reduction behaviors is important when
doing lower-level development

 Unfortunately, almost every developer at some
point is confronted with data size issues and
having studied a bit of assembly is the only way to
resolve mysteries
 Important to know that a cast isn’t magical, and can do

the "wrong” thing

 Let’s look at some of the practice problems…

