
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-level and

Systems Programming

Computer
Architecture and
Programming

“Computer Architecture”?

 The field of Computer Architecture is about the
fundamental structure of computer systems
 What are the components?
 How do they interact with each other?
 How fast does the whole system operate?
 How much power does it consume?
 How much does it cost to mass-produce?
 How to achieve desired speed/power/cost trade-offs?

 The conceptual model for computer architecture,
that hasn’t fundamentally changed since 1945:
the Von-Neumann architecture

Von-Neumann Architecture

 A processor that performs operations and controls all that happens
 A memory that contains code and data
 I/O of some kind

Amazingly, it’s still possible to think of the computer this way at a
conceptual level (model from ~80 years ago!!!)

You can just think of the above picture, just with tons of
(performance enhancing) bells and whistles

CPU Memory

I/O
System

Data Stored in Memory
 All “information” in the computer is in binary form

 Since Claude Shannon’s M.S. thesis in the 1930’s
 0: zero voltage, 1: positive voltage (e.g., 5V)
 bit: the smallest unit of information (0 or 1)

 The basic unit of memory is a byte
 1 Byte = 8 bits, e.g., “0101 1101”
 1 KiB = 210 byte = 1,024 bytes
 1 MiB = 210 KiB = 220 bytes (~ 1 Million)
 1 GiB = 210 MiB = 230 bytes (~ 1 Billion)
 1 TiB = 210 GiB = 240 bytes (~ 1 Trillion)
 1 PiB = 210 TiB = 250 bytes (~ 1000 Trillion)
 1 EiB = 210 PiB = 260 bytes (~ 1 Million Trillion)
 ...

 Note the “i” in the notations above: means “power of 2”
 Unlike in a kilometer (km), where k means 1,000 (not 1,024)

Data Stored in Memory
 Each byte in memory is labeled by a unique address
 An address is a number that identifies the memory location of

each byte in memory
 e.g., the byte at address 3 is 00010010
 e.g., the byte at address 241 is 10110101

 Typically, we write addresses in binary as well
 e.g., the byte at address 00000011 is 00010010
 e.g., the byte at address 11110001 is 10110101

 All addresses on a computer have the same number of bits
 e.g., 8-bit addresses

 The processor has instructions that say “Read the byte at
address X and give me its value” and “Write some value into
the byte at address X”

Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0010
the content is 0000 0000

Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0100
the content is 0101 1110

Example Byte-Addressable RAM with
16-bit addresses

Address Space
 With d-bit long addresses we can address 2d different “things”

 If I have n things to address I need ⌈log2 n⌉ bits
 Example:

 2-bit addresses
 00, 01, 10, 11
 4 “things”

 3-bit addresses
 000, 001, 010, 011, 100, 101, 110, 111
 8 “things”

 In our case, these things are “bytes” because we consider
byte-addressable RAM

 One cannot address anything smaller than a byte
 How big is my RAM if my addresses are 13-bit? (poll)

Address Space
 With d-bit long addresses we can address 2d different “things”

 If I have n things to address I need ⌈log2 n⌉ bits
 Example:

 2-bit addresses
 00, 01, 10, 11
 4 “things”

 3-bit addresses
 000, 001, 010, 011, 100, 101, 110, 111
 8 “things”

 In our case, these things are “bytes” because we consider
byte-addressable RAM

 One cannot address anything smaller than a byte
 How big is my RAM if my addresses are 13-bit? (poll)

213 bytes = 23 * 210 = 8 KiB!

Both Code and Data in Memory

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Code

Data

 A program is loaded in
memory

 Its address space (the
bytes that belong to it in
memory) contain both code
and data

 To the CPU, code and data
are just bytes, but the
programmer (hopefully)
knows which bytes are data
an which bytes are code

 Conveniently hidden
from you if you’ve never
written assembly

 But we’ll have to keep
code/data straight in
these lecture notes

Example Address Space

The CPU is a Memory Modifier
 So now we have a memory in which we can store/retrieve

bytes at precise locations
 These bytes presumably have some useful meaning to us

 e.g., integers, ASCII codes of characters, floating points
numbers, RGB values

 e.g., instructions that specify what to do with the data; when
you buy a processor, the vendor defines the instruction set
(e.g., instruction “0010 1101” means “increment some useful
counter”)

 The CPU is the piece of hardware that modifies the
content of memory

 In fact, one can really think of the CPU as a device that takes
us from one memory state (i.e, all the stored content) to
another memory state (some new, desired stored content)

Disclaimer

 Several of the next few slides may also have
been show in ICS332
 Because ICS312 and ICS332 are not in a

prerequisite chain
 So you may have seen them before
 Or you may see them again

 Regardless, it’s good to be reminded of
computer architecture basics!

What’s in the CPU?

Memory

I/O
System

CPU

What’s in the CPU?

Memory

I/O
System

Control
UnitALU

Program counter register

register

register
current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Registers: values that hardware instructions work with

Data can be loaded from memory into a register
Data can be stored from a register back into memory
Operands and results of computations are ALL in registers
Accessing a register is really fast
There is a limited number of registers (which will make our life a bit difficult)

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Arithmetic and Logic Unit: what you do computation with

used to compute a value based on current register values and
store the result back into a register

+, *, /, -, OR, AND, XOR, etc.

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Program Counter: Points to the next instruction

Special register that contains the address in memory of the next instruction
that should be executed
(gets incremented after each instruction, or can be set to whatever value
whenever there is a change of control flow)

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Current Instruction: Holds the instruction that’s currently being executed

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Control Unit: Decodes instructions and make them happen

Logic hardware that decodes instructions (i.e., based on their bits) and sends
the appropriate (electrical) signals to hardware components in the CPU

current instruction

A CPU in its “Glory”:
Intel Haswell

Each Core contains a
“CPU” (as in in previous
slides) plus more stuff
(e.g., L1 and L2 Caches)

In this course we assume
a single, very simple core
(which we call the CPU)

Instructions
 Instructions are encoded in binary machine code

 e.g.: 01000110101101 may mean “perform an addition of two
registers and store the results in another register”

 The CPU is built using gates (OR, AND, etc.) which
themselves use transistors

 These gates implement instruction decoding
 Based on the bits of the instruction code, signals are sent to

different components, which then perform useful tasks
 Typically, an instruction consists of two parts

 The opcode: what the instruction should do
 The operands: the input to the computation

opcode operands
0 1 0 0 0 1 1 0 1 0 1 1 0 1

Instruction Set Architecture (ISA)

 When designing a CPU, one must define the set of all
the instructions it understands

 This is one thing that Intel engineers do
 This is called the ISA: Instruction Set Architecture
 Typical ISA include instructions for

 Performing arithmetic operations on register values
 Load values from memory into registers
 Store values from registers into memory
 Test register values to decide what instruction to execute

next
 ...

 Envision a loooong specification manual that lists all the
possible instructions...

Fetch-Decode-Execute Cycle
 The Fetch-Decode-Execute cycle

 The control unit fetches the next program instruction from memory
 Using the program counter to figure out where that instruction is located in the

memory
 The control unit decodes the instruction and signals are sent to

hardware components
 e.g., is the instruction loading something from memory? is it adding

two register values together?
 The instruction is executed

 Operands are fetched from memory and put in registers, if needed
 The ALU executes computation, if any, and stores the computed

results in the registers
 Register values are stored back to memory, if needed

 Repeat
 Computers today implement MANY variations on this model
 But one can still program with the above model in mind

 But then without understanding performance issues

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

register

register

register

program counter

current instruction

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1100
register

register

register

program counter

current instruction

Somehow, the program counter is
initialized to some content, which is an
address (done by the OS - see ICS332)

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1100
register

register

register

program counter

Fetch the content (instruction) at
address 0000 1100, which is “0110
1011”, and store it in the “current
instruction” register

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

register

register

program counter

Increment the program counter

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

register

register

program counter

Decode instruction “0110 1011”. Let’s
pretend it means: “Load the value at
address 1000 0000 and store it in the
second register”

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Send signals to all hardware
components to execute the
instruction: load the value at address
1000 0000, which is “1111 0000” and
store it in the second register

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Fetch the content (instruction) at
address 0000 1101, which is “1111
0010”, and store it in the “current
instruction” register

current instruction
1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

Increment the program counter

current instruction
1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

1111 0000

Decode instruction “1111 0010”. Let’s
pretend it means: “Do a logical NOT
on the second register”

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

0000 1111

Send signals to all hardware
components to execute the
instruction: do a logical NOT on the
second register

Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

0000 1111

register

program counter

Fetch the content (instruction) at
address 0000 1110, which is “0010
0001”, and store it in the “current
instruction” register

current instruction
0010 0001

1111 0000

1111 0010

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

Increment the program counter

0010 0001

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Decode instruction “0010 0001”. Let’s
pretend it means: “Store the value in
the second register to memory at
address 1111 0010”

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0000 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Send signals to all hardware
components to execute the
instruction: store the value in the
second register, which is 0000 1111,
to memory at address 1111 0010

Fetch-Decode-Execute
 This is only a simplified view of the way things work
 The “control unit” is not a single thing

 Control and data paths are implemented by several complex
hardware components

 There are multiple ALUs, there are caches, there are
multiple CPUs in fact (“cores”)

 Execution is pipelined: e.g., while one instruction is
fetched, another one is being executed

 Decades of computer architecture research have gone into
improving performance, thus often leading to staggering
hardware complexity

 Doing smart things in hardware requires more logic gates and
wires, thus increasing processor cost

 But conceptually, fetch-decode-execute is it

Building a CPU in Minecraft

 Let’s look at an amazing Minecraft CPU
 Some of the features we can already understand
 Some of the features we’ll understand later
 Some of the features we won’t see in this course

https://www.youtube.com/watch?
v=FDiapbD0Xfg&t=95s

https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s
https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s

Assembly language
 It’s really difficult for humans to read/remember binary

instruction encodings
 But people used to do it!
 One would typically use hexadecimal encoding, but still it

seems impossible to memorize all this in today’s world
 Therefore, it is typical to use a set of mnemonics
 We call these mnemonics the assembly language

 It is often said that the CPU understands assembly language
 This is not technically true: the CPU understands machine

code, which we, as humans, choose the represent using
assembly language

 An assembler is a computer program that transforms
assembly code into machine code (i.e., from a human-
readable format into a binary CPU-readable format)

Machine vs. Assembly code
 Say that on an architecture the opcode F2 means “add”, and that

we have an add instruction that takes as operands three
registers, each identified by an index

 Then the instruction “add the 1st register to the 7th register and
store the result in the 4th register” could be (inefficiently)
encoded as F2010704

 Some (older) programmers can read machine code pretty well
 Instead, we defined the assembly equivalent to be, for instance:
add R1,R7,R4

 add is called the mnemonic
 R1,R7, and R4 are the operands

 There is a one-to-one correspondance between an assembly
instruction and a machine instruction

 Not true of high-level languages!

Assembler

 An assembler is a computer program that
transforms assembly code into machine code (i.e.,
from a human-readable format into a binary CPU-
readable format)

 It’s a pretty simple program, since there is a one-to-
one correspondance between assembly instructions
and machine instructions

 Assembly code is NOT portable across architectures
 Different ISAs, different assembly languages

The 80x86 Architecture
 For this course we need to pick a processor family with

a given ISA (Instruction Set Architecture)
 We will use the Intel 80x86 ISA (x86 for short)

 The most common today in existing personal computers
 Although now all Apple machines have an ARM processor

 We could have picked other ISAs
 ARM, MIPS

 In ICS331/ICS431/EE460 you’d (likely) be exposed to those
 Some courses in some curricula subject students to

two or even more ISAs in a single semester, but in this
course we’ll just focused on one

 If you know one kind of assembly, it’s easy to pick up another
 The point of this course is to gain deep understanding of

concepts, not become assembly programming prodigies

x86 History (partial)
 In the late 70s Intel creates the 8088 and 8086 processors

 16-bit registers, 1 MiB of memory

 In 1982: the 80286
 New instructions, 16 MiB of memory

 In 1985: the 80386
 32-bit registers, 5 GiB of memory

 1989: 486; 1992: Pentium; 1995: P6
 Only incremental changes to the architecture

x86 History
 1997 - now: improvements, new features galore

 MMX and 3DNow! extensions
 New instructions to speed up graphics (integer and float)
 New cache instructions, new floating point operations
 Virtualization extensions
 etc..

 2021: the “Golden Cove” code name (12th generation)
 “All models support: AES-NI, CLMUL, RDRAND, SHA, TXT,

MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX,
AVX2, FMA3, AVX-512, AVX-VNNI, TSX, VT-x, VT-d”

Several manufacturers build 	 	 	 	 	
x86-compliant processors

 And have been for a long time

x86 History
 Amazingly, this architecture has witnessed few fundamental

changes since the 8086
 All in the name of backward compatibility
 Imposed early as “the one ISA” (Intel was the first company to

produce a 16-bit architecture, which secured its success)
 Many argue that it’s an unsightly ISA

 Due to it being a set of add-ons rather than a modern re-design
 Famous quote by Mike Johnson (AMD): “The x86 isn’t all that

complex… it just doesn’t make a lot of sense” (1994)
 But it’s relatively easy to implement in hardware, and

constructors have been successfully making faster and faster
x86 processors for decades, explaining its wide adoption

 Still in use today in 64-bit processors (dubbed x86-64)
 In this course we do 32-bit x86

ISA specification Example: x86

opcode
in HEX

what it
does

operands

Let’s look at the Web site http://ref.x86asm.net/

Human-readable
Mnemonic (assembly)

http://ref.x86asm.net

High-Level Languages
 It used to be that all computer programmers did all

day was write assembly code
 This was difficult for many reasons

 Difficult to read and maintain (in spite of using the
mnemonics)

 Difficult to debug
 Different from one computer to another!

 The exclusive use of assembly language for all
programming prevented the (sustainable)
development of large software projects with more than
a few (very good) programmers

 This was the main motivation for developing high-level
programming languages
 FORTRAN, Cobol, C, etc.

High-level Languages
 The first successful high-level language was FORTRAN

 Developed by IBM in 1954 to run on they 704 series
 Used for scientific computing

 The introduction of FORTRAN led people to believe that there would
never be bugs again because it made programming so easy!

 But high-level languages led to larger and more complex software
systems, hence leading to bugs

 Another early programming language was COBOL
 Developed in 1960, strongly supported by DoD
 Used for business applications

 In the early 60s IBM had a simple marketing strategy
 On the IBM 7090 you used FORTRAN to do science
 On the IBM 7080 you used COBOL to do business

 Many high-level languages have been developed since then, and
they are what most programmers use

 Fascinating history (see ICS 313)

High-level Languages

 Having high-level programming languages is
good, but CPUs do not understand them
 As we saw, they only understand very basic

instructions to manipulate registers, etc.
 Therefore, there needs to be a translation from

a high-level language to machine code
 The translation is done in two steps: by a

compiler and then by an assembler
 Let’s see this on a picture....

The Big (Simplified) Picture

 char *tmpfilename;
 int num_schedulers=0;
 int num_request_submitters=0;
 int i,j;

 if (!(f = fopen(filename,"r"))) {
 xbt_assert1(0,"Cannot open file %s",filename);
 }
 while(fgets(buffer,256,f)) {
 if (!strncmp(buffer,"SCHEDULER",9))
 num_schedulers++;
 if (!strncmp(buffer,"REQUESTSUBMITTER",16))
 num_request_submitters++;
 }
 fclose(f);
 tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

mov eax, list_msg
call print_string
push dword 10
push Array
call printArray
add esp, 8
push plus_one
push dword 10
push Array
call map
add esp, 12
call print_nl
mov eax, mapped1_msg
call print_string
push dword 10
push Array

Assembly code

ASSEMBLER

010000101010110110
101010101111010101
101001010101010001
101010101010100101
111100001010101001
000101010111101011
010000000010000100
000010001000100011
101001010010101011
000101010010010101
010101010101010101
101010101111010101
101010101010100101
111100001010101001

Machine code

Control
UnitALU

Program counter register
register
registerCPU

The Big (Simplified) Picture

 char *tmpfilename;
 int num_schedulers=0;
 int num_request_submitters=0;
 int i,j;

 if (!(f = fopen(filename,"r"))) {
 xbt_assert1(0,"Cannot open file %s",filename);
 }
 while(fgets(buffer,256,f)) {
 if (!strncmp(buffer,"SCHEDULER",9))
 num_schedulers++;
 if (!strncmp(buffer,"REQUESTSUBMITTER",16))
 num_request_submitters++;
 }
 fclose(f);
 tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

ASSEMBLER

010000101010110110
101010101111010101
101001010101010001
101010101010100101
111100001010101001
000101010111101011
010000000010000100
000010001000100011
101001010010101011
000101010010010101
010101010101010101
101010101111010101
101010101010100101
111100001010101001

Machine code

Control
UnitALU

Program counter register
register
registerCPU

push ebp
mov ebp, esp
push ebx
mov eax, 0
mov ebx, [ebp+8]
shr ebx, 1
adc eax, 0
neg eax
inc eax
pop ebx
pop ebp

Hand-written
Assembly code

mov eax, list_msg
call print_string
push dword 10
push Array
call printArray
add esp, 8
push plus_one
push dword 10
push Array
call map
add esp, 12
call print_nl
mov eax, mapped1_msg
call print_string
push dword 10
push Array

Assembly code

This course’s topics:

 char *tmpfilename;
 int num_schedulers=0;
 int num_request_submitters=0;
 int i,j;

 if (!(f = fopen(filename,"r"))) {
 xbt_assert1(0,"Cannot open file %s",filename);
 }
 while(fgets(buffer,256,f)) {
 if (!strncmp(buffer,"SCHEDULER",9))
 num_schedulers++;
 if (!strncmp(buffer,"REQUESTSUBMITTER",16))
 num_request_submitters++;
 }
 fclose(f);
 tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

ASSEMBLER

010000101010110110
101010101111010101
101001010101010001
101010101010100101
111100001010101001
000101010111101011
010000000010000100
000010001000100011
101001010010101011
000101010010010101
010101010101010101
101010101111010101
101010101010100101
111100001010101001

Machine code

Control
UnitALU

Program counter register
register
registerCPU

mov eax, list_msg
call print_string
push dword 10
push Array
call printArray
add esp, 8
push plus_one
push dword 10
push Array
call map
add esp, 12
call print_nl
mov eax, mapped1_msg
call print_string
push dword 10
push Array

Assembly code

push ebp
mov ebp, esp
push ebx
mov eax, 0
mov ebx, [ebp+8]
shr ebx, 1
adc eax, 0
neg eax
inc eax
pop ebx
pop ebp

Hand-written
Assembly code

What we do in this course

 First part of the semester (bulk of the course)
 Learn how to write assembly code

 For the x86 architecture
 Use an assembler to generate binary code from

our assembly code and then run it

 Second part of the semester (shorter, but
absolutely fundamental)
 Learn about important tools tools

 loader, linker, compiler, debugger, etc.

Why should we learn all this?
 There are many “small” reasons

 Write assembly code for embedded devices
 Read generated assembly to understand malware
 Be able to develop “one-shot compilers” for non-programming languages
 Truly understand high-level concepts (indirection, data structures)
 Understand the limitations of high-level languages or why some things can be

slow while others can be fast
 Big meta-reason: this course should go a long way in giving you a holistic

understanding of how a program goes from just a text file to a running code
 You can describe in details how you go from “I wrote a piece of C that calls a

function that adds 2 and 2 together and prints the result” to “the computer prints 4”
 In its full glory only after you’ve taken ICS332

 The complexity is actually quite stunning, and there should be something
satisfying in knowing how things work from top to bottom!

 99% of students come into ICS312 thinking “why do we have to do this???”,
and ~75% leave thinking “now I feel like a computer scientist!!” (and I ask
ChatGPT fewer uninformed basic questions!)

 This is based on my own discussions with students/alumni, not an official study

Important Takeaways
 Von Neumann: CPU, RAM, I/O
 Memory: stores both code and data

 At each address a one-byte value is stored
 A program’s address space: all the bytes it uses / cares about

 CPU: a memory modifier
 Program counter, current instruction, general-purpose registers
 Fetch-decode-execute cycle based on a clock
 The Instruction Set Architecture defines the machine code a CPU

understands (binary-encoded instructions)
 Assembly code is conceptually the same (but human-readable

mnemonics)
 ISA: we use 32-bit x86 in this course (created by Intel)
 Compiler: high-level code to assembly code
 Assembler: assembly code to machine code

Conclusion

 If you want to know more
 Take a computer architecture

course
 Classic Textbook: Computer

Organization and Design,
Fourth Edition: The Hardware/
Software Interface (Patterson
and Hennessy, Morgan
Kaufmann)

 Next week we’ll have an in-class
quiz on this module

