Computer

Architecture and
Programming

ICS312
Machine-level and
Systems Programming

Henri Casanova (henric@hawaii.edu)



" A
“Computer Architecture”?

® The field of Computer Architecture is about the
fundamental structure of computer systems

What are the components?

How do they interact with each other?

How fast does the whole system operate?

How much power does it consume?

How much does it cost to mass-produce?

How to achieve desired speed/power/cost trade-offs?
® The conceptual model for computer architecture,

that hasn’t fundamentally changed since 1945:
the Von-Neumann architecture



" A
Von-Neumann Architecture

CPU < Memory

g

1/O
System

® A processor that performs operations and controls all that happens
= A memory that contains code and data
® |/O of some kind

® Amazingly, it’s still possible to think of the computer this way at a
conceptual level (model from ~80 years ago!!l)

You can just think of the above picture, just with tons of
(performance enhancing) bells and whistles



" J
Data Stored in Memory

m All “information” in the computer is in binary form
Since Claude Shannon’s M.S. thesis in the 1930’s
0: zero voltage, 1: positive voltage (e.g., 5V)
bit: the smallest unit of information (0 or 1)
B The basic unit of memory is a byte
1 Byte = 8 bits, e.g., “0101 1101”
1 KiB = 210 byte = 1,024 bytes
1 MiB = 210 KiB = 220 bytes (~ 1 Million)
1 GiB = 210 MiB = 230 bytes (~ 1 Billion)
1 TiB = 210 GiB = 240 pytes (~ 1 Trillion)
1 PiB = 210 TiB = 250 pytes (~ 1000 Trillion)
1 EiB = 210 PiB = 260 bytes (~ 1 Million Trillion)

m  Note the “I” in the notations above: means “power of 2”
Unlike in a kilometer (km), where k means 1,000 (not 1,024)



" JE
Data Stored in Memory

® Each byte in memory is labeled by a unique address

® An address is a number that identifies the memory location of
each byte in memory

e.g., the byte at address 3 is 00010010
e.g., the byte at address 241 is 10110101
®m Typically, we write addresses in binary as well
e.g., the byte at address 00000011 is 00010010
e.g., the byte at address 11110001 is 10110101
®m All addresses on a computer have the same number of bits
e.g., 8-bit addresses

® The processor has instructions that say “Read the byte at
address X and give me its value” and “Write some value into
the byte at address X”



"
Example Byte-Addressable RAM with

16-bit addresses
address

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000

content

0110

1110

1111

0100

0000

0000

0000

0000

0101

1110

1010

1101

0000

0001

0100

0000

1111

0101




" A
Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
(1000010000 0000, 0010) 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
+00! At address 0000 0000 0000 0010 |
oool }the conte_nt‘ |s,00000000 .

0000 0000 0000 1000 1111 0101




" A
Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0OO0O1 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0OO11 0000 0000
(1000010990000 0200) o101 1110

-00| At address 0000 0000 0000 0100 |

o0o{ _ the contentis 01011110 |
0000 0000 0000 1000 1111 0101




" A
Address Space

m \Vith d-bit long addresses we can address 24 different “things”
If | have n things to address | need [log2 n] bits

m Example:
2-bit addresses
= 00, 01, 10, 11
= 4 “things”
3-bit addresses

= 000, 001, 010, 011, 100, 101, 110, 111
= 8 “things”

B |n our case, these things are “bytes” because we consider
byte-addressable RAM

One cannot address anything smaller than a byte
® How big is my RAM if my addresses are 13-bit? (poll)



" A
Address Space

m \Vith d-bit long addresses we can address 24 different “things”
If | have n things to address | need [log2 n] bits

m Example:

2-bit addresses
= 00, 01, 10, 11
= 4 “things”

3-bit addresses

= 000, 001, 010, 011, 100, 101, 110, 111
= 8 “things”

B |n our case, these things are “bytes” because we consider
byte-addressable RAM

One cannot address anything smaller than a byte
® How big is my RAM if my addresses are 13-bit? (poll)
213 bytes = 23 * 210 = 8 KiB!



Both Code and Data in Memory

m A program is loaded in
memory

m |ts address space (the
bytes that belong to it in
memory) contain both code
and data

m To the CPU, code and data
are just bytes, but the
programmer (hopefully)
knows which bytes are data
an which bytes are code

Conveniently hidden
from you if you’'ve never
written assembly

But we'll have to keep
code/data straight in
these lecture notes

Code

Data

Example Address Space

Address Value

0000 1100 (pllo 1011)
0000 1101 (}111 001o>
0000 1110 (po1o 0001)
1000 0000 (}111 oooo)

1111

0010 <p101




"
The CPU is a Memory Modifier

® S0 now we have a memory in which we can store/retrieve
bytes at precise locations

® These bytes presumably have some useful meaning to us

e.g., integers, ASCII codes of characters, floating points
numbers, RGB values

e.g., instructions that specify what to do with the data; when
you buy a processor, the vendor defines the instruction set

(e.g., instruction “0010 1101” means “increment some useful
counter”)

®m The CPU is the piece of hardware that modifies the
content of memory

In fact, one can really think of the CPU as a device that takes
us from one memory state (i.e, all the stored content) to
another memory state (some new, desired stored content)



" A
Disclaimer

m Several of the next few slides may also have
been show in ICS332

Because ICS312 and ICS332 are not in a
prerequisite chain

® S0 you may have seen them before
® Or you may see them again

B Regardless, it's good to be reminded of
computer architecture basics!



" A
What’s in the CPU?

CPU

Memory

/O
System




" A
What’s in the CPU?

(- )
[ Program counter [ register
current instruction [ register
[ register
\ I 4 Memory
Control
N o
v
/O

System




" A
What’s in the CPU?

(- )

[ Program counter [ register

register

current instruction] [

[ register

Registers: values that hardware instructions work with

Data can be loaded from memory into a register

Data can be stored from a register back into memory

Operands and results of computations are ALL in registers

Accessing a register is really fast

There is a limited number of registers (which will make our life a bit difficult)




" A
What’s in the CPU?

G N
[ Program counter [ register
current instruction] [ register

[ register
\ Y,
Control
Unit

Arithmetic and Logic Unit: what you do computation with

used to compute a value based on current register values and
store the result back into a register

+, %, /, -, OR, AND, XOR, etc.



What’s in the CPU?

- N
[ Program counter [ register
current i struction][ register

[ register
N )

Unit

Control ]

Program Counter: Points to the next instruction

Special register that contains the address in memory of the next instruction

that should be executed

(gets incremented after each instruction, or can be set to whatever value
whenever there is a change of control flow)



" J—
What’s in the CPU?

- N
[ Program counter [ register
current instruction] [ register

[ register
N )

Control ]
Unit

Current Instruction: Holds the instruction that’s currently being executed



" A
What’s in the CPU?

-

\

[ Program counter

[

register

current instruction] [

register

register

/

Control

Unit

Control Unit: Decodes instructions and make them happen

Logic hardware that decodes instructions (i.e., based on their bits) and sends
the appropriate (electrical) signals to hardware components in the CPU




A CPU in its “Glory”:
Intel Haswell

4th Gen
Intel® Core™ i7

Each Core contains a
“CPU” (as in in previous
slides) plus more stuff
(e.g., L1 and L2 Caches)

In this course we assume

a single, very simple core e |||
(which we call the CPU) Memoryncontro“er

|
71!




" A
Instructions

® |nstructions are encoded in binary machine code

e.g.: 01000110101101 may mean “perform an addition of two
registers and store the results in another register”

® The CPU is built using gates (OR, AND, etc.) which
themselves use transistors

® These gates implement instruction decoding

Based on the bits of the instruction code, signals are sent to
different components, which then perform useful tasks

m Typically, an instruction consists of two parts
The opcode: what the instruction should do
The operands: the input to the computation

opcode operands
01000 11010110 1




" J
Instruction Set Architecture (ISA)

® \When designing a CPU, one must define the set of all
the instructions it understands

This is one thing that Intel engineers do
m This is called the ISA: Instruction Set Architecture

m Typical ISA include instructions for
Performing arithmetic operations on register values
Load values from memory into registers
Store values from registers into memory

Test register values to decide what instruction to execute
next

B Envision a loooong specification manual that lists all the
possible instructions...



"
Fetch-Decode-Execute Cycle

®m The Fetch-Decode-Execute cycle

The control unit fetches the next program instruction from memory

® Using the program counter to figure out where that instruction is located in the
memory

The control unit decodes the instruction and signals are sent to
hardware components

® e.g., is the instruction loading something from memory? is it adding
two register values together?

The instruction is executed
m QOperands are fetched from memory and put in registers, if needed

= The ALU executes computation, if any, and stores the computed
results in the registers

m Register values are stored back to memory, if needed
Repeat

m Computers today implement MANY variations on this model
m But one can still program with the above model in mind
But then without understanding performance issues



Fetch-Decode-Execute

-

program counter

register

current instruction

register

register

\_

Address Value

ALU A

.
Control #
N

Unit

0000 1100 (pllo 1011)

N 0000 1101 (}111 001o>

4
| 4

0000 1110 <p01o 0001)

1000 0000 (}111 oooo)

1111 0010 (plol 1111)

Memory




Fetch-Decode-Execute

-

program counter [ register

0000 1100

[ register

current instruction

[ register

/IA AKM

\_/‘

N Control
§ Unit

N\

Address

N
y
4

Somehow, the program counter is

initialized to some content, which is an
address (done by the OS - see ICS332)

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory




Fetch-Decode-Execute

N
y
4

4 )
program counter [ register
0000 1100 -
[ register ]
current instruction _
0110 1011 [ register J
\_ /
N )
Control ¢
ALU A y . N
Unit
J

Fetch the content (instruction) at
address 0000 1100, which is “0110
10117, and store it in the “current
instruction” register

Address Value

0000 1100 (ouo 1011)
0000 1101 (1111 001o>
0000 1110 @010 oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory




Fetch-Decode-Execute

-

program counter

0000 1101

register

current instruction

register

0110 1011

register

\_

ALU A

1

Control
Unit

\

Address

N
y
4

J

Increment the program counter

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory




Fetch-Decode-Execute

Address

N
y
4

4 )
program counter [ register
0000 1101 :
[ register ]
current instruction _
0110 1011 [ register J
\_ J
N )
Control ¢
ALU A y . N
Unit
J

Decode instruction “0110 1011”. Let’s
pretend it means: “Load the value at
address 1000 0000 and store it in the
second register”

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol




Fetch-Decode-Execute

Send signals to all hardware
components to execute the

instruction: load the value at address
1000 0000, which is “1111 0000” and

store it in the second register

1000

1111

4 program counter [ register )
0000 1101
- - ( 1111 0000
current instruction _
0110 1011 [ register J Address Value
\ /
0000 1100 <0110 1011)
ALU >[ Control J—L—% 0000 1101 (1111 0010 )
N | 4 . 4
Unit
/ 0000 1110 @010 oooQ




Fetch-Decode-Execute

Address

N
y
4

4 )
program counter [ register
0000 1101
( 1111 0000
current instruction _
1111 0010 [ register ]
\_ /
L )
Control
ALU A y .
Unit
J

Fetch the content (instruction) at
address 0000 1101, which is “1111
00107, and store it in the “current
instruction” register

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory




Fetch-Decode-Execute

-

program counter

~

0000 1110

register

current instruction

1111 0000

1111 0010

register

\_

ALU A

1

Control
Unit

\

N
y
4

J

Increment the program counter

Address Value

0000 1100 (pllo 1011)
0000 1101 (}111 001o>
0000 1110 <p01o 0001)
1000 0000 (}111 oooo)

1111 0010 (plol

Memory




Fetch-Decode-Execute

Address

Decode instruction “1111 0010”. Let’s
pretend it means: “Do a logical NOT
on the second register”

4 )
program counter [ register
0000 1110
( 1111 0000
current instruction _
1111 0010 [ register J
\_ J
L )
Control ¢ A
ALU A y : ‘ b
Unit
/

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory




Fetch-Decode-Execute

N
y
4

4 )
program counter [ register
0000 1110
( 0000 1111
current instruction _
1111 0010 [ register J
\_ /
N )
Control
ALU A y :
Unit
/

Send signals to all hardware
components to execute the

instruction: do a logical NOT on the

second register

Address Value

0000 1100 <0110 1011)
0000 1101 (1111 001o>
0000 1110 @010 oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory




Fetch-Decode-Execute

N
y
4

4 )
program counter [ register
0000 1110
( 0000 1111
current instruction _
0010 0001 [ register J
\_ /
N )
Control
ALU A y :
Unit
J

Fetch the content (instruction) at
address 0000 1110, which is “0010
00017, and store it in the “current
instruction” register

Address Value

0000 1100 <0110 1011)
0000 1101 (1111 001o>
0000 1110 <001o oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory




Fetch-Decode-Execute

-

program counter

~

0000 1111

register

current instruction

0000 1111

0010 0001

register

\_

ALU A

1

Control
Unit

\

N
y
4

J

Increment the program counter

Address Value

0000 1100 (pllo 1011)
0000 1101 (}111 001o>
0000 1110 <p01o 0001)
1000 0000 (}111 oooo)

1111 0010 (plol

Memory




Fetch-Decode-Execute

Address

Decode instruction “0010 0001”. Let’s
pretend it means: “Store the value in

the second register to memory at
address 1111 0010”

4 )
program counter [ register
0000 1111
( 0000 1111
current instruction _
0010 0001 [ register J
\_ J
N )
Control ¢ A
ALU A y . ¢ v
Unit
/

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol




Fetch-Decode-Execute

Send signals to all hardware
components to execute the
iInstruction: store the value in the

second register, which is 0000 1111,

to memory at address 1111 0010

1000

1111

4 program counter register )
0000 1111
0000 1111
current instruction _
0010 0001 register ] Address Value
\_ /
0000 1100 <0110 1011)
ALU K >[ Control J—L—% 0000 1101 (1111 0010 )
Unit f
~ 0000 1110 @010 oooQ




" A
Fetch-Decode-Execute

® This is only a simplified view of the way things work

® The “control unit” is not a single thing
Control and data paths are implemented by several complex
hardware components
®m There are multiple ALUs, there are caches, there are
multiple CPUs in fact (“cores”)

m Execution is pipelined: e.g., while one instruction is
fetched, another one is being executed

®m Decades of computer architecture research have gone into
improving performance, thus often leading to staggering
hardware complexity
Doing smart things in hardware requires more logic gates and
wires, thus increasing processor cost

m But conceptually, fetch-decode-execute is it



"
Building a CPU in Minecraft

m | et’'s look at an amazing Minecraft CPU
Some of the features we can already understand
Some of the features we’ll understand later
Some of the features we won'’t see in this course

https://www.youtube.com/watch?
v=FDiapbD0Xfg&t=95s



https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s
https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s

"
Assembly language

m |t's really difficult for humans to read/remember binary
instruction encodings

But people used to do it!

One would typically use hexadecimal encoding, but still it
seems impossible to memorize all this in today’s world

®m Therefore, it is typical to use a set of mnemonics

®m \We call these mnemonics the assembly language
It is often said that the CPU understands assembly language

This is not technically true: the CPU understands machine
code, which we, as humans, choose the represent using
assembly language

B An assembler is a computer program that transforms
assembly code into machine code (i.e., from a human-
readable format into a binary CPU-readable format)



" J
Machine vs. Assembly code

m Say that on an architecture the opcode F2 means “add”, and that
we have an add instruction that takes as operands three
registers, each identified by an index

® Then the instruction “add the 1st register to the 7th register and
store the result in the 4th register” could be (inefficiently)
encoded as F2010704

= Some (older) programmers can read machine code pretty well

B |nstead, we defined the assembly equivalent to be, for instance:
add R1,R7,R4

= add is called the mnemonic
= R1,R7, and R4 are the operands

® There is a one-to-one correspondance between an assembly
instruction and a machine instruction

= Not true of high-level languages!



Assembler

®m An assembler is a computer program that
transforms assembly code into machine code (i.e.,
from a human-readable format into a binary CPU-
readable format)

m |t's a pretty simple program, since there is a one-to-
one correspondance between assembly instructions
and machine instructions

®m Assembly code is NOT portable across architectures
Different ISAs, different assembly languages



" A
The 80x86 Architecture

B For this course we need to pick a processor family with
a given ISA (Instruction Set Architecture)

® \We will use the Intel 80x86 ISA (x86 for short)

The most common today in existing personal computers
Although now all Apple machines have an ARM processor

® \We could have picked other ISAs
ARM, MIPS
® |n ICS331/ICS431/EE460 you'd (likely) be exposed to those

B Some courses in some curricula subject students to
two or even more ISAs in a single semester, but in this
course we'll just focused on one

If you know one kind of assembly, it's easy to pick up another

The point of this course is to gain deep understanding of
concepts, not become assembly programming prodigies



"
x86 History (partial)

® |n the late 70s Intel creates the 8088 and 8086 processors
16-bit registers, 1 MiB of memory

1.4280432

m [n 1982: the 80286 E 1386 £X
New instructions, 16 MiB of memory : _[?3%35%‘25
= In 1985: the 80386 t loossor

32-bit reqisters, 5 GiB of memory

m 1989: 486; 1992: Pentium; 1995: P6
Only incremental changes to the architecture




"
x86 History

m 1997 - now: improvements, new features galore
MMX and 3DNow! extensions
New instructions to speed up graphics (integer and float)
New cache instructions, new floating point operations
Virtualization extensions
etc..

m 2021: the “Golden Cove” code name (12th generation)

“All models support: AES-NI, CLMUL, RDRAND, SHA, TXT,
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX,
AVX2 FMA3 AVX- 512, AVX- VNNI TSX, VT—X VT—d”

® Several manufacturers build
x86-compliant processors

And have been for a long time




"
x86 History

® Amazingly, this architecture has witnessed few fundamental
changes since the 8086

All in the name of backward compatibility

Imposed early as “the one ISA” (Intel was the first company to
produce a 16-bit architecture, which secured its success)

® Many argue that it's an unsightly ISA
Due to it being a set of add-ons rather than a modern re-design

Famous quote by Mike Johnson (AMD): “The x86 isn'’t all that
complex... it just doesn’t make a lot of sense” (1994)

m But it's relatively easy to implement in hardware, and
constructors have been successfully making faster and faster
x86 processors for decades, explaining its wide adoption

m Still in use today in 64-bit processors (dubbed x86-64)
In this course we do 32-bit x86



" A
ISA specification Example: x86
Let’s look at the Web site http://ref.x86asm.net/

pf|OF|po|so|o|proc| st |m|rl|x|mnemonic opl op2 op3 op4 iext|tested f[modif f def £ |undef f [f values|description, notes

00 r L|(ADD r/m8 r8 0..szapc|o..szapc Add

01 r L|ADD r/ml6/32 rl6/32 0..szapc|o..szapc Add

02 i ADD r8 r/m8 0..szapc|o..szapc Add

03 r ADD rl6/32 r/ml6/32 0..szapc|o..szapc Add

04 ADD AL imm8 0..szapc|o..szapc Add

05 ADD eAX imml6/32 0..szapc|o..szapc Add

06 PUSH ES Push Word, Doubleword or Quadword Onto the Stac.

07 POP ES Pop a Value from the Stack

08 r L|OR r/m8 r8 0..52apc|0..SZ.pCl..... Eoo|@cooooo c|Logical Inclusive OR

09 r L|OR r/ml6/32 rl6/32 ‘l Operands 0..szapc|o..Sz.pCl..... Eloc|[@acooan c|Logical Inclusive OR

0A r OR r8 r/m8 N~ olNSZapc| oS ZIEPC | IErayeyer- 8o o|[@ccooo0 c|Logical Inclusive OR

0B @ OR rl6/32 r/ml6/32 0-1-8ZapC|otszEpe|laaa: Eloo||[@cooooo c|Logical Inclusive OR

oc OR AL imm8 0..Szapc|0..SZ.PCl..... B o|@cooo00 c|Logical Inclusive OR

0D OR eAX imml6/32 OFRISZapC | OIS ZBDC | &0 0|[@ccooco0 c|Logical Inclusive OR

OE PUSH CSs Push Word, Dgubleword or Quadword Onto the Stac!
e pf Prefix
e OF oF Prefix
e po Primary Opcode
e so Secondary Opcode 2

what it
opcode
in HEX H SOEE
uman-readable

Mnemonic (assembly)

x Lock Prefix/FPU Push/FPU Pop

e mnemonic Instruction Mnemonic

e opl, op2, ... Instruction Operands

e jext Instruction Extension Group

e grpl, grp2, grp3 Main Group, Sub-group, Sub-sub-group

o tested f, modif f, def f, undef f Tested, Modified, Defined, and Undefined Flags
o f values Flags Values

e description, notes



http://ref.x86asm.net

"
High-Level Languages

m |t used to be that all computer programmers did all
day was write assembly code

® This was difficult for many reasons

Difficult to read and maintain (in spite of using the
mnemonics)

Difficult to debug
Different from one computer to another!

® The exclusive use of assembly language for all
programming prevented the (sustainable)
development of large software projects with more than
a few (very good) programmers

® This was the main motivation for developing high-level
programming languages
FORTRAN, Cobol, C, etc.



"
High-level Languages

® The first successful high-level language was FORTRAN
Developed by IBM in 1954 to run on they 704 series
Used for scientific computing

® The introduction of FORTRAN led people to believe that there would
never be bugs again because it made programming so easy!

But high-level languages led to larger and more complex software
systems, hence leading to bugs

m Another early programming language was COBOL
Developed in 1960, strongly supported by DoD
Used for business applications

® |n the early 60s IBM had a simple marketing strategy
On the IBM 7090 you used FORTRAN to do science
On the IBM 7080 you used COBOL to do business

®m Many high-level languages have been developed since then, and
they are what most programmers use

Fascinating history (see ICS 313)



"
High-level Languages

® Having high-level programming languages is
good, but CPUs do not understand them

As we saw, they only understand very basic
instructions to manipulate registers, etc.

B Therefore, there needs to be a translation from
a high-level language to machine code

m The translation is done in two steps: by a
compiler and then by an assembler

m | et’'s see this on a picture....



The Big (Simplified) Picture

High-level code

char *tmpfilename;

int num_schedulers=0;

int num_request_submitters=0;
int i.j;

if (!(f = fopen(filename,"r"))) {
xbt_assert1(0,"Cannot open file %s" filename);

}
while(fgets(buffer,256,f)) {
if (!strncmp(buffer,"SCHEDULER",9))
num_schedulers++;
if (Istrncmp(buffer,"REQUESTSUBMITTER",16))
num_request_submitters++;

}
fclose(f);

= strdup(

COMPILER

ASSEMBLER

N/
¢

S, -

Assembly code

mov eax, list msg
call print_string
push dword 10

push Array

call printArray
add esp, 8

push plus_one

push dword 10

push Array

call map

add esp, 12

call print nl

mov eax, mappedl_msg
call print_string

push dword 10
push Array

Machine code

010000101010110110
101010101111010101
101001010101010001
101010101010100101
111100001010101001
000101010111101011
010000000010000100
000010001000100011
101001010010101011
000101010010010101
010101010101010101
101010101111010101
101010101010100101
111100001010101001

rogram counter register |

ALU 4= 0 ]




"
The Big (Simplified) Picture

Hand-written Machine code

.
Assembly code
High-l | cod y
Ig eve co e 101010101111010101
'/V ’/,/ - 101001010101010001
push ebp %j’ 101010101010100101
char *tmpfilename; mov ebp, esp = 111100001010101001
TBmTR it p push  ebx 000101010111101011
T e LI mov  eax, 0 ASS E M B I E R 010000000010000100
int);
' mev :2:' {ebp"s] 000010001000100011
if (!(f = fopen(filename,"r"))) { !
xbt_assert1(0,"Cannot open file %s" filename); adc eax, 0 ;v ;g;ggigiggig;g;g;i
} neg eax o ¢
while(fgets(buffer,256,f)) { ine eax S 010101010101010101
if (Istrncmp(buffer,"SCHEDULER",9)) pop o o 101010101111010101
num_schedulers++;
if (strcmp(buffer,"REQUESTSUBMITTER",16)) Pop ebp 101010101010100101
num_request_submitters++; 111100001010101001
}
fclose(f);
i = strdup( i .

Assembly code

mov eax, list msg

call print_string

e s (Program counter) (—__register___) er
push Array
call printArray
add esp, 8
push plus_one
push dword 10

COMPILER
call map

add esp, 12 Lonurol
. call print nl ALUH Unit j

mov eax, mappedl_msg

call print_string
push dword 10
push Array




This course’s topics:

High-level code

char *tmpfilename;

int num_schedulers=0;

int num_request_submitters=0;
int i.j;

if ((f = fopen(filename,"r"))) {
xbt_assert1(0,"Cannot open file %s" filename);

}
while(fgets(buffer,256,f)) {
if (Istrncmp(buffer,"SCHEDULER",9))
num_schedulers++;
if (!strncmp(buffer,"REQUESTSUBMITTER",16))
num_request_submitters++;
}
fclose(f);
tmpfilename = strdup("/tmp/jobsimulator_

COMPILER

Hand-written
Assembly code

push ebp
mov ebp,
push ebx
mov eax,
mov ebx,
shr ebx,
adc eax,
neg eax
inc eax
pPop ebx
pop ebp

esp

0
[ebp+8]
1
0

livecl

ASSEMBLER

Assembly code

call
push
push
call
add

push
push
push
call
add

call

call
push
push

eax, list msg
print string
dword 10
Array
printArray
esp, 8
plus_one
dword 10
Array

map

esp, 12

print nl

eax, mappedl_msg
print string
dword 10
Array

Machine code

010000101010110110
101010101111010101
101001010101010001
101010101010100101
111100001010101001
000101010111101011
010000000010000100
000010001000100011
101001010010101011
000101010010010101
010101010101010101
101010101111010101
101010101010100101
111100001010101001

rogram counter register |

ALU & O )




" A
What we do in this course

m First part of the semester (bulk of the course)

Learn how to write assembly code
= For the x86 architecture

Use an assembler to generate binary code from
our assembly code and then run it

m Second part of the semester (shorter, but
absolutely fundamental)

Learn about important tools tools
" loader, linker, compiler, debugger, etc.



"
Why should we learn all this?

® There are many “small” reasons
Write assembly code for embedded devices
Read generated assembly to understand malware
Be able to develop “one-shot compilers” for non-programming languages
Truly understand high-level concepts (indirection, data structures)

Understand the limitations of high-level languages or why some things can be
slow while others can be fast

® Big meta-reason: this course should go a long way in giving you a holistic
understanding of how a program goes from just a text file to a running code

You can describe in details how you go from “l wrote a piece of C that calls a
function that adds 2 and 2 together and prints the result” to “the computer prints 4”

= |n its full glory only after you've taken ICS332

The complexity is actually quite stunning, and there should be something
satisfying in knowing how things work from top to bottom!

m 99% of students come into ICS312 thinking “why do we have to do this???”,
and ~75% leave thinking “now | feel like a computer scientist!!” (and | ask
ChatGPT fewer uninformed basic questions!)

This is based on my own discussions with students/alumni, not an official study



" J
Important Takeaways

® \Von Neumann: CPU, RAM, I/O

® Memory: stores both code and data

At each address a one-byte value is stored
A program’s address space: all the bytes it uses / cares about

® CPU: a memory modifier
Program counter, current instruction, general-purpose registers
Fetch-decode-execute cycle based on a clock
The Instruction Set Architecture defines the machine code a CPU
understands (binary-encoded instructions)
Assembly code is conceptually the same (but human-readable
mnemonics)

m |SA: we use 32-bit x86 in this course (created by Intel)

® Compiler: high-level code to assembly code
® Assembler: assembly code to machine code



" A
Conclusion

® |f you want to know more

Take a computer architecture
course

Classic Textbook: Computer
Organization and Design,
Fourth Edition: The Hardware/
Software Interface (Patterson
and Hennessy, Morgan
Kaufmann)

B Next week we’ll have an in-class
quiz on this module

COMPUTER
ORGANIZATION
AND DESIGN

DAVID A. PATTERSON
JOHN L. HENNESSY




