
Henri Casanova (henric@hawaii.edu)

ICS312 
Machine-level and  

Systems Programming

Computer 
Architecture and 
Programming



“Computer Architecture”?

 The field of Computer Architecture is about the 
fundamental structure of computer systems 
 What are the components? 
 How do they interact with each other? 
 How fast does the whole system operate? 
 How much power does it consume? 
 How much does it cost to mass-produce? 
 How to achieve desired speed/power/cost trade-offs? 

 The conceptual model for computer architecture, 
that hasn’t fundamentally changed since 1945: 
the Von-Neumann architecture



Von-Neumann Architecture

 A processor that performs operations and controls all that happens 
 A memory that contains code and data 
 I/O of some kind 

Amazingly, it’s still possible to think of the computer this way at a 
conceptual level (model from ~80 years ago!!!) 

You can just think of the above picture, just with tons of 
(performance enhancing) bells and whistles

CPU Memory

I/O 
System



Data Stored in Memory
 All “information” in the computer is in binary form 

 Since Claude Shannon’s M.S. thesis in the 1930’s 
 0: zero voltage, 1: positive voltage (e.g., 5V) 
 bit: the smallest unit of information (0 or 1) 

 The basic unit of memory is a byte 
 1 Byte = 8 bits, e.g., “0101 1101” 
 1 KiB = 210 byte = 1,024 bytes 
 1 MiB = 210 KiB = 220 bytes (~ 1 Million) 
 1 GiB = 210 MiB = 230 bytes (~ 1 Billion) 
 1 TiB = 210 GiB = 240 bytes (~ 1 Trillion) 
 1 PiB = 210 TiB = 250 bytes (~ 1000 Trillion) 
 1 EiB = 210 PiB = 260 bytes (~ 1 Million Trillion) 
 ... 

 Note the “i” in the notations above: means “power of 2” 
 Unlike in a kilometer (km), where k means 1,000 (not 1,024)



Data Stored in Memory
 Each byte in memory is labeled by a unique address 
 An address is a number that identifies the memory location of 

each byte in memory 
 e.g., the byte at address 3 is 00010010 
 e.g., the byte at address 241 is 10110101  

 Typically, we write addresses in binary as well 
 e.g., the byte at address 00000011 is 00010010 
 e.g., the byte at address 11110001 is 10110101 

 All addresses on a computer have the same number of bits 
 e.g., 8-bit addresses 

 The processor has instructions that say “Read the byte at 
address X and give me its value” and “Write some value into 
the byte at address X”



Example Byte-Addressable RAM with 
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...



address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0010  
the content is 0000 0000

Example Byte-Addressable RAM with 
16-bit addresses



address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0100  
the content is 0101 1110

Example Byte-Addressable RAM with 
16-bit addresses



Address Space
 With d-bit long addresses we can address 2d different “things” 

 If I have n things to address I need ⌈log2 n⌉ bits 
 Example: 

 2-bit addresses 
 00, 01, 10, 11    
  4 “things” 

 3-bit addresses  
 000, 001, 010, 011, 100, 101, 110, 111 
 8 “things” 

 In our case, these things are “bytes” because we consider 
byte-addressable RAM 

 One cannot address anything smaller than a byte 
 How big is my RAM if my addresses are 13-bit? (poll)



Address Space
 With d-bit long addresses we can address 2d different “things” 

 If I have n things to address I need ⌈log2 n⌉ bits 
 Example: 

 2-bit addresses 
 00, 01, 10, 11    
  4 “things” 

 3-bit addresses  
 000, 001, 010, 011, 100, 101, 110, 111 
 8 “things” 

 In our case, these things are “bytes” because we consider 
byte-addressable RAM 

 One cannot address anything smaller than a byte 
 How big is my RAM if my addresses are 13-bit? (poll)                          

213 bytes = 23 * 210 = 8 KiB!



Both Code and Data in Memory

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Code

Data

 A program is loaded in 
memory 

 Its address space (the 
bytes that belong to it in 
memory) contain both code 
and data 

 To the CPU, code and data 
are just bytes, but the 
programmer (hopefully) 
knows which bytes are data 
an which bytes are code 

 Conveniently hidden 
from you if you’ve never 
written assembly 

 But we’ll have to keep 
code/data straight in 
these lecture notes

Example Address Space



The CPU is a Memory Modifier
 So now we have a memory in which we can store/retrieve 

bytes at precise locations 
 These bytes presumably have some useful meaning to us 

 e.g., integers, ASCII codes of characters, floating points 
numbers, RGB values 

 e.g., instructions that specify what to do with the data; when 
you buy a processor, the vendor defines the instruction set 
(e.g., instruction “0010 1101” means “increment some useful 
counter”) 

 The CPU is the piece of hardware that modifies the 
content of memory 

 In fact, one can really think of the CPU as a device that takes 
us from one memory state (i.e, all the stored content) to 
another memory state (some new, desired stored content)



Disclaimer

 Several of the next few slides may also have 
been show in ICS332  
 Because ICS312 and ICS332 are not in a 

prerequisite chain 
 So you may have seen them before 
 Or you may see them again 

 Regardless, it’s good to be reminded of 
computer architecture basics!



What’s in the CPU?

Memory

I/O 
System

CPU



What’s in the CPU?

Memory

I/O 
System

Control 
UnitALU

Program counter register

register

register
current instruction



What’s in the CPU?

Control 
UnitALU

Program counter register

register

register

Registers: values that hardware instructions work with 

Data can be loaded from memory into a register 
Data can be stored from a register back into memory 
Operands and results of computations are ALL in registers 
Accessing a register is really fast 
There is a limited number of registers (which will make our life a bit difficult) 

current instruction



What’s in the CPU?

Control 
UnitALU

Program counter register

register

register

Arithmetic and Logic Unit: what you do computation with 

used to compute a value based on current register values and  
store the result back into a register 

+, *, /, -, OR, AND, XOR, etc. 

current instruction



What’s in the CPU?

Control 
UnitALU

Program counter register

register

register

Program Counter: Points to the next instruction 

Special register that contains the address in memory of the next instruction 
that should be executed  
(gets incremented after each instruction, or can be set to whatever value 
whenever there is a change of control flow)

current instruction



What’s in the CPU?

Control 
UnitALU

Program counter register

register

register

Current Instruction: Holds the instruction that’s currently being executed

current instruction



What’s in the CPU?

Control 
UnitALU

Program counter register

register

register

Control Unit: Decodes instructions and make them happen 

Logic hardware that decodes instructions (i.e., based on their bits) and sends 
the appropriate (electrical) signals to hardware components in the CPU

current instruction



A CPU in its “Glory”: 
Intel Haswell

Each Core contains a 
“CPU” (as in in previous 
slides) plus more stuff 
(e.g., L1 and L2 Caches)

In this course we assume 
a single, very simple core 
(which we call the CPU)



Instructions
 Instructions are encoded in binary machine code 

 e.g.:  01000110101101 may mean “perform an addition of two 
registers and store the results in another register” 

 The CPU is built using gates (OR, AND, etc.) which 
themselves use transistors 

 These gates implement instruction decoding 
 Based on the bits of the instruction code, signals are sent to 

different components, which then perform useful tasks 
 Typically, an instruction consists of two parts 

 The opcode: what the instruction should do 
 The operands: the input to the computation

opcode operands
0  1  0  0  0     1  1  0  1  0  1  1  0  1



Instruction Set Architecture (ISA)

 When designing a CPU, one must define the set of all 
the instructions it understands 

 This is one thing that Intel engineers do 
 This is called the ISA: Instruction Set Architecture 
 Typical ISA include instructions for 

 Performing arithmetic operations on register values 
 Load values from memory into registers 
 Store values from registers into memory 
 Test register values to decide what instruction to execute 

next 
 ... 

 Envision a loooong specification manual that lists all the 
possible instructions...



Fetch-Decode-Execute Cycle
 The Fetch-Decode-Execute cycle 

 The control unit fetches the next program instruction from memory 
 Using the program counter to figure out where that instruction is located in the 

memory 
 The control unit decodes the instruction and signals are sent to 

hardware components 
 e.g., is the instruction loading something from memory? is it adding 

two register values together?  
 The instruction is executed 

 Operands are fetched from memory and put in registers, if needed 
 The ALU executes computation, if any, and stores the computed 

results in the registers 
 Register values are stored back to memory, if needed 

 Repeat 
 Computers today implement MANY variations on this model 
 But one can still program with the above model in mind 

 But then without understanding performance issues



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

register

register

register

program counter

current instruction



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1100
register

register

register

program counter

current instruction

Somehow, the program counter is 
initialized to some content, which is an 
address (done by the OS - see ICS332)



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1100
register

register

register

program counter

Fetch the content (instruction) at 
address 0000 1100, which is “0110 
1011”, and store it in the  “current 
instruction” register

current instruction
0110 1011



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1101
register

register

register

program counter

Increment the program counter

current instruction
0110 1011



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1101
register

register

register

program counter

Decode instruction “0110 1011”. Let’s 
pretend it means: “Load the value at 
address 1000 0000 and store it in the 
second register”  

current instruction
0110 1011



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Send signals to all hardware 
components to execute the 
instruction: load the value at address 
1000 0000, which is “1111 0000” and 
store it in the second register

current instruction
0110 1011



Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Fetch the content (instruction) at 
address 0000 1101, which is “1111 
0010”, and store it in the “current 
instruction” register

current instruction
1111 0010

1111 0000



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1110
register

register

program counter

Increment the program counter

current instruction
1111 0010

1111 0000



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

1111 0000

Decode instruction “1111 0010”. Let’s 
pretend it means: “Do a logical NOT 
on the second register”  



Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

0000 1111

Send signals to all hardware 
components to execute the 
instruction: do a logical NOT on the 
second register  



Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1110
register

0000 1111

register

program counter

Fetch the content (instruction) at 
address 0000 1110, which is “0010 
0001”, and store it in the “current 
instruction” register

current instruction
0010 0001

1111 0000

1111 0010



Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

Increment the program counter

0010 0001



Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control 
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Decode instruction “0010 0001”. Let’s 
pretend it means: “Store the value in 
the second register to memory at 
address 1111 0010”  



Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0000 11111111 0010

... ...

Control 
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Send signals to all hardware 
components to execute the 
instruction: store the value in the 
second register, which is 0000 1111, 
to memory at address 1111 0010 



Fetch-Decode-Execute
 This is only a simplified view of the way things work 
 The “control unit” is not a single thing 

 Control and data paths are implemented by several complex 
hardware components 

 There are multiple ALUs, there are caches, there are 
multiple CPUs in fact (“cores”) 

 Execution is pipelined: e.g., while one instruction is 
fetched, another one is being executed 

 Decades of computer architecture research have gone into 
improving performance, thus often leading to staggering 
hardware complexity 

 Doing smart things in hardware requires more logic gates and 
wires, thus increasing processor cost 

 But conceptually, fetch-decode-execute is it



Building a CPU in Minecraft

 Let’s look at an amazing Minecraft CPU 
 Some of the features we can already understand 
 Some of the features we’ll understand later 
 Some of the features we won’t see in this course 

https://www.youtube.com/watch?
v=FDiapbD0Xfg&t=95s

https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s
https://www.youtube.com/watch?v=FDiapbD0Xfg&t=95s


Assembly language
 It’s really difficult for humans to read/remember binary 

instruction encodings 
 But people used to do it! 
 One would typically use hexadecimal encoding, but still it 

seems impossible to memorize all this in today’s world 
 Therefore, it is typical to use a set of mnemonics 
 We call these mnemonics the assembly language 

 It is often said that the CPU understands assembly language 
 This is not technically true: the CPU understands machine 

code, which we, as humans, choose the represent using 
assembly language 

 An assembler is a computer program that transforms 
assembly code into machine code (i.e., from a human-
readable format into a binary CPU-readable format)



Machine vs. Assembly code
 Say that on an architecture the opcode F2 means “add”, and that 

we have an add instruction that takes as operands three 
registers, each identified by an index 

 Then the instruction “add the 1st register to the 7th register and 
store the result in the 4th register” could be (inefficiently) 
encoded as F2010704 

 Some (older) programmers can read machine code pretty well 
 Instead, we defined the assembly equivalent to be, for instance: 
add R1,R7,R4 

 add is called the mnemonic 
 R1,R7, and R4 are the operands 

 There is a one-to-one correspondance between an assembly 
instruction and a machine instruction 

 Not true of high-level languages!



Assembler

 An assembler is a computer program that 
transforms assembly code into machine code (i.e., 
from a human-readable format into a binary CPU-
readable format) 

 It’s a pretty simple program, since there is a one-to-
one correspondance between assembly instructions 
and machine instructions 

 Assembly code is NOT portable across architectures 
 Different ISAs, different assembly languages



The 80x86 Architecture
 For this course we need to pick a processor family with 

a given ISA (Instruction Set Architecture) 
 We will use the Intel 80x86 ISA (x86 for short)  

 The most common today in existing personal computers 
 Although now all Apple machines have an ARM processor 

 We could have picked other ISAs 
 ARM, MIPS 

 In ICS331/ICS431/EE460 you’d (likely) be exposed to those 
 Some courses in some curricula subject students to 

two or even more ISAs in a single semester, but in this 
course we’ll just focused on one 

 If you know one kind of assembly, it’s easy to pick up another 
 The point of this course is to gain deep understanding of 

concepts, not become assembly programming prodigies



x86 History (partial)
 In the late 70s Intel creates the 8088 and 8086 processors 

 16-bit registers, 1 MiB of memory 

 In 1982: the 80286 
 New instructions, 16 MiB of memory 

 In 1985: the 80386 
 32-bit registers, 5 GiB of memory 

 1989: 486; 1992: Pentium; 1995: P6 
 Only incremental changes to the architecture



x86 History
 1997 - now:  improvements, new features galore 

 MMX and 3DNow! extensions 
 New instructions to speed up graphics (integer and float) 
 New cache instructions, new floating point operations 
 Virtualization extensions 
 etc.. 

 2021: the “Golden Cove” code name (12th generation) 
 “All models support: AES-NI, CLMUL, RDRAND, SHA, TXT, 

MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AVX, 
AVX2, FMA3, AVX-512, AVX-VNNI, TSX, VT-x, VT-d” 

Several manufacturers build 	 	 	 	 	
x86-compliant processors 

 And have been for a long time



x86 History
 Amazingly, this architecture has witnessed few fundamental 

changes since the 8086 
 All in the name of backward compatibility 
 Imposed early as “the one ISA” (Intel was the first company to 

produce a 16-bit architecture, which secured its success) 
 Many argue that it’s an unsightly ISA 

 Due to it being a set of add-ons rather than a modern re-design 
 Famous quote by Mike Johnson (AMD): “The x86 isn’t all that 

complex… it just doesn’t make a lot of sense” (1994) 
 But it’s relatively easy to implement in hardware, and 

constructors have been successfully making faster and faster 
x86 processors for decades, explaining its wide adoption 

 Still in use today in 64-bit processors (dubbed x86-64) 
 In this course we do 32-bit x86



ISA specification Example: x86

opcode  
in HEX

what it 
does

operands

Let’s look at the Web site http://ref.x86asm.net/

Human-readable 
Mnemonic (assembly)

http://ref.x86asm.net


High-Level Languages
 It used to be that all computer programmers did all 

day was write assembly code 
 This was difficult for many reasons 

 Difficult to read and maintain (in spite of using the 
mnemonics) 

 Difficult to debug 
 Different from one computer to another! 

 The exclusive use of assembly language for all 
programming prevented the (sustainable) 
development of large software projects with more than 
a few (very good) programmers 

 This was the main motivation for developing high-level 
programming languages 
 FORTRAN, Cobol, C, etc.



High-level Languages
 The first successful high-level language was FORTRAN 

 Developed by IBM in 1954 to run on they 704 series 
 Used for scientific computing 

 The introduction of FORTRAN led people to believe that there would 
never be bugs again because it made programming so easy! 

 But high-level languages led to larger and more complex software 
systems, hence leading to bugs 

 Another early programming language was COBOL 
 Developed in 1960, strongly supported by DoD 
 Used for business applications 

 In the early 60s IBM had a simple marketing strategy 
 On the IBM 7090 you used FORTRAN to do science 
 On the IBM 7080 you used COBOL to do business 

 Many high-level languages have been developed since then, and 
they are what most programmers use 

 Fascinating history (see ICS 313)



High-level Languages

 Having high-level programming languages is 
good, but CPUs do not understand them 
 As we saw, they only understand very basic 

instructions to manipulate registers, etc. 
 Therefore, there needs to be a translation from 

a high-level language to machine code 
 The translation is done in two steps: by a 

compiler and then by an assembler 
 Let’s see this on a picture....



The Big (Simplified) Picture

  char *tmpfilename; 
  int num_schedulers=0; 
  int num_request_submitters=0;   
  int i,j;   

  if (!(f = fopen(filename,"r"))) {     
    xbt_assert1(0,"Cannot open file %s",filename);   
  }  
  while(fgets(buffer,256,f)) {     
    if (!strncmp(buffer,"SCHEDULER",9)) 
      num_schedulers++; 
    if (!strncmp(buffer,"REQUESTSUBMITTER",16))       
      num_request_submitters++;   
  }   
  fclose(f);  
  tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

mov     eax, list_msg 
call    print_string 
push    dword 10 
push    Array    
call    printArray 
add     esp, 8   
push    plus_one 
push    dword 10 
push    Array    
call    map 
add     esp, 12  
call    print_nl 
mov     eax, mapped1_msg 
call    print_string 
push    dword 10 
push    Array   

Assembly code

ASSEMBLER

010000101010110110 
101010101111010101 
101001010101010001 
101010101010100101 
111100001010101001 
000101010111101011 
010000000010000100 
000010001000100011 
101001010010101011 
000101010010010101 
010101010101010101 
101010101111010101 
101010101010100101 
111100001010101001

Machine code

Control 
UnitALU

Program counter register
register
registerCPU



The Big (Simplified) Picture

  char *tmpfilename; 
  int num_schedulers=0; 
  int num_request_submitters=0;   
  int i,j;   

  if (!(f = fopen(filename,"r"))) {     
    xbt_assert1(0,"Cannot open file %s",filename);   
  }  
  while(fgets(buffer,256,f)) {     
    if (!strncmp(buffer,"SCHEDULER",9)) 
      num_schedulers++; 
    if (!strncmp(buffer,"REQUESTSUBMITTER",16))       
      num_request_submitters++;   
  }   
  fclose(f);  
  tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

ASSEMBLER

010000101010110110 
101010101111010101 
101001010101010001 
101010101010100101 
111100001010101001 
000101010111101011 
010000000010000100 
000010001000100011 
101001010010101011 
000101010010010101 
010101010101010101 
101010101111010101 
101010101010100101 
111100001010101001

Machine code

Control 
UnitALU

Program counter register
register
registerCPU

push    ebp 
mov     ebp, esp 
push    ebx 
mov     eax, 0   
mov     ebx, [ebp+8]  
shr     ebx, 1   
adc     eax, 0   
neg     eax      
inc     eax      
pop     ebx      
pop     ebp 

Hand-written 
Assembly code

mov     eax, list_msg 
call    print_string 
push    dword 10 
push    Array    
call    printArray 
add     esp, 8   
push    plus_one 
push    dword 10 
push    Array    
call    map 
add     esp, 12  
call    print_nl 
mov     eax, mapped1_msg 
call    print_string 
push    dword 10 
push    Array   

Assembly code



This course’s topics:

  char *tmpfilename; 
  int num_schedulers=0; 
  int num_request_submitters=0;   
  int i,j;   

  if (!(f = fopen(filename,"r"))) {     
    xbt_assert1(0,"Cannot open file %s",filename);   
  }  
  while(fgets(buffer,256,f)) {     
    if (!strncmp(buffer,"SCHEDULER",9)) 
      num_schedulers++; 
    if (!strncmp(buffer,"REQUESTSUBMITTER",16))       
      num_request_submitters++;   
  }   
  fclose(f);  
  tmpfilename = strdup("/tmp/jobsimulator_

High-level code

COMPILER

ASSEMBLER

010000101010110110 
101010101111010101 
101001010101010001 
101010101010100101 
111100001010101001 
000101010111101011 
010000000010000100 
000010001000100011 
101001010010101011 
000101010010010101 
010101010101010101 
101010101111010101 
101010101010100101 
111100001010101001

Machine code

Control 
UnitALU

Program counter register
register
registerCPU

mov     eax, list_msg 
call    print_string 
push    dword 10 
push    Array    
call    printArray 
add     esp, 8   
push    plus_one 
push    dword 10 
push    Array    
call    map 
add     esp, 12  
call    print_nl 
mov     eax, mapped1_msg 
call    print_string 
push    dword 10 
push    Array   

Assembly code

push    ebp 
mov     ebp, esp 
push    ebx 
mov     eax, 0   
mov     ebx, [ebp+8]  
shr     ebx, 1   
adc     eax, 0   
neg     eax      
inc     eax      
pop     ebx      
pop     ebp 

Hand-written 
Assembly code



What we do in this course

 First part of the semester (bulk of the course) 
 Learn how to write assembly code 

 For the x86 architecture 
 Use an assembler to generate binary code from 

our assembly code and then run it 

 Second part of the semester (shorter, but 
absolutely fundamental) 
 Learn about important tools tools 

 loader, linker, compiler, debugger, etc.



Why should we learn all this?
 There are many “small” reasons 

 Write assembly code for embedded devices 
 Read generated assembly to understand malware 
 Be able to develop “one-shot compilers” for non-programming languages 
 Truly understand high-level concepts (indirection, data structures) 
 Understand the limitations of high-level languages or why some things can be 

slow while others can be fast 
 Big meta-reason: this course should go a long way in giving you a holistic 

understanding of how a program goes from just a text file to a running code 
 You can describe in details how you go from “I wrote a piece of C that calls a 

function that adds 2 and 2 together and prints the result” to “the computer prints 4” 
 In its full glory only after you’ve taken ICS332 

 The complexity is actually quite stunning, and there should be something 
satisfying in knowing how things work from top to bottom! 

 99% of students come into ICS312 thinking “why do we have to do this???”, 
and ~75% leave thinking “now I feel like a computer scientist!!” (and I ask 
ChatGPT fewer uninformed basic questions!) 

 This is based on my own discussions with students/alumni, not an official study



Important Takeaways
 Von Neumann: CPU, RAM, I/O 
 Memory: stores both code and data 

 At each address a one-byte value is stored 
 A program’s address space: all the bytes it uses / cares about 

 CPU: a memory modifier 
 Program counter, current instruction, general-purpose registers 
 Fetch-decode-execute cycle based on a clock 
 The Instruction Set Architecture defines the machine code a CPU 

understands (binary-encoded instructions) 
 Assembly code is conceptually the same (but human-readable 

mnemonics) 
 ISA: we use 32-bit x86 in this course (created by Intel) 
 Compiler: high-level code to assembly code 
 Assembler: assembly code to machine code



Conclusion

 If you want to know more 
 Take a computer architecture 

course 
 Classic Textbook: Computer 

Organization and Design, 
Fourth Edition: The Hardware/
Software Interface (Patterson 
and Hennessy, Morgan 
Kaufmann) 

 Next week we’ll have an in-class 
quiz on this module


