Our First NASM

Programs

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" A
Comments

m Before we learn assembly, let’s learn how to
insert comments into a source file

Uncommented code is a bad idea

Uncommented assembly code is a really, really
bad idea

In fact, commenting assembly is necessary

® \With NASM, comments are added after a
semicolon (';’)

You may have noted them in the previous module
m Example:
add eax, ebx ;' Yy =y +Db

"
Assembly directives

® Most assemblers allow for “directives”, to do things that are not
part of the machine code but are convenient

® Defining immediate constants

Say your code always uses the number 100 for a specific thing,
e.g., the “size” of an array

You can just put this in the NASM code:
%define SIZE 100

Later on in your code you can do things like:
mov eax, SIZE

® |ncluding files
%include “some file”

® |f you know the C preprocessor, these are the same ideas as
#define SIZE 100 or #include “some _file”

®m Use $define whenever possible to avoid “code duplication”
Because code duplication is evil

"
NASM Program Structure

; i1nclude directives

segment .data
; DX directives

segment .bss
; RESX directives

segment .text
; instructions

"
NASM Program Structure

; i1nclude directives

segment .data

. DX directives ® | am using red for pieces
’ of the program you have

to write “creatively”
segment .bss m Other colors are for

. RESX directives pieces of the program that
’ you have to write but that

are always there and
segment .text always the same

» instructions

"
C Driver for Assembly code

®m Creating a whole program in assembly requires a lot of work

® You will never write something in assembly from scratch, but
rather only pieces of programs, with the rest of the programs
written in higher-level languages like C/C++/whatever

® |n this class we “call” assembly code from C
We use a main C function as a driver

int main () // C driver

{
int ret status; add eax, ebx

ret status = asm main(); | —1mov ebx, [edi]
return ret status;

}

"
So what’s in the text segment?

® The text segment defines the asm_main symbol:

global asm main ; makes the symbol visible
asm main: ; marks the beginning of asm main

; all instructions go here

® On Windows, you need a * ' before asm_main, even though in C the
call is simply to “asm_main” not to * asm_main”

® On Linux you do not need the * ’

® |l assume Linux from now on (e.g., in all the .asm files on the
course’s Web site)

If you want to do everything on Windows and then retro-fit it on
Linux, that’s great, but you'll get no help from us

m \We can now augment our program a bit...

"
NASM Program Structure
; include directives

segment .data
; DX directives

segment .bss
; RESX directives

segment .text
global asm main
asm main:
; instructions

" JE
More on the text segment

m Before and after running the instructions of your program there is
a need for some “setup” and “cleanup”

This is so that the C can “call” the assembly correctly

m \We'll understand this later, but for now, let’s just accept the fact
that your text segment will always look like this:

enter 0,0

pusha

; Your program here
popa

mov eax, 0

leave

ret

" A
NASM Skeleton File

; include directives
segment .data

; DX directives
segment .bss

; RESX directives
segment .text

global asm main

asm main:

enter 0,0

pusha

; Your program here
popa

mov eax, O

leave

ret

"
Our First Program

m | et's just write a program that adds two 4-byte
iIntegers and writes the result to memory

Yes, this is boring, but we have to start somewhere
® The two integers are initially in the .data
segment, and the result is written to the .bss
segment

m | et’s live-code this “from scratch” right now
before looking at the next slide...

There is a “NASM how to” reading in this
module on the course’s Web site, which
describes all the steps we're about to do In
class

"
Our First Program

segment .data

integerl dd 15 ; first int

integer?2 dd 6 ; second int
segment .bss

result resd 1 ; result
segment .text

global asm main

asm main:
enter 0,0
pusha
mov eax, [integerl] ; eax = intl
add eax, [integer2?] ; eax = intl + int2
mov [result], eax ; result = intl + int2
popa
mov eax, 0
leave File ics312_first_v0.asm

ret on the Web site

"
1/0?

® This is all well and good, but it's not very interesting if we can'’t
“see” anything
= \We would like to:
Be able to provide input to the program
Be able to get output from the program
® Also, debugging will be difficult, so it would be nice if we could

tell the program to print out all register values, or to print out
the content of some zones of memory

® Doing all this requires quite a bit of assembly code and
requires techniques that we will not see for a while

® The author of our textbook provides a small I/0O package that
we can just use, without understanding how it works for now

" A
asm io.asm and asm io.inc

® The “PC Assembly Language” book comes with
many add-ons and examples

m A very useful one is the I/O package, which comes

as two files:
asm_io.asm (assembly code)
asm_io.inc (macro code)

® Simple to use:
Assemble asm_io.asm into asm _i0.0

Put “¢include “asm_io.inc”” at the top of your
assembly code

Link everything together into an executable

" J——
Simple 1/0

B Say we want to print the result integer in
addition to having it stored in memory

® \We can use the print_int function
provided in asm_io.inc/asm

® This function prints the content of the eax

register in base 10, interpreted as a signhed
decimal integer

yes, it's very limited: it only prints eax!
® \We invoke print_int as:

call print int

Our First Program

%include “asm io.inc”

segment .data

integerl dd 15 ; first int
integer2 dd 6 ; second int
segment .bss
result resd 1 ; result
segment .text
global asm main
asm main:
enter 0,0
pusha
mov eax, [integerl] ; eax = intl
add eax, [integer2] ; eax = intl + int2
mov [result], eax ; result = intl + int2
call print int ; print result
popa
mov eax, 0
leave

ret

File
ics312_first_ v1l.asm
on the Web site

"
How do we run the program?

® Now that we have written our program, say in file ics312_first v1.asm
using a text editor, we need to assemble it

® | used a Makefile a minute ago... but what does it do?
m Assembling a program means building an object file (a .o file)
® \We use NASM to produce the .o file:

nasm -f elf ics312 first vli.asm -0 ics312 first vl.o

m \We get a .o file: a machine code translation of our assembly code
m \We also need a .o file for the C driver:
gcec -m32 -c¢ driver.c -o driver.o

We generate a 32-bit object (our machines are all 64-bit)
m \We also create asm_io.o by assembling asm_io.asm
® Now we have three .o files.
m \We link them together to create an executable:
gcc driver.o ics312 first vl.o asm i0.0 -0 ics312 first vl
®m And voila... let’s see it on a picture

The Full Picture

ics312_fi r_st_v1 .asm

ics312_fi rstTv1 .0

driver.c

driver.o

ics312_first_v1

" A
More 1/O AX

r A

AH AL = EAX

B print char: prints out the character corresponding to the
ASCII code stored in AL

B print string: prints out the characters in the string stored
at the address stored in EAX

The string must be null-terminated (last byte = 00)
B print nl: prints a new line

B read int:reads a signed integer from the keyboard and
stores it as a 4-byte value into EAX

B read char:reads a character from the keyboard and stores

its ASCII code into EAX as follows: 00 00 00 xx (AL is the 1-
byte ASCII code)

m | et us modify our code so that the two input integers are read
from the keyboard, and so that there are more convenient
messages printed to the screen

Our First Program

segment .data
msg1
msg2
msg3
msg4

segment .bss
integer1
integer2
result

segment .text

asm_main:
enter
pusha
mov
call
call
mov
mov
call
call
mov

%include “asm_io.inc”

db
db
db
db

resd 1
resd 1
resd 1

global asm_main

0,0

eax, msg1
print_string
read_int
[integer1], eax
eax, msg1
print_string
read_int
[integer2], eax

“Enter a number: ”, 0
“The sumof “, 0
“and “, 0

“is: 4,0

; first integer
; second integer
; result

; hote that this is a pointer!

; read the first integer
; store it in memory
; hote that this is a pointer!

; read the second integer
; store it in memory

mov eax, [integer1] ; eax = first integer

add eax, [integer2] ; eax += second integer
mov [result], eax ; store the result

mov eax, msg2 ; hote that this is a pointer
call print_string

mov eax, [integer1] ; note that this is a value
call print_int

mov eax, msg3 ; note that this is a pointer
call print_string

mov eax, [integer2] ; note that this is a value
call print_int

mov eax, msg4 ; note that this is a pointer
call print_string

mov eax, [result] ; note that this is a value
call print_int

call print_nl .

In the examples accompanying our
textBgoKthere is a very similar
examgple of a first program (called
first.asm)

File ics312_first v2.asm
on the Web site...

"
Debugging???

®m \What if we have a bug to track?

Initially, assembly code is very bug-prone

® One option: rely on print statements to print out all
registers, etc.

This can be a huge waste of time

It's basically like debugging C with print statements,
which is not great, BUT with the difference that:

® Qur print statements are very weak

® Our bugs can be much weirder (or as weird as if
you write the most terrible/insane C code)

Much easier to actually look at bytes in RAM and
registers to figure out bugs

B S0 asm_io provides two convenient macros for
debugging!

"
dum_regs and dump_mem

® The macro dump regs prints out the bytes stored in all the

registers (in hex), as well as the bits in the FLAGS register
(only if they are setto 1)

dump regs 13

‘13" above is a meaningless integer, that you can use to
distinguish outputs from multiple calls to dump_regs

® The macro dump mem prints out the bytes stored in memory
(in hex). It takes three arguments:
A meaningless integer for distinguishing outputs
The address at which memory should be displayed

The number plus one of 16-byte segments that should be
displayed

for instance

dump mem 29, integerl, 3
prints out “29”, and then (3+1)*16 bytes

"
Using dump_regs and dump_mem

® To demonstrate the usage of these two macros, let’s
just write a program that highlights the fact that the
Intel x86 processors use Little Endian encoding

® \We will do something ugly using 4 bytes

Declare in the data segment a 4-byte hex quantity
whose bytes are the ASCII codes: “live”

=" =6Ch, “i" =69h, “v' = 76h, “e” = 65h
Print that 4-byte quantity as if it where a string
Then load it into a register

Use dump mem and dump reg to check out byte
values

m | et's doitlive again...

" JE
Little-Endian Exposed

%include “asm io.inc” ‘

segment .data F”e

byctles :1‘;‘ 26“976651‘ / “li"‘li' ics312_littleendian.asm
= i on the Web site

segment .text
global asm main
asm main:

enter 0,0

pusha

mov eax, bytes ; note that this is an address
call print string ; print the string at that address
call print nl ; print a new line

mov eax, [bytes] ; load the 4-byte value into eax

dump mem O, bytes, 1 ; display the memory
dump_regs 0 ; display the registers
pusha

popa

mov eax, 0

leave

ret

Output of the program

The address of “bytes”

The program prints is 0804C028”
“evil” and not “live”

evil “bytes” starts here
Memory Dump # 0 Address = 0804C028

804C030 25 69 00 25 73 00 52 65 67 69 73 74 65 72 20 44 "%i?%s?Register D"
Register Dump # O

E = 6C697665_EBX = 0804C000 ECX = E92F7D6B EDX = 40800DCO
ESI = 40800E54 EDI=_3FFFEB80 EBP = 40800D78 ESP = 40800D58
EIP = 080491D4 FLAGS = AF PF

and ves, it’'s “evil”

The “dump” starts at

address 0804A020 (a bytes in eax are
multiple of 16) in the “live” order

" A
Word of Caution

Each time | teach assembly | says “using print for
debugging is a waste of time” and “debugging is done by
looking at registers and RAM using dump regs and

dump mem’

Each time, a large fraction of students strongly resist
this, desperately clinging to the delusion that we're using
a high-level language with variables
But even for high-level languages using print statements can be
pretty limited for debugging!
You will save hours if you let go of that delusion (and you
will learn a lot and feel empowered in the process)

And you will avoid the “I spent 4 hours tracking a bug, then at
office hours the prof/TA added a dump mem statement and found

it in 10 seconds” psychologically damaging ordeal

" JE
Thoughts on the Previous Module

m Now that we have dump mem, you have an

automatic validity checker for all the practice
problems and sample homework from the
previous module...

® So if you're wondering how some tweaks of
the declarations impact the byte order in
RAM, just try it

m Every semester somebody asks at least one
assembly programming question | don’t know
the answer to, and I'll just “try it” as well

" J
Example program

m Say that we want to write a program that
prompts the user for two characters, say X
and Y, and then prints the string “F(X,X,YYY)’

Yes, it's totally useless and arbitrary, but we have
to start somewhere

m | et's live-code it in class

And perhaps discover something about reading
characters from the keyboard!!

And then try to do it without using print_char

" A
Conclusion

® |t is paramount for the assembly language programmer to
understand the memory layout precisely

® \We have seen the basics for creating an assembly language
program, assembling it with NASM, linking it with a C driver

We have seen some convenient macros/functions provided by the
textbook author

® As you know, all homework assignments are optional

m BUT, as | said at the beginning of the semester, for most of you,
not attempting to do the homework assignments at all will make
it hard to absorb the content

®m And so, let’s look at optional Homework #3
Which is very much like the live-coding we did a few minutes ago

® Remember that MIDTERM #1 is coming up

