
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Our First NASM
Programs

Comments

 Before we learn assembly, let’s learn how to
insert comments into a source file
 Uncommented code is a bad idea
 Uncommented assembly code is a really, really

bad idea
 In fact, commenting assembly is necessary

 With NASM, comments are added after a
semicolon (‘;’)
 You may have noted them in the previous module

 Example:
	 	 add eax, ebx	 ; y = y + b

Assembly directives
 Most assemblers allow for “directives”, to do things that are not

part of the machine code but are convenient
 Defining immediate constants

 Say your code always uses the number 100 for a specific thing,
e.g., the “size” of an array

 You can just put this in the NASM code:
	 	 	 %define SIZE 100
 Later on in your code you can do things like:
	 		 mov	 eax, SIZE

 Including files
 %include “some_file”

 If you know the C preprocessor, these are the same ideas as
 #define SIZE 100 or #include “some_file”

 Use %define whenever possible to avoid “code duplication”
 Because code duplication is evil

NASM Program Structure
 ; include directives

segment .data
	 ; DX directives

segment .bss
	 ; RESX directives

segment .text
	 ; instructions

NASM Program Structure
 ; include directives

segment .data
	 ; DX directives

segment .bss
	 ; RESX directives

segment .text
	 ; instructions

 I am using red for pieces
of the program you have
to write “creatively”

 Other colors are for
pieces of the program that
you have to write but that
are always there and
always the same

C Driver for Assembly code
 Creating a whole program in assembly requires a lot of work
 You will never write something in assembly from scratch, but

rather only pieces of programs, with the rest of the programs
written in higher-level languages like C/C++/whatever

 In this class we “call” assembly code from C
 We use a main C function as a driver

int main() // C driver
{
 int ret_status;
 ret_status = asm_main();
 return ret_status;
}

...
add eax, ebx
mov ebx, [edi]
...

So what’s in the text segment?
 The text segment defines the asm_main symbol:
	

global asm_main ; makes the symbol visible

asm_main: ; marks the beginning of asm_main

; all instructions go here

 On Windows, you need a ‘_’ before asm_main, even though in C the
call is simply to “asm_main” not to “_asm_main”

 On Linux you do not need the ‘_’
 I’ll assume Linux from now on (e.g., in all the .asm files on the

course’s Web site)
 If you want to do everything on Windows and then retro-fit it on

Linux, that’s great, but you’ll get no help from us
 We can now augment our program a bit…

NASM Program Structure
 	; include directives

segment .data
	 ; DX directives

segment .bss
	 ; RESX directives

segment .text
	 global asm_main
	 asm_main:
	 	 ; instructions

More on the text segment
 Before and after running the instructions of your program there is

a need for some “setup” and “cleanup”
 This is so that the C can “call” the assembly correctly

 We’ll understand this later, but for now, let’s just accept the fact
that your text segment will always look like this:

	 	
	 	 enter	0,0
	 	pusha	
	 	;
	 	; Your program here
	 	;
	 	popa
	 	mov 	 eax, 0
	 	leave
	 	 ret

NASM Skeleton File
 	 ; include directives
segment .data	
	 	 ; DX directives
segment .bss
	 	 ; RESX directives
segment .text
	 	 global asm_main
	 	 asm_main:
	 	 enter	 0,0

	 pusha	
	 ; Your program here
	 popa
	 mov 	 eax, 0
	 leave
	 ret

Our First Program

 Let’s just write a program that adds two 4-byte
integers and writes the result to memory
 Yes, this is boring, but we have to start somewhere

 The two integers are initially in the .data
segment, and the result is written to the .bss
segment

 Let’s live-code this “from scratch” right now
before looking at the next slide…
 There is a “NASM how to” reading in this

module on the course’s Web site, which
describes all the steps we’re about to do in
class

Our First Program
segment .data	
	 integer1	 dd	 15	 ; first int
	 integer2	 dd	 6	 ; second int
segment .bss
	 result	 resd	 1	 ; result
segment .text
	 global asm_main
	 asm_main:
	 enter	 0,0

	 pusha	
	 mov 	 eax, [integer1]	 ; eax = int1
	 add 	 eax, [integer2]	 ; eax = int1 + int2
	 mov 	 [result], eax	 	 ; result = int1 + int2
	 popa
	 mov	 eax, 0
	 leave
	 ret

File ics312_first_v0.asm
on the Web site

I/O?
 This is all well and good, but it’s not very interesting if we can’t

“see” anything
 We would like to:

 Be able to provide input to the program
 Be able to get output from the program

 Also, debugging will be difficult, so it would be nice if we could
tell the program to print out all register values, or to print out
the content of some zones of memory

 Doing all this requires quite a bit of assembly code and
requires techniques that we will not see for a while

 The author of our textbook provides a small I/O package that
we can just use, without understanding how it works for now

asm_io.asm and asm_io.inc
 The “PC Assembly Language” book comes with

many add-ons and examples
 A very useful one is the I/O package, which comes

as two files:
 asm_io.asm 	 (assembly code)
 asm_io.inc	 (macro code)

 Simple to use:
 Assemble asm_io.asm into asm_io.o
 Put “%include “asm_io.inc”” at the top of your

assembly code
 Link everything together into an executable

Simple I/O

 Say we want to print the result integer in
addition to having it stored in memory

 We can use the print_int function
provided in asm_io.inc/asm

 This function prints the content of the eax
register in base 10, interpreted as a signed
decimal integer
 yes, it’s very limited: it only prints eax!

 We invoke print_int as:
	 	 call print_int

Our First Program
%include “asm_io.inc”

segment .data	

	 integer1	 dd 15	; first int

	 integer2	 dd 6	; second int

segment .bss

	 result	 resd 1	 ; result

segment .text

	 global asm_main

	 asm_main:

	 enter	 0,0
	 	pusha	
	 	mov 	 eax, [integer1]	 ; eax = int1
	 	add 	 eax, [integer2]	 ; eax = int1 + 	 int2
	 	mov 	 [result], eax	 ; result = int1 + int2
	 	call	 print_int	 ; print result
	 	popa
	 	mov	 eax, 0
	 	leave
	 	ret

File
ics312_first_v1.asm
on the Web site

How do we run the program?
 Now that we have written our program, say in file ics312_first_v1.asm

using a text editor, we need to assemble it
 I used a Makefile a minute ago… but what does it do?
 Assembling a program means building an object file (a .o file)
 We use NASM to produce the .o file:

 nasm -f elf ics312_first_v1.asm -o ics312_first_v1.o
 We get a .o file: a machine code translation of our assembly code
 We also need a .o file for the C driver:
	 	 gcc -m32 -c driver.c -o driver.o

 We generate a 32-bit object (our machines are all 64-bit)	
 We also create asm_io.o by assembling asm_io.asm
 Now we have three .o files.
 We link them together to create an executable:
gcc driver.o ics312_first_v1.o asm_io.o -o ics312_first_v1
 And voila... let’s see it on a picture

The Full Picture

ics312_first_v1.asm driver.c

gccnasm

driver.o

ld (“gcc”)

ics312_first_v1

ics312_first_v1.o

More I/O

 print_char: prints out the character corresponding to the
ASCII code stored in AL

 print_string: prints out the characters in the string stored
at the address stored in EAX
 The string must be null-terminated (last byte = 00)

 print_nl: prints a new line
 read_int: reads a signed integer from the keyboard and

stores it as a 4-byte value into EAX
 read_char: reads a character from the keyboard and stores

its ASCII code into EAX as follows: 00 00 00 xx (AL is the 1-
byte ASCII code)

 Let us modify our code so that the two input integers are read
from the keyboard, and so that there are more convenient
messages printed to the screen

= EAXALAH

AX

Our First Program
%include “asm_io.inc”

segment .data	
	 msg1	 db	 “Enter a number: ”, 0
	 msg2	 db	 “The sum of “, 0
	 msg3	 db	 “ and “, 0
	 msg4	 db	 “ is: “, 0
segment .bss
	 integer1 resd 1	 ; first integer	
	 integer2 resd 1	 ; second integer
	 result	 resd 1	 ; result
segment .text
	 global asm_main
asm_main:
	 enter	 0,0
	 pusha	
	 mov 	 eax, msg1	 ; note that this is a pointer!
	 call	 print_string
	 call	 read_int	 ; read the first integer
	 mov 	 [integer1], eax ; store it in memory
	 mov	 eax, msg1	 ; note that this is a pointer!
	 call	 print_string	
	 call	 read_int	 ; read the second integer
	 mov 	 [integer2], eax ; store it in memory

	 mov 	 eax, [integer1] ; eax = first integer
	 add 	 eax, [integer2] ; eax += second integer
	 mov 	 [result], eax	 ; store the result
	 mov 	 eax, msg2	 ; note that this is a pointer
	 call	 print_string
	 mov	 eax, [integer1] ; note that this is a value
	 call 	 print_int
	 mov 	 eax, msg3	 ; note that this is a pointer
	 call	 print_string
	 mov	 eax, [integer2] ; note that this is a value
	 call 	 print_int
	 mov 	 eax, msg4	 ; note that this is a pointer
	 call	 print_string
	 mov	 eax, [result] ; note that this is a value
	 call 	 print_int
	 call	 print_nl
	 popa
	 mov	 eax, 0
	 leave
	 ret

File ics312_first_v2.asm
on the Web site...

In the examples accompanying our
textbook there is a very similar

example of a first program (called
first.asm)

Debugging???
 What if we have a bug to track?

 Initially, assembly code is very bug-prone
 One option: rely on print statements to print out all

registers, etc.
 This can be a huge waste of time
 It’s basically like debugging C with print statements,

which is not great, BUT with the difference that:
 Our print statements are very weak
 Our bugs can be much weirder (or as weird as if

you write the most terrible/insane C code)
 Much easier to actually look at bytes in RAM and

registers to figure out bugs
 So asm_io provides two convenient macros for

debugging!

dum_regs and dump_mem
 The macro dump_regs prints out the bytes stored in all the

registers (in hex), as well as the bits in the FLAGS register
(only if they are set to 1)

dump_regs 13
 ‘13’ above is a meaningless integer, that you can use to

distinguish outputs from multiple calls to dump_regs
 The macro dump_mem prints out the bytes stored in memory

(in hex). It takes three arguments:
 A meaningless integer for distinguishing outputs
 The address at which memory should be displayed
 The number plus one of 16-byte segments that should be

displayed
 for instance

dump_mem 29, integer1, 3
 prints out “29”, and then (3+1)*16 bytes

Using dump_regs and dump_mem

 To demonstrate the usage of these two macros, let’s
just write a program that highlights the fact that the
Intel x86 processors use Little Endian encoding

 We will do something ugly using 4 bytes
 Declare in the data segment a 4-byte hex quantity

whose bytes are the ASCII codes: “live”
 “l” = 6Ch, “i” = 69h, “v” = 76h, “e” = 65h

 Print that 4-byte quantity as if it where a string
 Then load it into a register
 Use dump_mem and dump_reg to check out byte

values
 Let’s do it live again…

Little-Endian Exposed
%include “asm_io.inc”

segment .data	

	 bytes	dd	 06C697665h ; “live”

	 end	 db	 0	 ; null

segment .text

	 global asm_main

	 asm_main:

	 	 enter 0,0

	 	 pusha

	 	 mov eax, bytes	 ; note that this is an address

	 	 call print_string	 ; print the string at that address

	 	 call print_nl	 ; print a new line

	 	 mov eax, [bytes]	 ; load the 4-byte value into eax

	 	 dump_mem	 0, bytes, 1 ; display the memory

	 	 dump_regs	0	 ; display the registers

	 	 pusha

	 	 popa

	 	 mov eax, 0

	 	 leave

	 	 ret

File
ics312_littleendian.asm
on the Web site

Output of the program

evil

Memory Dump # 0 Address = 0804C028

0804C020 00 00 00 00 00 00 00 00 65 76 69 6C 00 00 00 00 "????????evil????"

0804C030 25 69 00 25 73 00 52 65 67 69 73 74 65 72 20 44 "%i?%s?Register D"

Register Dump # 0

EAX = 6C697665 EBX = 0804C000 ECX = E92F7D6B EDX = 40800DC0

ESI = 40800E54 EDI = 3FFFEB80 EBP = 40800D78 ESP = 40800D58

EIP = 080491D4 FLAGS = 0216 AF PF

The program prints
“evil” and not “live”

The address of “bytes”
is 0804C028”

The “dump” starts at
address 0804A020 (a
multiple of 16)

“bytes” starts here

and yes, it’s “evil”

bytes in eax are
in the “live” order

Word of Caution
 Each time I teach assembly I says “using print for

debugging is a waste of time” and “debugging is done by
looking at registers and RAM using dump_regs and
dump_mem”

 Each time, a large fraction of students strongly resist
this, desperately clinging to the delusion that we’re using
a high-level language with variables
 But even for high-level languages using print statements can be

pretty limited for debugging!
 You will save hours if you let go of that delusion (and you

will learn a lot and feel empowered in the process)
 And you will avoid the “I spent 4 hours tracking a bug, then at

office hours the prof/TA added a dump_mem statement and found
it in 10 seconds” psychologically damaging ordeal

Thoughts on the Previous Module

 Now that we have dump_mem, you have an
automatic validity checker for all the practice
problems and sample homework from the
previous module…

 So if you’re wondering how some tweaks of
the declarations impact the byte order in
RAM, just try it

 Every semester somebody asks at least one
assembly programming question I don’t know
the answer to, and I’ll just “try it” as well

Example program

 Say that we want to write a program that
prompts the user for two characters, say X
and Y, and then prints the string “F(X,X,YYY)”
 Yes, it’s totally useless and arbitrary, but we have

to start somewhere
 Let’s live-code it in class

 And perhaps discover something about reading
characters from the keyboard!!

 And then try to do it without using print_char

Conclusion
 It is paramount for the assembly language programmer to

understand the memory layout precisely
 We have seen the basics for creating an assembly language

program, assembling it with NASM, linking it with a C driver
 We have seen some convenient macros/functions provided by the

textbook author

 As you know, all homework assignments are optional
 BUT, as I said at the beginning of the semester, for most of you,

not attempting to do the homework assignments at all will make
it hard to absorb the content

 And so, let’s look at optional Homework #3
 Which is very much like the live-coding we did a few minutes ago

 Remember that MIDTERM #1 is coming up

