
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Introduction

Course Goal
 At this point in your computer science education, most of

you have only a very high-level understanding of how a
computer run programs

Your experience so far: you write code in some language
(say a compiled language), you build it, and then you run it

 Each of these steps involve hitting buttons in IDEs or typing
some Shell commands

You all know how to do this, but (most of) you have only
very superficial understanding beyond “this magically
creates an executable”, “this 	 	 	 	
magically runs an executable, which	 	 	 	
my CPU magically knows how to do”

 A big part of being an effective (and 	 	 	
employable) computer scientist is 	 	 	 	
knowing what the magic is,
which is the goal of this course

What we will learn
 What is inside a computer?

 Elements of computer organization
 Elements of computer architecture

 Assembly programming
 Intel x86 Assembly
 Important concepts that apply to all low-level programming

and how they relate to high-level programming
 What is compiling, linking and debugging?
 How does one build a compiler?

 The “theory” behind it
 We’ll build a small one in class

ICS312 and the ICS Curriculum

ICS 313

High-level
Programming

Language Concepts

ICS 332

Operating
Systems

ICS 331

ICS 312

Hardware
Low-level Programming

A little hardware
Low-level Programming

Compiling

Course Website
 Located at:

 http://courses.ics.hawaii.edu/ics312_spring2026/
 Linked from my personal homepage

 Google for “Henri Casanova”
 Organized as Modules

 All lecture notes as PDF files
 Pointers to useful on-line material
 All assignments
 Announcements
 A link to the Syllabus

 Which we’re going over now in these slides
 Let’s look at the Web site...

http://courses.ics.hawaii.edu/ics312_spring2026/

Textbook(s)
 The main text is a free book:

 PC Assembly Language, Paul A. Carter
 Available for download on the course’s Web site

 The user’s manual for our assembler, NASM, is also
available on the course’s Web site, and other manuals
will be made available throughout the semester

 Other interesting free resource available for download:
 The art of assembly programming, John W. Lockwood
 Assembly Language for x86 Processors, Kip Irvine

 See links from the Syllabus on the Course Web site

Lectures and Office Hours

 Lectures in MSB 114, Tue/Thu
10:30AM-11:45AM

 Lecture notes are posted on the course’s
Web site regularly
 You can read them before or after the lecture, up

to you really
 I am notorious for spacing out on putting the

notes up on the site, so DM me (Discord, E-mail)
 Office hours, TA, etc.

 All information on the Web site

Inverted Lectures

 A few lectures will be “inverted”
 You watch a screencast at your own pace
 The lecture period is for questions and practice

exercises
 I do this for a few topics in the course that are

more “mechanical” or “difficult”
 You must watch the screencast ahead of time!

 E-mails reminders will be sent out
 Scheduling may be imperfect

 Out-of-order and/or overlapping modules
 We might end a few lecture periods early

Screencast Lectures

 A few lectures might be screencast
 This is because I am often required to travel for

research purposes during the semester

 More information later if necessary…

 Web site Content

 In spite of my best efforts it happens that the
course Web site could have small problems
(typos, missing link, etc.)

 Anytime you see anything strange/broken on
the Web site, please let me know right away!
 A one-line e-mail, a DM on Discord, etc.

Grading on 1000 points
 Sample and optional homework assignments for 0

points

 Four exams
 Midterm #1 (220 points)
 Midterm #2 (220 points)
 Midterm #3 (220 points)
 Final exam (270 points)

 Each exam assumes knowledge of the material up to that
point in the semester (i.e., “cumulative”)

 Quizzes (70 points)
 8 10-point quizzes, worst grade is discarded

Homework Assignments
 All homework assignments in this course are either

“sample homework” or “optional homework”, worth
zero points

 Sample homework assignments:
 Posted as regular assignments would be
 Solutions are provided on the assignment’s page
 You cannot turn them in

 Optional homework assignments:
 Posted as regular assignments would be
 You can turn them in and there is a due date
 You will receive feedback
 Solutions are available upon request after the due date

 Why? …

Homework Assignments
 Rationale for 0 points on homework assignments:

 The use of LLMs has rendered homework unfair across
students (blatantly seen last semester)

 Students in this course used to “write a lot of code and
struggle somewhat on assignments”, but this is no
longer a thing

 The whole point of the course has always been to teach
key concepts, not to attempt to make you assembly
programming pros

 Writing code was only a means-to-an-end for learning in
this course anyway

 Graded homework assignments used to be a way to
force students to be prepared for exams

Homework Assignments
 Can students learn the important concepts without going

through the work of doing homework assignments?
 Nobody really knows, some people think “absolutely” and some

think “absolutely not”
 I think it completely depends on the student:

 For some of you, not attempting the homework assignments
or practice problems on your own will lead to catastrophic
results

 Some of you will ace all exams regardless
 The assumption in this “new world” is now that students are

adults and know what they need to do to pass exams 😬

 We will do quite a bit of practice and live-coding in class!
 And you should never hesitate asking “can we live-code this?”

during lecture

Exams
 Exams are taken in class, closed-note
 Pocket calculators, not programmable calculators or

phones, allowed (but not needed)
 Exams are randomly generated and students have

different exams
 So don’t cheat with your neighbors, it’s super obvious

if you do (and it still sometimes happens!)
 Each exam will have mostly exercises that match

exactly homework assignments and practice
problems

 The final exam will include, among others, one
exercise about material from each of the previous
midterm exams

Quizzes
 8 Quizzes in the semester
 Taken on the first lecture day of the week

 Always on a Monday, unless that Monday is a holiday, in
which case it will be on a Wednesday

 Always announced the previous week ON THE
COURSE’S WEB SITE

 Taken at the beginning of the lecture period, in the
first 10 minutes
 You cannot take the quiz if you show up more than 5

minutes late to the lecture
 No make-up quizzes, unless a documented reason
 But the worst quiz grade is discarded

CES Evaluation
 Extra credit given to all students:

 0 points if CES completion rate is < 80%
 5 points if CES completion rate is >= 80%
 10 points if CES completion rate is 90%

 Why?
 I do look at the evaluation every semester and evolve the

course accordingly
 Even if you love the course, it’s important for me to hear what

things didn’t work
 These evaluations have more impact than you may think

and are taken seriously
 Impact for individual faculty, for the whole department, for future

students, etc.

How to not do well in this course?
 Don’t come to class (“the slides are nice”)

 We do a LOT of stuff in class, including live coding, and I give a lot of explanations, examples
 Don’t attempt the homework assignments or practice problems (“I followed along

in class, I am fine”)
 Assembly programming and low-level concepts are often confusing to students
 Putting in some time and struggling a bit on practice problems and assignments is the way to go

 Don’t come to office hours (“I am too busy and the instructor is too scary”)
 After you struggle for a while on something, drop by
 Instructor and TA office hours are an amazing service provided to you

 Cheat
 Cheating is bad for many reasons, including hurting the reputation of ICS graduates!
 If you are caught cheating or enabling cheating:

 zero on the exam
 overall grade lowered by a step (i.e., a “B” becomes a “C”)
 reported to UH’s Office of Judicial Affairs (as required)

 Expect that “what can I do for extra credit to pass this class?” at the end of the
semester will be met with a positive response

 Don’t study for the quizzes

 “It’s only a small fraction of the grade”
 But studying for quizzes is a HUGE help to prepare for exams
 When I don’t do quizzes, exam scores drops!

Show of hands
 To get an idea of your backgrounds here are a few “show-of-

hands” questions
 It’s totally OK if all the answers are “No”, don’t panic

 Have you taken / are taking ICS331?
 Have you taken / are taking ICS313?
 Have you written assembly code before as part of a course?
 Have you written assembly code before not as part of a course?
 If yes to above was it x86, MIPS, other?
 Do you feel comfortable you using the (UNIX/Linux/MacOS) Shell

(not implying you are a Shell wizard)?
 We don’t need much in this course
 Note that this is something that you will have to do way more than you think

beyond graduation
 The “Getting Started” module has some pointers (let’s look at them quickly)

Software/Hardware for ICS312
 You’ll have to use an Intel-based machine that speaks the x86 32-

bit Instruction Set Architecture (IA-32)
 Luckily, we all have that (or can emulate that)
 In fact we have 64-bit machines!
 But in this course I use 32-bit assembly because:

 It has less “stuff” and is better for a first experience
 We learn exactly the same set of things
 Our free textbook is about 32-bit assembly
 If you need to go to 64-bit assembly, the transition is easy

 We’ll use the NASM software package, which is also free

 Let’s look at Homework Assignment #0, which is ungraded but
which you should do as soon as possible in the semester

 If you intend to do any programming at all (which you really should!)

More Questions

 Any questions on the syllabus?

 Any questions on the course in general?

Participation Verification

 As you know, each instructor has to report on
“Student Participation” and certify the class
roster
 If you have not “participated”, you could be dropped

from the course

 IMPORTANT: Do the ungraded “Participation
Verification” Assignment posted on Lamakū

What’s Next?

 There is already an announcement on the course Web site
regarding two short screencasts to watch BEFORE THE
NEXT LECTURE

 These screencasts are about “numbers and computers”
 Many of you will find them easy and can fast forward a lot of the

material (or just look at the lecture notes quickly)
 Make sure you watch them before this coming Thursday as we’ll

do in-class practice exercises to make sure we’re all up to speed
 This is all in the Integers and Computers module…

 Let’s look at it now…
 Don’t forget to get started on Homework #0…
 Let’s do an ungraded quiz!

