
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Background/Review
on Integers and
Bases (lecture)

Numbers and Computers

 Throughout this course we will
 use binary and hexadecimal representations of

numbers
 need to be aware of the ways in which the

computer stores numbers
 So let us go through a simple review before

we start learning how to write assembly code
 Numbers in different bases (these slides)
 Number representation in computers and basic

arithmetic (next set of slides)
 More to come later on arithmetic

Numbers and bases
 We are used to thinking of numbers as written in

decimal, that is, in base 10
	 	 25 	 = 2*101 + 5*100

	 	 136 	 = 1*102 + 3*101 + 6*100

 Each number is decomposed into a sum of terms
 Each term is the product of two factors

 A digit (from 0 to 9)
 The base (10) raised to a power corresponding to the digit’s

position in the number

136 	 = … + 0*104 + 0*103 + 1*102 + 3*101 + 6*100

 = …00000136
 We typically don’t write (an infinite number of) leading 0’s

Numbers and Bases
 Any number can be written in base b, using b digits

 If b = 10 we have “decimal” with 10 digits [0-9]
 If b = 2 we have “binary” with 2 digits [0,1], which are also called bits
 If b = 8 we have “octal” with 8 digits [0-7]
 If b = 16 we have “hexadecimal” with 16 digits [0-9,A,B,C,D,E,F]

 Computers use binary internally
 It’s easy to associate two states to an electrical current

 Low voltage = 0, high voltage = 1
 Associating 16 states to a current is more complicated and error-prone

 However, binary is cumbersome for humans
 The lower the base the longer the numbers!
 It’s really difficult for a human to remember binary

 Therefore we, as humans, like to use higher bases
 Bases that are powers of 2 make for easy translation to binary, and

thus are particularly useful, and in particular hexadecimal

Binary Numbers
 Counting in binary:
	 	 02	 	 010

	 	 12	 	 110

	 	 102	 	 210

	 	 112	 	 310

	 	 1002	 	 410

	 	 1012	 	 510

	 	 1102	 	 610

	 	 1112	 	 710

	 	 10002		 810

	 	 …

 A binary number with
d bits corresponds to
integer values
between 0 and 2d-1

 Example:
 An integer stored in 8

bits has values
between 0 and 255

Converting from Binary to Decimal

 We denote by XXXX2 a binary representation of a
number and by XXXX10 a decimal representation

 Converting from binary to decimal is straightforward:
	 100101102 	 = 1*27 + 1*24+1*22+1*21

	 	 	 	 = 1*128 + 1*16 + 1*4 + 1*2
	 	 	 	 = 15010
 The rightmost bit of a binary number is called the

least significant bit (smallest power of 2)
 The leftmost non-zero bit of a binary number is called

the most significant bit (largest power of 2)
 If the least significant bit is 0, then the

number is even, otherwise it’s odd

Converting from Decimal to Binary

 The algorithm proceeds in a series of integer divisions by 2, and by
recording the remainder of the division
 Integer division a/b: a = b* q + remainder, where all are integers

 Example: converting 3710 into binary
 Divide 37 by 2: 37 = 2*18 + 1
 Divide 18 by 2: 18 = 2*9 + 0
 Divide 9 by 2: 9 = 2*4 + 1
 Divide 4 by 2: 4 = 2*2 + 0
 Divide 2 by 2: 2 = 2*1 + 0
 Divide 1 by 2: 1 = 2*0 + 1
 Result: 1001012

 The least significant bit is computed first
 The most significant bit is computed last
 Note that if we continue dividing, we get extraneous leading 0s

 …000001001012

Converting from Decimal to Binary

 Anybody can use this algorithm of course, and I don’t
really care that you know it

 Online tools can do all conversions for us anyway
 However, as a computer scientist, for small numbers,

we should be able to do quick, intuitive conversions
without using the algorithm

 The idea is: find a power of 2 that’s near the number,
and then add/subtract whatever’s needed

 This is useful when reasoning about algorithms/
numbers

 For instance, if asked to convert 1910 to binary, you
should immediately think: 19 = 16 + 3 = 16 + 2 + 1

 Therefore 1910 = 100112 (1*16 + 0*8 + 0*4 + 1*2 + 1*1)

Binary Arithmetic
 Appending a 0 to the right of a binary number

multiplies it by 2
 101012 = 1610 + 410 + 110 = 2110

 1010102 = 3210 + 810 + 210 = 4210

 Adding two binary numbers is just like adding
decimal numbers: using a carry

With no previous carry With a previous carry
 0
+ 0
= 0

 0
+ 1
= 1

 1
+ 0
= 1

 1
+ 1
= 0
 c

 0
+ 0
= 1

 0
+ 1
= 0
 c

 1
+ 0
= 0
 c

 1
+ 1
= 1
 c

Binary Addition

 c c c c
 1 0 0 1 910
 + 1 1 1 1 + 1510

 = 1 1 0 0 0 = 2410

Counting in Hexadecimal

016=010	 A16=1010	 1416=2010	 1E16=3010

116=110	 B16=1110	 1516=2110	 1F16=3110

216=210	 C16=1210	 1616=2210	 2016=3210

316=310	 D16=1310	 1716=2310	 2116=3310

416=410	 E16=1410	 1816=2410	 2216=3410

516=510	 F16=1510	 1916=2510	 2316=3510

616=610	 1016=1610	 1A16=2610	 2416=3610

716=710	 1116=1710	 1B16=2710	 2516=3710

816=810	 1216=1810	 1C16=2810	 2616=3810

916=910	 1316=1910	 1D16=2910	 2716=3910

Converting from hex to decimal

 This is again straightforward

A203DE16 = 10*165 +
 2*164 +
 3*162 +
 13*161 +
 14*160 = 10,617,82210

Converting from decimal to hex

 Use the same idea as for binary
 Example: convert 123710

 1237 = 77*16 + 5
 77 = 4*16 + 13
 4 = 0*16 + 4
 Result: 4D516

Hexadecimal addition

	 	 D 1 F F	 	 	 5375910	 	
	 +	 A 4 D F	 	 +	 4220710

	 = 1 7 6 D E	 	 =	 9596610

ccc

Why is hexadecimal useful?

 We need to think in binary because
computers operate on binary quantities

 But binary is cumbersome
 However, hexadecimal makes it possible to

represent binary quantities in a compact form
 Conversions back and forth from binary to

hex are straightforward
 Just convert hex digits into 4-bit numbers
 Just convert 4-bit binary numbers into hex digits

Converting from hex to binary
 Consider A43FE216

 We convert each hex digit into a 4-bit binary number:
 A16: 10102

 416: 01002

 316: 00112

 F16: 11112

 E16: 11102

 216: 00102

 We “glue” them all together:
 A43FE216 = 1010010000111111111000102

 Important:
 You must have the leading 0’s for the 4-bit numbers, which is what a

computer would store anyway
 It all works because F16 = 1510, and a 4-bit number has maximum value

of 24-1 = 1510

Converting from binary to hex

 Let’s convert 10010101011112 into hex
 We split it in 4-bit numbers, which we convert

separately
 First we add leading 0’s to have a number of bits

that’s a multiple of 4:
	 	 0001 0010 1010 1111

 Then we convert
 00012 : 116

 00102 : 216

 10102 : A16

 11112 : F16

 And the result: 10010101011112 = 12AF16

Conclusion

 Hopefully, what we just went through was
already solid knowledge for all of you

 If it wasn’t just make sure you practice this
until it is solid
 Job interviews sometimes have a “convert this

from/to hex” question…

 Onward to how computers store numbers…

