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Numbers and Computers

 Throughout this course we will 
 use binary and hexadecimal representations of 

numbers 
 need to be aware of the ways in which the 

computer stores numbers 
 So let us go through a simple review before 

we start learning how to write assembly code 
 Numbers in different bases (these slides) 
 Number representation in computers and basic 

arithmetic (next set of slides) 
 More to come later on arithmetic



Numbers and bases
 We are used to thinking of numbers as written in 

decimal, that is, in base 10 
	 	 25 	 = 2*101 + 5*100 

	 	 136 	 = 1*102 + 3*101 + 6*100 

 Each number is decomposed into a sum of terms 
 Each term is the product of two factors 

 A digit (from 0 to 9) 
 The base (10) raised to a power corresponding to the digit’s 

position in the number 

136 	 = … +  0*104 + 0*103 + 1*102 + 3*101 + 6*100 

          = …00000136   
 We typically don’t write (an infinite number of) leading 0’s



Numbers and Bases
 Any number can be written in base b, using b digits 

 If b = 10 we have “decimal” with 10 digits [0-9] 
 If b = 2 we have “binary” with 2 digits [0,1], which are also called bits 
 If b = 8 we have “octal” with 8 digits [0-7] 
 If b = 16 we have “hexadecimal” with 16 digits [0-9,A,B,C,D,E,F] 

 Computers use binary internally 
 It’s easy to associate two states to an electrical current 

 Low voltage = 0, high voltage = 1 
 Associating 16 states to a current is more complicated and error-prone 

 However, binary is cumbersome for humans 
 The lower the base the longer the numbers! 
 It’s really difficult for a human to remember binary 

 Therefore we, as humans, like to use higher bases 
 Bases that are powers of 2 make for easy translation to binary, and 

thus are particularly useful, and in particular hexadecimal



Binary Numbers
 Counting in binary: 
	 	 02	 	 010 

	 	 12	 	 110 

	 	 102	 	 210 

	 	 112	 	 310 

	 	 1002	 	 410 

	 	 1012	 	 510 

	 	 1102	 	 610 

	 	 1112	 	 710 

	 	 10002		 810 

	 	 … 

 A binary number with 
d bits corresponds to 
integer values 
between 0 and 2d-1 

 Example: 
 An integer stored in 8 

bits has values 
between 0 and 255



Converting from Binary to Decimal

 We denote by XXXX2 a binary representation of a 
number and by XXXX10 a decimal representation 

 Converting from binary to decimal is straightforward: 
	 100101102 	 = 1*27 + 1*24+1*22+1*21 

	 	 	 	 = 1*128 + 1*16 + 1*4 + 1*2 
	 	 	 	 = 15010 
 The rightmost bit of a binary number is called the 

least significant bit (smallest power of 2) 
 The leftmost non-zero bit of a binary number is called 

the most significant bit (largest power of 2) 
 If the least significant bit is 0, then the 

number is even, otherwise it’s odd



Converting from Decimal to Binary

 The algorithm proceeds in a series of integer divisions by 2, and by 
recording the remainder of the division 
 Integer division a/b:  a = b* q + remainder, where all are integers 

 Example: converting 3710 into binary 
 Divide 37 by 2:  37  = 2*18 + 1 
 Divide 18 by 2:  18  = 2*9   + 0 
 Divide 9 by 2:    9    = 2*4   + 1 
 Divide 4 by 2:    4    = 2*2   + 0 
 Divide 2 by 2:    2    = 2*1   + 0 
 Divide 1 by 2:    1    = 2*0   + 1 
 Result: 1001012 

 The least significant bit is computed first 
 The most significant bit is computed last 
 Note that if we continue dividing, we get extraneous leading 0s 

 …000001001012



Converting from Decimal to Binary

 Anybody can use this algorithm of course, and I don’t 
really care that you know it 

 Online tools can do all conversions for us anyway 
 However, as a computer scientist, for small numbers, 

we should be able to do quick, intuitive conversions 
without using the algorithm 

 The idea is: find a power of 2 that’s near the number, 
and then add/subtract whatever’s needed 

 This is useful when reasoning about algorithms/
numbers 

 For instance, if asked to convert 1910 to binary, you 
should immediately think: 19 = 16 + 3 = 16 + 2 + 1 

 Therefore 1910 =  100112 (1*16 + 0*8 + 0*4 + 1*2 + 1*1)



Binary Arithmetic
 Appending a 0 to the right of a binary number 

multiplies it by 2 
 101012   = 1610 + 410 + 110   = 2110 

 1010102 = 3210 + 810 + 210   = 4210 

 Adding two binary numbers is just like adding 
decimal numbers: using a carry

With no previous carry With a previous carry
   0 
+ 0 
= 0

   0 
+ 1 
= 1

   1 
+ 0 
= 1

   1 
+ 1 
= 0 
   c

   0 
+ 0 
= 1

   0 
+ 1 
= 0 
   c

   1 
+ 0 
= 0 
   c

   1 
+ 1 
= 1 
   c



Binary Addition

           c c c c
             1 0 0 1         910
       +     1 1 1 1           + 1510

        =   1 1 0 0 0           = 2410

   



Counting in Hexadecimal

016=010	 A16=1010	  1416=2010	    1E16=3010 

116=110	 B16=1110	  1516=2110	    1F16=3110 

216=210	 C16=1210	  1616=2210	    2016=3210 

316=310	 D16=1310	  1716=2310	    2116=3310 

416=410	 E16=1410	  1816=2410	    2216=3410 

516=510	 F16=1510	  1916=2510	    2316=3510 

616=610	 1016=1610	  1A16=2610	    2416=3610 

716=710	 1116=1710	  1B16=2710	    2516=3710 

816=810	 1216=1810	  1C16=2810	    2616=3810 

916=910	 1316=1910	  1D16=2910	    2716=3910



Converting from hex to decimal

 This is again straightforward 

A203DE16 = 10*165 +  
                     2*164 +  
                     3*162 +  
                    13*161 +  
                    14*160  = 10,617,82210



Converting from decimal to hex

 Use the same idea as for binary 
 Example: convert 123710 

 1237  = 77*16 + 5 
 77      = 4*16   + 13 
 4        = 0*16   +  4 
 Result: 4D516



Hexadecimal addition

	 	     D 1 F F	 	 	 5375910	 	  
	  +	    A 4 D F	 	      +	 4220710 

	  =  1 7 6 D E	 	      =	 9596610

ccc



Why is hexadecimal useful?

 We need to think in binary because 
computers operate on binary quantities 

 But binary is cumbersome 
 However, hexadecimal makes it possible to 

represent binary quantities in a compact form 
 Conversions back and forth from binary to 

hex are straightforward 
 Just convert hex digits into 4-bit numbers 
 Just convert 4-bit binary numbers into hex digits



Converting from hex to binary
 Consider A43FE216 

 We convert each hex digit into a 4-bit binary number: 
 A16: 10102 

 416: 01002 

 316: 00112 

 F16: 11112 

 E16: 11102 

 216: 00102 

 We “glue” them all together: 
 A43FE216 = 1010010000111111111000102 

 Important: 
 You must have the leading 0’s for the 4-bit numbers, which is what a 

computer would store anyway 
 It all works because F16 = 1510, and a 4-bit number has maximum value 

of 24-1 = 1510



Converting from binary to hex

 Let’s convert 10010101011112   into hex 
 We split it in 4-bit numbers, which we convert 

separately 
 First we add leading 0’s to have a number of bits 

that’s a multiple of 4: 
	 	 0001 0010 1010 1111 

 Then we convert 
 00012 :  116   

 00102 :  216 

 10102 :  A16 

 11112 :  F16 

 And the result:  10010101011112 = 12AF16



Conclusion

 Hopefully, what we just went through was 
already solid knowledge for all of you 

 If it wasn’t just make sure you practice this 
until it is solid 
 Job interviews sometimes have a “convert this 

from/to hex” question… 

 Onward to how computers store numbers…


