



Background/Review on Integers and Bases (lecture)

**ICS312
Machine-Level and
Systems Programming**

Numbers and Computers

- Throughout this course we will
 - use **binary** and **hexadecimal** representations of numbers
 - need to be aware of the ways in which the computer stores numbers
- So let us go through a simple review before we start learning how to write assembly code
 - Numbers in different bases (these slides)
 - Number representation in computers and basic arithmetic (next set of slides)
 - More to come later on arithmetic

Numbers and bases

- We are used to thinking of numbers as written in decimal, that is, in base 10

$$25 = 2*10^1 + 5*10^0$$

$$136 = 1*10^2 + 3*10^1 + 6*10^0$$

- Each number is decomposed into a sum of terms
- Each term is the product of two factors
 - A digit (from 0 to 9)
 - The base (10) raised to a power corresponding to the digit's position in the number

$$\begin{aligned} 136 &= \dots + 0*10^4 + 0*10^3 + 1*10^2 + 3*10^1 + 6*10^0 \\ &= \dots 00000136 \end{aligned}$$

- We typically don't write (an infinite number of) leading 0's

Numbers and Bases

- Any number can be written in base b , using b digits
 - If $b = 10$ we have “**decimal**” with 10 digits [0-9]
 - If $b = 2$ we have “**binary**” with 2 digits [0,1], which are also called **bits**
 - If $b = 8$ we have “**octal**” with 8 digits [0-7]
 - If $b = 16$ we have “**hexadecimal**” with 16 digits [0-9,A,B,C,D,E,F]
- Computers use binary internally
 - It's easy to associate two states to an electrical current
 - Low voltage = 0, high voltage = 1
 - Associating 16 states to a current is more complicated and error-prone
- However, binary is cumbersome for humans
 - The lower the base the longer the numbers!
 - It's really difficult for a human to remember binary
- Therefore we, as humans, like to use higher bases
- **Bases that are powers of 2 make for easy translation to binary**, and thus are particularly useful, and in particular **hexadecimal**

Binary Numbers

- Counting in binary:

$$0_2 \qquad \qquad 0_{10}$$

$$1_2 \qquad \qquad 1_{10}$$

$$10_2 \qquad \qquad 2_{10}$$

$$11_2 \qquad \qquad 3_{10}$$

$$100_2 \qquad \qquad 4_{10}$$

$$101_2 \qquad \qquad 5_{10}$$

$$110_2 \qquad \qquad 6_{10}$$

$$111_2 \qquad \qquad 7_{10}$$

$$1000_2 \qquad \qquad 8_{10}$$

...

- A binary number with d bits corresponds to integer values between 0 and 2^d-1

- Example:

- An integer stored in 8 bits has values between 0 and 255

Converting from Binary to Decimal

- We denote by $XXXX_2$ a binary representation of a number and by $XXXX_{10}$ a decimal representation
- Converting from binary to decimal is straightforward:
$$\begin{aligned}10010110_2 &= 1*2^7 + 1*2^4+1*2^2+1*2^1 \\&= 1*128 + 1*16 + 1*4 + 1*2 \\&= 150_{10}\end{aligned}$$
- The rightmost bit of a binary number is called the **least significant bit** (smallest power of 2)
- The leftmost non-zero bit of a binary number is called the **most significant bit** (largest power of 2)
- **If the least significant bit is 0, then the number is even, otherwise it's odd**

Converting from Decimal to Binary

- The algorithm proceeds in a series of **integer divisions** by 2, and by recording the remainder of the division
 - Integer division a/b : $a = b * q + \text{remainder}$, where all are integers
- Example: converting 37_{10} into binary
 - Divide 37 by 2: $37 = 2 * 18 + 1$
 - Divide 18 by 2: $18 = 2 * 9 + 0$
 - Divide 9 by 2: $9 = 2 * 4 + 1$
 - Divide 4 by 2: $4 = 2 * 2 + 0$
 - Divide 2 by 2: $2 = 2 * 1 + 0$
 - Divide 1 by 2: $1 = 2 * 0 + 1$
 - Result: 100101_2
- The least significant bit is computed first
- The most significant bit is computed last
- Note that if we continue dividing, we get extraneous leading 0s
 - $\dots 00000100101_2$

Converting from Decimal to Binary

- Anybody can use this algorithm of course, and I don't really care that you know it
- Online tools can do all conversions for us anyway
- However, as a computer scientist, for small numbers, we should be able to do quick, intuitive conversions without using the algorithm
- The idea is: find a power of 2 that's near the number, and then add/subtract whatever's needed
- This is useful when reasoning about algorithms/numbers
- For instance, if asked to convert 19_{10} to binary, you should immediately think: $19 = 16 + 3 = 16 + 2 + 1$
- Therefore $19_{10} = 10011_2 (1*16 + 0*8 + 0*4 + 1*2 + 1*1)$

Binary Arithmetic

- Appending a 0 to the right of a binary number multiplies it by 2

- $\square 10101_2 = 16_{10} + 4_{10} + 1_{10} = 21_{10}$
- $\square 101010_2 = 32_{10} + 8_{10} + 2_{10} = 42_{10}$

- Adding two binary numbers is just like adding decimal numbers: using a carry

With no previous carry				With a previous carry			
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
= 0	= 1	= 1	= 0	= 1	= 0	= 0	= 1
			C		C	C	C

Binary Addition

$$\begin{array}{rcccc} & \text{c} & \text{c} & \text{c} & \text{c} \\ & 1 & 0 & 0 & 1 & 9_{10} \\ + & 1 & 1 & 1 & 1 & + 15_{10} \\ = & 1 & 1 & 0 & 0 & 0 = 24_{10} \end{array}$$

Counting in Hexadecimal

$$0_{16} = 0_{10}$$

$$A_{16} = 10_{10}$$

$$14_{16} = 20_{10}$$

$$1E_{16} = 30_{10}$$

$$1_{16} = 1_{10}$$

$$B_{16} = 11_{10}$$

$$15_{16} = 21_{10}$$

$$1F_{16} = 31_{10}$$

$$2_{16} = 2_{10}$$

$$C_{16} = 12_{10}$$

$$16_{16} = 22_{10}$$

$$20_{16} = 32_{10}$$

$$3_{16} = 3_{10}$$

$$D_{16} = 13_{10}$$

$$17_{16} = 23_{10}$$

$$21_{16} = 33_{10}$$

$$4_{16} = 4_{10}$$

$$E_{16} = 14_{10}$$

$$18_{16} = 24_{10}$$

$$22_{16} = 34_{10}$$

$$5_{16} = 5_{10}$$

$$F_{16} = 15_{10}$$

$$19_{16} = 25_{10}$$

$$23_{16} = 35_{10}$$

$$6_{16} = 6_{10}$$

$$10_{16} = 16_{10}$$

$$1A_{16} = 26_{10}$$

$$24_{16} = 36_{10}$$

$$7_{16} = 7_{10}$$

$$11_{16} = 17_{10}$$

$$1B_{16} = 27_{10}$$

$$25_{16} = 37_{10}$$

$$8_{16} = 8_{10}$$

$$12_{16} = 18_{10}$$

$$1C_{16} = 28_{10}$$

$$26_{16} = 38_{10}$$

$$9_{16} = 9_{10}$$

$$13_{16} = 19_{10}$$

$$1D_{16} = 29_{10}$$

$$27_{16} = 39_{10}$$

Converting from hex to decimal

- This is again straightforward

$$\begin{aligned} A203DE_{16} &= 10*16^5 + \\ &2*16^4 + \\ &3*16^2 + \\ &13*16^1 + \\ &14*16^0 = 10,617,822_{10} \end{aligned}$$

Converting from decimal to hex

- Use the same idea as for binary
- Example: convert 1237_{10}
 - $1237 = 77 * 16 + 5$
 - $77 = 4 * 16 + 13$
 - $4 = 0 * 16 + 4$
 - Result: $4D5_{16}$

Hexadecimal addition

$$\begin{array}{r} \text{c} \quad \text{c} \quad \text{c} \\ \text{D}1\text{FF} \quad \quad \quad 53759_{10} \\ + \text{A}4\text{DF} \quad \quad \quad + 42207_{10} \\ = \text{176DE} \quad \quad \quad = 95966_{10} \end{array}$$

Why is hexadecimal useful?

- We need to think in binary because computers operate on binary quantities
- But binary is cumbersome
- However, hexadecimal makes it possible to represent binary quantities in a compact form
- Conversions back and forth from binary to hex are straightforward
 - Just convert hex digits into 4-bit numbers
 - Just convert 4-bit binary numbers into hex digits

Converting from hex to binary

- Consider $A43FE2_{16}$
- We convert each hex digit into a 4-bit binary number:
 - A_{16} : 1010_2
 - 4_{16} : 0100_2
 - 3_{16} : 0011_2
 - F_{16} : 1111_2
 - E_{16} : 1110_2
 - 2_{16} : 0010_2
- We “glue” them all together:
 - $A43FE2_{16} = 10100100001111111100010_2$
- Important:
 - You must have the leading 0's for the 4-bit numbers, which is what a computer would store anyway
 - It all works because $F_{16} = 15_{10}$, and a 4-bit number has maximum value of $2^4-1 = 15_{10}$

Converting from binary to hex

- Let's convert 1001010101111_2 into hex
- We split it in 4-bit numbers, which we convert separately
- First **we add leading 0's** to have a number of bits that's a multiple of 4:

0001 0010 1010 1111

- Then we convert

- 0001_2 : 1_{16}
 - 0010_2 : 2_{16}
 - 1010_2 : A_{16}
 - 1111_2 : F_{16}

- And the result: $1001010101111_2 = 12AF_{16}$

Conclusion

- Hopefully, what we just went through was already solid knowledge for all of you
- If it wasn't just make sure you practice this until it is solid
 - Job interviews sometimes have a “convert this from/to hex” question...
- Onward to how computers store numbers...