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Integer Representation
 A computer needs to store integers in memory/registers 
 Stored using different numbers of bytes (1 byte = 8 bits): 

 1-byte: “byte” 
 2-byte: “half word” (or “word”) 
 4-byte: “word” (or “double word”) 
 8-byte: “double word” (or “paragraph”, or “quadword”) 
 Different computers have used different word sizes, so it’s always 

a bit confusing to just talk about a “word” without any context 
 Regardless of the number of bytes, integers are stored in 

binary, so we need a method to encode integers in binary 
 It’s more subtle than you think 

 But before we get there, let’s talk about mathematics vs. 
computer arithmetic….



Math vs. Computer Arithmetic
 In math, we add two numbers and the result is whatever it is 
 In computer arithmetic, we specify the size of the numbers 

on which we perform the operation, e.g., a 16-bit addition 
 And the result must then be 16-bit: if we have a leftover 

carry that would make the result 17-bit, the carry is dropped!

   F111 
+  6111 
  ————— 
  15222

   F111 
+  6111 
  ————— 
   5222

Computer ArithmeticMath



Math vs. Computer Arithmetic

   F111 
+  6111 
  ————— 
  15222

   F111 
+  6111 
  ————— 
   5222

Computer ArithmeticMath

 Even weirder: sometimes the above will be 
considered numerically correct, and sometimes it 
will be considered numerically incorrect 

 Anybody knows how we call it when “dropping the 
carry” makes the numerical result incorrect?



Unsigned and Signed Numbers
 From now on, based on the previous slides, we’ll 

always specify the number of bytes for a value (and 
thus for the operation being performed) 
 We’ll never say “we add 12 and 4” 
 We’ll say “we add 2-byte value 12 to 2-byte value 4” 

So how do we encode integers? 

 Integers come in two flavors: 
 Unsigned: ONLY positive values from 0 to 2b-1 
 Signed: positive AND negative values, with about the 

same number of negative values as the number of 
positive values



Unsigned / Signed Integers
 In some languages you can declare integers as signed or unsigned 

depending on what you need 
 If you know a variable will only be positive, then you have a higher 

maximum value when using unsigned 
 Signedness is important when working at the bit level (see much 

later in the semester) 
 The compiler/IDE can help a little bit by throwing a warning when 

you assign a negative value to an unsigned number

// C/C++ 
int x = -12;          // signed 
signed int y = 40;    // signed 
unsigned int z = 23;  // unsigned

// Rust 
let x: i16 = -12;   // signed 16-bit 
let y: u32 = 2_031; // unsigned 32-bit  
                    // (note the convenient _ that 
                    // acts as a comma) 



Unsigned / Signed Integers

 In Java, Python, JavaScript all integers are signed (there is no 
unsigned data type), which has raised A LOT of complaints 

 But these languages have APIs to perform unsigned arithmetic

// C/C++ 
int x = -12;          // signed 
signed int y = 40;    // signed 
unsigned int z = 40;  // unsigned

// Java 
Integer.divideUnsigned(-100, -12) // divide as if numbers were unsigned 

// Python 
ctypes.c_uint32(-10).value        // interpret -10 as unsigned (32-bit) 

// JavaScript 
x = -10 >>> 0                     // interpret -10 as unsigned  

// Rust 
let x: i16 = -12; // signed 
let y: u32 = 2_031; // unsigned

 The code above is likely confusing right now because we don’t know 
yet how we encode signed/unsigned integers in binary… stay tuned 
(we’ll come back to these three examples!)



Encoding Unsigned Integers
 Encoding unsigned integers is easy: just use the bits 

of the integer’s binary representation 
 Example: 1-byte unsigned number 3310 is encoded as 

001000012 (2116) 

 That’s all! 

 Just note that we show exactly 8 bits, which may include 
the leading zeros 
 In mathematics, we typically don’t show leading zeros 
 But now we’re in the world of compute arithmetic 

 So, if I say, what’s zero in binary as an 8-bit number, I 
should write 00000000 not just 0



Encoding Signed Integers
 Encoding signed integer raises a question: how to store 

the sign? 
 One approach is called sign-magnitude: reserve the leftmost 

bit to represent the sign 
	 	 	 00100101 denotes  + 01001012 

	 	 	 10100101 denotes  - 01001012 

 It’s very easy to negate a number: just flip the leftmost bit 
 Unfortunately, sign-magnitude complicates the logic of the 

CPU 
 There are two representations for zero: 10000000 and 00000000 
 Some operations are thus more complicated to implement in 

hardware 
 See a computer architecture / engineering course



One’s complement
 Another idea to encode a negative number is to take the 

complement (i.e., flip all bits) of its positive counterpart 
 Example: I want to encode integer -87 

 8710 = 010101112 

 -8710 = 10101000 
 Simple, but still two representations for zero: 00000000 and 

11111111 
 It turns out that computer logic to deal with 1’s complement 

arithmetic is complicated 
 Important: it’s easy to compute the 1’s complement of a 

number represented in hexadecimal 
 let’s consider: 5716 

 subtract each hex digit from F:   F-5=A, F-7=8 
 1’s complement of 5716 is A816



Two’s complement

 While sign-magnitude and 1’s complement 
were used in older computers, nowadays all 
computers use 2’s complement to encode 
signed integers 

Computing the 2’s complement representation 
of a negative number is done in two steps 
(“flip and add one”) 
Compute the 1’s complement of the positive 

version of the number 
Add 1 to the result 
The gives the representation of the negative 

number



Two’s complement: example

 Let’s encode -8710 
 First, start with the positive version of the number: 8710 =  

5716 

 “Flip” the bits or hex digits to compute the one’s 
complement: A816 

 Add one: A916 

 Let’s invert again to check we get back to the positive 
number 

 We start with: A916 

 Flip the digits (one’s complement): 5616 

 Add one: 5716, which represents 8710 

So, when I write, say in C++  char x = -87;  
somewhere in RAM the value A9 (or 10101001) is stored



Two things to note
 Thing #1: There is a single representation for zero! 

 Assuming 8-bit signed numbers, zero is 0000 0000 
 Let’s compute -0: 

 Flip: 1111 1111 
 Add one: 1 0000 0000 (9 bits!!) 

 BUT, when adding two X-bit quantities in a computer one always 
obtains another X-bit quantity 

 Key difference between arithmetic and computer arithmetic 
 The computer DROPS the extra carry because it doesn’t “fit” 
 Final result: 0000 0000  
 And so, there is a single representation for 0 (unlike for 1’s complement) 

 Thing #2: -1’s representation is all bits set to 1 
 +1 is represented as 0000 0001 
 Flip: 1111 1110 
 Add one: 1111 1111



How to tell the sign of a signed integer?

 All programming languages support signed integers (as far as I 
know) 

 A very common need is to determine whether a signed value is 
positive or negative 

 Whenever I write code like: if (x > 0) {…}   then the 
compiler has to generate code that does the test 

 As humans debugging (assembly) code, we’ll look at bytes in 
registers or RAM and will need to tell whether some value is 
positive or negative 

 The most significant bit (the leftmost bit) indicates the sign of 
the number (0: positive, 1: negative) 

 In hex, if the left-most “digit” is 8, 9, A, B, C, D, E, or F, then the number 
is negative, otherwise it is positive 

 Those are the hex digit of the form 1xxx in binary 

 Let’s look at ALL 3-bit unsigned and signed numbers….



All 3-bit unsigned/signed numbers

UNSIGNED

Decimal Representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

SIGNED

Decimal Representation

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111



All 3-bit unsigned/signed numbers

UNSIGNED

Decimal Representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

SIGNED

Decimal Representation

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Smallest number: 000 
Largest number: 111

Smallest >= 0 number: 000 
Largest >= 0 number: 011

Smallest < 0 number: 100 
Largest < 0 number: 111



Ranges of Numbers
 For 1-byte values 

 Unsigned 
 Smallest value: 0016  or   0000 00002   (010) 
 Largest value: FF16  or  1111 11112       (25510) 

 Signed 
 Smallest value: 8016  or  1000 00002    (-12810) 
 Largest value: 7F16  or  0111 11112        (+12710) 

 For 2-byte values 
 Unsigned 

 Smallest value: 000016 (010) 
 Largest value: FFFF16 (65,53510) 

 Signed 
 Smallest value: 800016 (-32,76810) 
 Largest value: 7FFF16 (+32,76710)  

 etc.



1-byte Ranges

0d 255d

0000 0000b 
00h

1111 1111b 
FFh

unsigned 

-128d +127d

1000 0000b 
80h

0111 1111b 
7Fh

signed 
0d

0000 0000b 
00h

(makes sense it’s odd)(makes sense it’s even)



The magic of 2’s complement      
(for addition)
 Say I have two 1-byte values, A3 and 17, and I add them together: 
	 	 A316 + 1716 = BA16   (“blind” hex addition) 
 If my interpretation of the numbers is unsigned: 

 A316 = 16310 
 1716 = 2310 
 BA16 = 18610 
 and indeed, 16310 + 2310 = 18610 

 If my interpretation of the numbers is signed: 
 A316 = -9310 
 1716 = 2310 
 BA16 = -7010 
 and indeed, -9310 + 2310 = -7010 

 So, as long as I stick to my interpretation, the binary addition does 
the right thing assuming 2’s complement representation!!! 

 Same thing for the subtraction 



Dropping the Carry?
 Remember earlier when I said that dropping the carry can 

be numerically correct?  
 That should have felt wrong, because we are dropping 

information 
 We’ll come back to this but just consider 1-byte signed 

hex addition: FF + FF 
 In math, we’d get: 1FE 
 In computer arithmetic we get: FE (carry is dropped) 
 So in computer arithmetic: FF + FF = FE 
 That makes sense: FF is -1d, and FE is -2d 

 And yes, -1 + -1 = -2 :) 
 So dropping the carry is numerically correct!!! 
 Stay tuned for more on this later….



The Task of the (Assembly) Programmer
The computer simply stores data as bits based on what a program does 
 It has no idea what the data means and doesn’t know whether numbers 

are signed or unsigned 
We, as programmers, have precise interpretations of what bits mean 

 “I store a 4-byte signed integer”, “I store a 1-byte integer which is an ASCII 
code” 

When using a high-level language we can say what data means 
 “I declare x as an int and y as an unsigned char” 

When writing assembly code, we don’t have any data types 
But we have many instructions that operate on all types of data  
 It’s our responsibility to use the instructions that correspond to the data  
We just saw that addition is the same for both signed and unsigned numbers 

 And therefore there is a single “addition instruction”: easy 
But it’s not the case for all operations 

 We’ll see “signed multiplication” and “unsigned multiplication” instructions



Signed does not mean negative!

 It means “a number that is encoded in binary 
using 2’s complement so that it can take either 
positive or negative values” 

 The encoding of a positive value is the “normal” 
one (just the binary representation but only if it 
starts with a 0 bit - otherwise it’s out of range) 

 The encoding of a strictly negative value is the 
“flip-and-add-one” transformation of the strictly 
positive counterpart value (and the 
representation will thus NECESSARILY starts 
with a 1 bit)



Back to the PL examples
// C/C++ 
int x = -12;          // signed 
signed int y = 40;    // signed 
unsigned int z = 40;  // unsigned

 x is encoded as  FF FF FF F4 in hex 
 y is encoded as 00 00 00 28 in hex 
 z is encoded as 00 00 00 28 in hex

// Rust 
let x: i16 = -12; // signed 
let y: u32 = 2_031; // unsigned

 x is encoded as  FF F4 in hex 
 y is encoded as 00 00 04 07 in hex 



Back to the PL examples

// Java 
Integer.divideUnsigned(-100, -12) // divide as if numbers were unsigned 

 -100 is a signed number encoded as FF FF FF 9B in hex 
 -12 is a signed numbers encoded as FF FF FF F4 in hex 
 The above will: 

 Interpret FF FF FF 9B as an unsigned number (which is 
4,294,967,19610)  

 Interpret FF FF FF F4 as an unsigned number (which is 
4,294,967,28410)  

 Perform the division of 4,294,967,19610 by 4,294,967,28410 

 The quotient will be zero!



Back to the PL examples
// Python 
ctypes.c_uint32(-10).value        // interpret -10 as unsigned (32-bit) 

 -10 is a signed number encoded as FF FF FF 
F6 in hex 

 The above will: 
 Interpret FF FF FF F6 as an unsigned number 

(which is 4,294,967,28610)  
 Return the (positive) integer 4,294,967,286



Back to the PL examples
// JavaScript 
x = -10 >>> 0                     // interpret -10 as unsigned  

 -10 is a signed number encoded as FF FF FF F6 in hex 
 The above will: 

 Interpret FF FF FF F6 as an unsigned number (which is 
4,294,967,28610)  

 Perform a logical right shift by 0 bits, which has the side 
effect of setting x to 4,294,967,28610 

 This is very odd (but commonly done in JavaScript to use 
unsigned numbers)  

 We’ll understand it fully when we cover bitwise operations 
and shifts



Conclusion

 We’ll come back to numbers and arithmetic 
when we use arithmetic assembly instructions 

 But for now you must make sure you have 
solid mastery of the material in this module 

 We’ll do some of the posted practice 
problems  in-class 

 We will then have a quiz on this module


