Representation of

Integers (lecture)

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" JE
Integer Representation

m A computer needs to store integers in memory/registers

® Stored using different numbers of bytes (1 byte = 8 bits):
1-byte: “byte”
2-byte: “half word” (or “word”)
4-byte: “word” (or “double word”)
8-byte: “double word” (or “paragraph”, or “quadword”)

Different computers have used different word sizes, so it's always
a bit confusing to just talk about a “word” without any context

m Regardless of the number of bytes, integers are stored in
binary, so we need a method to encode integers in binary

It's more subtle than you think

m But before we get there, let’s talk about mathematics vs.
computer arithmetic....

" J—
Math vs. Computer Arithmetic

® |n math, we add two numbers and the result is whatever it is

® |n computer arithmetic, we specify the size of the numbers
on which we perform the operation, e.g., a 16-bit addition

® And the result must then be 16-bit: if we have a leftover
carry that would make the result 17-bit, the carry is dropped!

Math Computer Arithmetic

" J—
Math vs. Computer Arithmetic
Math Computer Arithmetic

® Fven weirder: sometimes the above will be
considered numerically correct, and sometimes it
will be considered numerically incorrect

® Anybody knows how we call it when “dropping the
carry” makes the numerical result incorrect?

"
Unsigned and Sighned Numbers

® From now on, based on the previous slides, we’'ll
always specify the number of bytes for a value (and
thus for the operation being performed)

We'll never say "we add 12 and 4~
We'll say “we add 2-byte value 12 to 2-byte value 4

b

® So how do we encode integers?

® [ntegers come in two flavors:
Unsigned: ONLY positive values from 0 to 2b-1

Signed: positive AND negative values, with about the
same number of negative values as the number of
positive values

"
Unsigned / Signed Integers

® |n some languages you can declare integers as signed or unsigned
depending on what you need
If you know a variable will only be positive, then you have a higher
maximum value when using unsigned
Signedness is important when working at the bit level (see much
later in the semester)

The compiler/IDE can help a little bit by throwing a warning when
you assign a negative value to an unsigned number

// C/C++

int x = -12; // signed
signed int y = 40; // signed
unsigned int z = 23; // unsigned

// Rust

let x: ilé6 -12; // signed 16-bit

let y: u32 2 031; // unsigned 32-bit
// (note the convenient
// acts as a comma)

" J
Unsigned / Signed Integers

// C/C++ //
: — _1o. : Rust
int x = -12; // signed let x: il6 = -12; // signed

signed int y ; // signed . i :
unsigned int ; // unsigned let y: u32 2 031; // unsigned

® |n Java, Python, JavaScript all integers are signed (there is no
unsigned data type), which has raised A LOT of complaints

m But these languages have APIs to perform unsigned arithmetic

// Java
Integer.divideUnsigned (-100, -12) // divide as if numbers were unsigned

// Python

ctypes.c uint32(-10) .value // interpret -10 as unsigned (32-bit)

// JavaScript
x = -10 >>> 0 // interpret -10 as unsigned

®m The code above is likely confusing right now because we don’t know
yet how we encode signed/unsigned integers in binary... stay tuned
(we’ll come back to these three examples!)

"
Encoding Unsigned Integers

® Encoding unsigned integers is easy: just use the bits
of the integer’s binary representation

m Example: 1-byte unsigned number 3319 is encoded as
001000012 (2146)

® That’s all!

m Just note that we show exactly 8 bits, which may include
the leading zeros

In mathematics, we typically don’t show leading zeros
But now we’'re in the world of compute arithmetic

m S0, if | say, what's zero in binary as an 8-bit number, |
should write 00000000 not just 0

" J
Encoding Signed Integers

® Encoding sighed integer raises a question: how to store
the sign?

® One approach is called sign-magnitude: reserve the leftmost
bit to represent the sign

00100101 denotes + 0100101,
10100101 denotes - 0100101,

m |t's very easy to negate a number: just flip the leftmost bit

m Unfortunately, sign-magnitude complicates the logic of the
CPU

There are two representations for zero: 10000000 and 00000000

Some operations are thus more complicated to implement in
hardware

See a computer architecture / engineering course

" J——
One’s complement

® Another idea to encode a negative number is to take the
complement (i.e., flip all bits) of its positive counterpart

®m Example: | want to encode integer -87
87, = 01010111,

-87,, = 10101000

m Simple, but still two representations for zero: 00000000 and
11111111

® |t turns out that computer logic to deal with 1’'s complement
arithmetic is complicated

® [mportant: it's easy to compute the 1’'s complement of a
number represented in hexadecimal

let’s consider: 57 4

subtract each hex digit from F: F-5=A, F-7=8
1’s complement of 57,4 is A8,4

" J——
Two’s complement

® \While sign-magnitude and 1's complement
were used in older computers, nowadays all
computers use 2's complement to encode
signed integers

m Computing the 2’s complement representation
of a negative number is done in two steps
(“flip and add one”)

Compute the 1's complement of the positive
version of the number

Add 1 to the result

The gives the representation of the negative
number

" J—_—
Two’s complement: example

m Let's encode -87,,

First, start with the positive version of the number: 87, =
97 15

“Flip” the bits or hex digits to compute the one’s
complement: A8,4

Add one: A9,

m | et’s invert again to check we get back to the positive
number

We start with: A9,
Flip the digits (one’s complement): 564
Add one: 57,5, which represents 8710

mSo, when | write, say in C++ char x = -87;
somewhere in RAM the value A9 (or 10101001) is stored

"
Two things to note

®m Thing #1: There is a single representation for zero!
Assuming 8-bit signed numbers, zero is 0000 0000

Let's compute -0:
= Flip: 1111 1111
= Add one: 1 0000 0000 (9 bits!!)
BUT, when adding two X-bit quantities in a computer one always

obtains another X-bit quantity
m Key difference between arithmetic and computer arithmetic

The computer DROPS the extra carry because it doesn’t “fit”

Final result: 0000 0000
And so, there is a single representation for O (unlike for 1’'s complement)

®m Thing #2: -1’s representation is all bits set to 1
+1 is represented as 0000 0001
Flip: 1111 1110
Add one: 1111 1111

" JE
How to tell the sign of a signed integer?

O ﬁ\ll prc))gramming languages support signed integers (as far as |
now

m A very common need is to determine whether a signed value is
positive or negative

Whenever | write code like: 1f (x > 0) {..} then the
compiler has to generate code that does the test

As humans debugging (assembly) code, we’ll look at bytes in

registers or RAM and will need to tell whether some value is
positive or negative

® The most significant bit (the leftmost bit) indicates the sign of
the number%o: positive, 1: negative)

In hex, if the left-most “digit” is 8, 9, A, B, C, D, E, or F, then the number
is negative, otherwise it is positive

Those are the hex digit of the form 1xxx in binary

m | et's look at ALL 3-bit unsigned and signed numbers....

All 3-bit unsigned/signed numbers

UNSIGNED SIGNED
Decimal Representation Decimal Representation
0 000 0 000
1 001 1 001
2 010 2 010
3 011 3 011
4 100 -4 100
5 101 -3 101
6 110 -2 110
I 111 -1 111

All 3-bit unsigned/signed numbers

UNSIGNED SIGNED
Decimal Representation Decimal Representation
0 000 0 000
1 001 001
Smallest >= 0 number: 000
2 010 Largest >= 0 number: 011 010
Smallest number: 000
Largest number: 111 011 3 011
“+ 100 -4 100
5 101 101
Smallest < 0 number: 100
6 110 Largest < 0 number: 111 110
4 111 -1 111

"
Ranges of Numbers

m For 1-byte values
Unsigned
= Smallest value: 00,5 or 0000 00002 (010)

= Largest value: FF; or 1111 11112 (25510)
Signed
= Smallest value: 80,4 or 1000 00002 (-12810)
= Largest value: 7F,5 or 0111 11112 (+12710)
® For 2-byte values

Unsigned
= Smallest value: 000044 (010)

= Largest value: FFFF 4 (65,53510)
Signed

= Smallest value: 80004 (-32,76810)

= Largest value: 7FFF 5 (+32,76710)

m etc.

"
1-byte Ranges

0000 0000b 1111 1111b
00h FFh
——m———
0d unsigned 255d
1000 0000b 0000 0000b 0111 1111b
80h O0h 7Fh
——m——m—— >
-128d 0d +127d

(makes sense it's even) Signed (makes sense it's odd)

"
The magic of 2’s complement
(for addition)

® Say | have two 1-byte values, A3 and 17, and | add them together:
A316 + 1716 = BA1e (“blind” hex addition)
® |f my interpretation of the numbers is unsigned:

A316 = 16310
1716 = 2310
BA1s = 18610

and indeed, 16310 + 2310 = 18610
® |[f my interpretation of the numbers is signed:

A316 = -9310
1716 = 2310
BA1s = -7010

and indeed, -9310 + 2310 = -7010

® S0, as long as | stick to my interpretation, the binary addition does
the right thing assuming 2's complement representation!!!

Same thing for the subtraction

" J—_—
Dropping the Carry?

® Remember earlier when | said that dropping the carry can
be numerically correct?

That should have felt wrong, because we are dropping
information

= We'll come back to this but just consider 1-byte signed
hex addition: FF + FF

® |n math, we'd get: 1FE
® |n computer arithmetic we get: FE (carry is dropped)
® So in computer arithmetic: FF + FF = FE
®m That makes sense: FF is -1d, and FE is -2d
And yes, -1 +-1=-2)
® So dropping the carry is numerically correct!!!
m Stay tuned for more on this later....

" J———
The Task of the (Assembly) Programmer

® The computer simply stores data as bits based on what a program does

® |t has no idea what the data means and doesn’t know whether numbers
are signed or unsigned

m\We, as programmers, have precise interpretations of what bits mean

“| store a 4-byte signed integer”, “I store a 1-byte integer which is an ASCII
code”

®\When using a high-level language we can say what data means
“| declare x as an int and y as an unsigned char”

®When writing assembly code, we don’t have any data types
®m But we have many instructions that operate on all types of data
®|t’s our responsibility to use the instructions that correspond to the data
®\We just saw that addition is the same for both signed and unsigned numbers
And therefore there is a single “addition instruction”: easy
mBut it's not the case for all operations
We’'ll see “signed multiplication” and “unsigned multiplication” instructions

" J
Signed does not mean negative!

B |t means "a number that is encoded in binary
using 2’'s complement so that it can take either
positive or negative values”

® The encoding of a positive value is the “normal”
one (just the binary representation but only if it
starts with a 0 bit - otherwise it's out of range)

® The encoding of a strictly negative value is the
“flip-and-add-one” transformation of the strictly
positive counterpart value (and the
representation will thus NECESSARILY starts
with a 1 bit)

"
Back to the PL examples

// C/C++
int x = -12; // signed

signed int y = 40; // signed
unsigned int z = 40; // unsigned

® X is encoded as FF FF FF F4 in hex
® yis encoded as 00 00 00 28 in hex
® 7 is encoded as 00 00 00 28 in hex

// Rust

let x: il6 -12; // signed
let y: u32 2 031; // unsigned

m x is encoded as FF F4 in hex
® vy is encoded as 00 00 04 07 in hex

"
Back to the PL examples

// Java

Integer.divideUnsigned (-100, -12) // divide as if numbers were unsigned

m -100 is a signed number encoded as FF FF FF 9B in hex
m -12 is a signhed numbers encoded as FF FF FF F4 in hex

® The above will:

Interpret FF FF FF 9B as an unsigned number (which is
4,294,967,19610)

Interpret FF FF FF F4 as an unsigned number (which is
4,294,967,28410)

Perform the division of 4,294,967,19640 by 4,294,967,2841¢
The quotient will be zero!

"
Back to the PL examples

// Python

ctypes.c_uint32(-10) .value // interpret -10 as unsigned (32-bit)

m -10 is a sighed number encoded as FF FF FF
F6 in hex
®m The above will:

Interpret FF FF FF F6 as an unsigned number
(which is 4,294,967,28610)

Return the (positive) integer 4,294,967,286

"
Back to the PL examples

// JavaScript
x = -10 >>> 0 // interpret -10 as unsigned

® -10 is a signed number encoded as FF FF FF FG6 in hex

® The above will:

Interpret FF FF FF F6 as an unsigned number (which is
4,294,967,28610)

Perform a logical right shift by 0 bits, which has the side
effect of setting x to 4,294,967,28610¢

This is very odd (but commonly done in JavaScript to use
unsigned numbers)

We’ll understand it fully when we cover bitwise operations
and shifts

Conclusion

® \We'll come back to numbers and arithmetic
when we use arithmetic assembly instructions

® But for now you must make sure you have
solid mastery of the material in this module

m \We'll do some of the posted practice
problems in-class

m \We will then have a quiz on this module

