
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

Representation of
Integers (lecture)

Integer Representation
 A computer needs to store integers in memory/registers
 Stored using different numbers of bytes (1 byte = 8 bits):

 1-byte: “byte”
 2-byte: “half word” (or “word”)
 4-byte: “word” (or “double word”)
 8-byte: “double word” (or “paragraph”, or “quadword”)
 Different computers have used different word sizes, so it’s always

a bit confusing to just talk about a “word” without any context
 Regardless of the number of bytes, integers are stored in

binary, so we need a method to encode integers in binary
 It’s more subtle than you think

 But before we get there, let’s talk about mathematics vs.
computer arithmetic….

Math vs. Computer Arithmetic
 In math, we add two numbers and the result is whatever it is
 In computer arithmetic, we specify the size of the numbers

on which we perform the operation, e.g., a 16-bit addition
 And the result must then be 16-bit: if we have a leftover

carry that would make the result 17-bit, the carry is dropped!

 F111
+ 6111
 —————
 15222

 F111
+ 6111
 —————
 5222

Computer ArithmeticMath

Math vs. Computer Arithmetic

 F111
+ 6111
 —————
 15222

 F111
+ 6111
 —————
 5222

Computer ArithmeticMath

 Even weirder: sometimes the above will be
considered numerically correct, and sometimes it
will be considered numerically incorrect

 Anybody knows how we call it when “dropping the
carry” makes the numerical result incorrect?

Unsigned and Signed Numbers
 From now on, based on the previous slides, we’ll

always specify the number of bytes for a value (and
thus for the operation being performed)
 We’ll never say “we add 12 and 4”
 We’ll say “we add 2-byte value 12 to 2-byte value 4”

So how do we encode integers?

 Integers come in two flavors:
 Unsigned: ONLY positive values from 0 to 2b-1
 Signed: positive AND negative values, with about the

same number of negative values as the number of
positive values

Unsigned / Signed Integers
 In some languages you can declare integers as signed or unsigned

depending on what you need
 If you know a variable will only be positive, then you have a higher

maximum value when using unsigned
 Signedness is important when working at the bit level (see much

later in the semester)
 The compiler/IDE can help a little bit by throwing a warning when

you assign a negative value to an unsigned number

// C/C++
int x = -12; // signed
signed int y = 40; // signed
unsigned int z = 23; // unsigned

// Rust
let x: i16 = -12; // signed 16-bit
let y: u32 = 2_031; // unsigned 32-bit
 // (note the convenient _ that
 // acts as a comma)

Unsigned / Signed Integers

 In Java, Python, JavaScript all integers are signed (there is no
unsigned data type), which has raised A LOT of complaints

 But these languages have APIs to perform unsigned arithmetic

// C/C++
int x = -12; // signed
signed int y = 40; // signed
unsigned int z = 40; // unsigned

// Java
Integer.divideUnsigned(-100, -12) // divide as if numbers were unsigned

// Python
ctypes.c_uint32(-10).value // interpret -10 as unsigned (32-bit)

// JavaScript
x = -10 >>> 0 // interpret -10 as unsigned

// Rust
let x: i16 = -12; // signed
let y: u32 = 2_031; // unsigned

 The code above is likely confusing right now because we don’t know
yet how we encode signed/unsigned integers in binary… stay tuned
(we’ll come back to these three examples!)

Encoding Unsigned Integers
 Encoding unsigned integers is easy: just use the bits

of the integer’s binary representation
 Example: 1-byte unsigned number 3310 is encoded as

001000012 (2116)

 That’s all!

 Just note that we show exactly 8 bits, which may include
the leading zeros
 In mathematics, we typically don’t show leading zeros
 But now we’re in the world of compute arithmetic

 So, if I say, what’s zero in binary as an 8-bit number, I
should write 00000000 not just 0

Encoding Signed Integers
 Encoding signed integer raises a question: how to store

the sign?
 One approach is called sign-magnitude: reserve the leftmost

bit to represent the sign
	 	 	 00100101 denotes + 01001012

	 	 	 10100101 denotes - 01001012

 It’s very easy to negate a number: just flip the leftmost bit
 Unfortunately, sign-magnitude complicates the logic of the

CPU
 There are two representations for zero: 10000000 and 00000000
 Some operations are thus more complicated to implement in

hardware
 See a computer architecture / engineering course

One’s complement
 Another idea to encode a negative number is to take the

complement (i.e., flip all bits) of its positive counterpart
 Example: I want to encode integer -87

 8710 = 010101112

 -8710 = 10101000
 Simple, but still two representations for zero: 00000000 and

11111111
 It turns out that computer logic to deal with 1’s complement

arithmetic is complicated
 Important: it’s easy to compute the 1’s complement of a

number represented in hexadecimal
 let’s consider: 5716

 subtract each hex digit from F: F-5=A, F-7=8
 1’s complement of 5716 is A816

Two’s complement

 While sign-magnitude and 1’s complement
were used in older computers, nowadays all
computers use 2’s complement to encode
signed integers

Computing the 2’s complement representation
of a negative number is done in two steps
(“flip and add one”)
Compute the 1’s complement of the positive

version of the number
Add 1 to the result
The gives the representation of the negative

number

Two’s complement: example

 Let’s encode -8710
 First, start with the positive version of the number: 8710 =

5716

 “Flip” the bits or hex digits to compute the one’s
complement: A816

 Add one: A916

 Let’s invert again to check we get back to the positive
number

 We start with: A916

 Flip the digits (one’s complement): 5616

 Add one: 5716, which represents 8710

So, when I write, say in C++ char x = -87;
somewhere in RAM the value A9 (or 10101001) is stored

Two things to note
 Thing #1: There is a single representation for zero!

 Assuming 8-bit signed numbers, zero is 0000 0000
 Let’s compute -0:

 Flip: 1111 1111
 Add one: 1 0000 0000 (9 bits!!)

 BUT, when adding two X-bit quantities in a computer one always
obtains another X-bit quantity

 Key difference between arithmetic and computer arithmetic
 The computer DROPS the extra carry because it doesn’t “fit”
 Final result: 0000 0000
 And so, there is a single representation for 0 (unlike for 1’s complement)

 Thing #2: -1’s representation is all bits set to 1
 +1 is represented as 0000 0001
 Flip: 1111 1110
 Add one: 1111 1111

How to tell the sign of a signed integer?

 All programming languages support signed integers (as far as I
know)

 A very common need is to determine whether a signed value is
positive or negative

 Whenever I write code like: if (x > 0) {…} then the
compiler has to generate code that does the test

 As humans debugging (assembly) code, we’ll look at bytes in
registers or RAM and will need to tell whether some value is
positive or negative

 The most significant bit (the leftmost bit) indicates the sign of
the number (0: positive, 1: negative)

 In hex, if the left-most “digit” is 8, 9, A, B, C, D, E, or F, then the number
is negative, otherwise it is positive

 Those are the hex digit of the form 1xxx in binary

 Let’s look at ALL 3-bit unsigned and signed numbers….

All 3-bit unsigned/signed numbers

UNSIGNED

Decimal Representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

SIGNED

Decimal Representation

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

All 3-bit unsigned/signed numbers

UNSIGNED

Decimal Representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

SIGNED

Decimal Representation

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Smallest number: 000
Largest number: 111

Smallest >= 0 number: 000
Largest >= 0 number: 011

Smallest < 0 number: 100
Largest < 0 number: 111

Ranges of Numbers
 For 1-byte values

 Unsigned
 Smallest value: 0016 or 0000 00002 (010)
 Largest value: FF16 or 1111 11112 (25510)

 Signed
 Smallest value: 8016 or 1000 00002 (-12810)
 Largest value: 7F16 or 0111 11112 (+12710)

 For 2-byte values
 Unsigned

 Smallest value: 000016 (010)
 Largest value: FFFF16 (65,53510)

 Signed
 Smallest value: 800016 (-32,76810)
 Largest value: 7FFF16 (+32,76710)

 etc.

1-byte Ranges

0d 255d

0000 0000b
00h

1111 1111b
FFh

unsigned

-128d +127d

1000 0000b
80h

0111 1111b
7Fh

signed
0d

0000 0000b
00h

(makes sense it’s odd)(makes sense it’s even)

The magic of 2’s complement
(for addition)
 Say I have two 1-byte values, A3 and 17, and I add them together:
	 	 A316 + 1716 = BA16 (“blind” hex addition)
 If my interpretation of the numbers is unsigned:

 A316 = 16310
 1716 = 2310
 BA16 = 18610
 and indeed, 16310 + 2310 = 18610

 If my interpretation of the numbers is signed:
 A316 = -9310
 1716 = 2310
 BA16 = -7010
 and indeed, -9310 + 2310 = -7010

 So, as long as I stick to my interpretation, the binary addition does
the right thing assuming 2’s complement representation!!!

 Same thing for the subtraction

Dropping the Carry?
 Remember earlier when I said that dropping the carry can

be numerically correct?
 That should have felt wrong, because we are dropping

information
 We’ll come back to this but just consider 1-byte signed

hex addition: FF + FF
 In math, we’d get: 1FE
 In computer arithmetic we get: FE (carry is dropped)
 So in computer arithmetic: FF + FF = FE
 That makes sense: FF is -1d, and FE is -2d

 And yes, -1 + -1 = -2 :)
 So dropping the carry is numerically correct!!!
 Stay tuned for more on this later….

The Task of the (Assembly) Programmer
The computer simply stores data as bits based on what a program does
 It has no idea what the data means and doesn’t know whether numbers

are signed or unsigned
We, as programmers, have precise interpretations of what bits mean

 “I store a 4-byte signed integer”, “I store a 1-byte integer which is an ASCII
code”

When using a high-level language we can say what data means
 “I declare x as an int and y as an unsigned char”

When writing assembly code, we don’t have any data types
But we have many instructions that operate on all types of data
 It’s our responsibility to use the instructions that correspond to the data
We just saw that addition is the same for both signed and unsigned numbers

 And therefore there is a single “addition instruction”: easy
But it’s not the case for all operations

 We’ll see “signed multiplication” and “unsigned multiplication” instructions

Signed does not mean negative!

 It means “a number that is encoded in binary
using 2’s complement so that it can take either
positive or negative values”

 The encoding of a positive value is the “normal”
one (just the binary representation but only if it
starts with a 0 bit - otherwise it’s out of range)

 The encoding of a strictly negative value is the
“flip-and-add-one” transformation of the strictly
positive counterpart value (and the
representation will thus NECESSARILY starts
with a 1 bit)

Back to the PL examples
// C/C++
int x = -12; // signed
signed int y = 40; // signed
unsigned int z = 40; // unsigned

 x is encoded as FF FF FF F4 in hex
 y is encoded as 00 00 00 28 in hex
 z is encoded as 00 00 00 28 in hex

// Rust
let x: i16 = -12; // signed
let y: u32 = 2_031; // unsigned

 x is encoded as FF F4 in hex
 y is encoded as 00 00 04 07 in hex

Back to the PL examples

// Java
Integer.divideUnsigned(-100, -12) // divide as if numbers were unsigned

 -100 is a signed number encoded as FF FF FF 9B in hex
 -12 is a signed numbers encoded as FF FF FF F4 in hex
 The above will:

 Interpret FF FF FF 9B as an unsigned number (which is
4,294,967,19610)

 Interpret FF FF FF F4 as an unsigned number (which is
4,294,967,28410)

 Perform the division of 4,294,967,19610 by 4,294,967,28410

 The quotient will be zero!

Back to the PL examples
// Python
ctypes.c_uint32(-10).value // interpret -10 as unsigned (32-bit)

 -10 is a signed number encoded as FF FF FF
F6 in hex

 The above will:
 Interpret FF FF FF F6 as an unsigned number

(which is 4,294,967,28610)
 Return the (positive) integer 4,294,967,286

Back to the PL examples
// JavaScript
x = -10 >>> 0 // interpret -10 as unsigned

 -10 is a signed number encoded as FF FF FF F6 in hex
 The above will:

 Interpret FF FF FF F6 as an unsigned number (which is
4,294,967,28610)

 Perform a logical right shift by 0 bits, which has the side
effect of setting x to 4,294,967,28610

 This is very odd (but commonly done in JavaScript to use
unsigned numbers)

 We’ll understand it fully when we cover bitwise operations
and shifts

Conclusion

 We’ll come back to numbers and arithmetic
when we use arithmetic assembly instructions

 But for now you must make sure you have
solid mastery of the material in this module

 We’ll do some of the posted practice
problems in-class

 We will then have a quiz on this module

