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Outline

  32-bit x86 registers 

  x86 basic instructions



The 8086 Registers
 To write assembly code for an ISA you must know 

the name of registers 
 Because registers are places in which you put data on 

which to perform computation and in which you find the 
result of the computation 

 The registers are identified by binary numbers, but 
assembly languages give them “easy-to-remember” names 

 The 16-bit 8086 offered 16-bit registers 
 Four general purpose 16-bit registers 

 AX 
 BX 
 CX 
 DX



 Each of the 16-bit registers consists of 8 “low bits” 
and 8 “high bits” 
 Low: least significant 
 High: most significant

AX BX CX DX
AH AL BH BL CH CL DH DL

 The ISA makes it possible to refer to the low or high 
bits individually 
 AH, AL 
 BH, BL 
 CH, CL 
 DH, DL 

The 8086 Registers



The 8086 Registers

 The xH and xL registers can be used as 1-
byte registers to store 1-byte values 

 Important: both are “tied” to the 16-bit register 
 Changing the value of AX will change the values 

of AH and/or AL 
 Changing the value of AH or AL will change the 

value of AX

AX BX CX DX
AH AL BH BL CH CL DH DL



The 8086 Registers

 Two general-purpose 16-bit “index” registers: 
 SI 
 DI 

 These are general-purpose registers 
 But by convention they are often used as 

“pointers”, i.e., they contain addresses 
instead of data 

 And they cannot be decomposed into High 
and Low 1-byte registers 



The 8086 Registers

 Two 16-bit special registers: 
 BP: (Stack) Base Pointer 
 SP: Stack Pointer 

 We’ll discuss these at length later and we will 
manipulate them 

 They are used for implementing subprograms 
(i.e., functions, methods, etc)



The 8086 Registers
 Four 16-bit segment registers: 

 CS: Code Segment 
 DS: Data Segment 
 SS: Stack Segment 
 ES: Extra Segment (use for output of string-

manipulating instructions) 
 These point to the currently used subset of each 

region of the address space 
 Because we have in effect 20-bit addresses on a 16-bit 

architecture (I have “hidden” slides on this if people 
want to know) 

 Programming with segments is known to be a pain 
when any region of the program doesn’t fit in a 
single segment 

 e.g., if the code is too long, one has to change the 
value of CS time and again, which is very cumbersome

code

data

stack

address space



The 8086 Registers
 The 16-bit  Instruction Pointer (IP) register: 

 Points to the next instruction to execute 
 Typically not used directly when writing assembly code 

 The 16-bit FLAGS registers 
 The bits of the FLAGS register contain “status bits” that 

each has its individual name and meaning 
 It’s really a collection of bits, not a multi-bit value 

 Whenever an instruction is executed and produces a result, 
it may modify some bit(s) of the FLAGS register 

 Example: Z (or ZF) denotes one bit of the FLAGS register, 
which is set to 1 if the previously executed instruction 
produced 0, or 0 otherwise 

 We’ll see many uses of the FLAGS registers



The 8086 Registers

Control 
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits



The 8086 Registers

Control 
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits

The registers 
you can use in 
any way you 
want for holding 
(some of) your 
program’s data



The 8086 Registers

Control 
UnitALU

AH AL = AX
BH BL = BX
CH CL = CX
DH DL = DX

SI
DI

BP
SP

IP

= FLAGS

CS
DS
SS
ES

16 bits

The registers 
you must not 
use to store 
your own data, 
or the program 
will most likely 
crash



32-bit x86

 With the 80386 Intel introduced a processor 
with 32-bit registers 

 Addresses are 32-bit long 
 Segments are 4GiB 
 Meaning that we don’t really need to modify the 

segment registers very often (or at all), and in fact 
we’ll call assembly from C so that we won’t see 
segments at all (you can thank me later) 

 Let’s have a look at the 32-bit registers



The 80386 32-bit registers
 The general purpose registers: extended to 32-bit 

 EAX, EBX, ECX, EDX 
 For backward compatibility, AX, BX, CX, and DX refer to 

the 16 low bits of EAX, EBX, ECX, and EDX 
 AH and AL are as before 
 There is no way to access the high 16 bits of EAX 

separately 
 Similarly, other registers are extended 

 EBX, EDX, ESI, EDI, EBP, ESP, EFLAGS 
 For backward compatibility, the previous names are used 

to refer to the low 16 bits



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of AH, have I then 
necessarily changed the 
value of EAX? 



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of AH, have I then 
necessarily changed the 
value of EAX?  YES



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of EAX, have I 
then necessarily 
changed the value of 
AX?



The 8386 Registers

= EAX

32 bits

ALAH

AX

= EBXBLBH

BX

= ECXCLCH

CX

= EDXDLDH

DX

SI = ESI
DI = EDI
BP = EBP
SP = ESP

FLAGS = EFLAGS
IP = EIP

Poll: If I change the 
value of EAX, have I 
then necessarily 
changed the value of 
AX?  NO



“But my machine is 64-bit”
 We now all have 64-bit machines 
 So you may wonder why we’re using a 32-bit architecture 

 Of course, a 64-bit machine can handle 32-bit code 
 Basically, for what we need to do in this course it does 

not matter whatsoever 
 For the code we’ll write, we wouldn’t learn anything interesting/

different by going from 32-bit to 64-bit  
 Going to 64-bit would just add more things that are 

conceptually the same 
 e.g., we’d have 64-bit RAX, RBX, etc. registers that each 

contain EAX, EBX, etc. 
 just like EAX, EBX, etc. contain AX, BX, etc. 

 So for now in this course I am sticking to 32-bit x86



Registers are NOT Variables

 It’s tempting to think of the registers as 
variables 

 But they have no data type and you can do 
absolutely whatever you want with them, 
including horrible mistakes 

 So, really, registers are not variables, which 
will be painfully clear when we write 
assembly



Outline

  32-bit x86 registers 

  x86 basic instructions (NASM)



NASM
 In this course we write assembly using NASM (https://

www.nasm.us), which uses the Intel syntax 
 The alternative is the ATT syntax 
 The two are conceptually completely equivalent, and learning 

one when one knows the other takes almost zero time

    mov eax, 0 
    mov ecx, 1 

.loop: 
    add eax, ecx  
    add ecx, 1 
    cmp ecx, 6 
    jne .loop 

movl $0, %eax  
movl $1, %ecx 

.loop: 
    addl %ecx, %eax 
    addl $1, %ecx 
    cmpl $6, %ecx 
    jne .loop          

ATTIntel

https://www.nasm.us
https://www.nasm.us


Instruction operands
 Most x86 instructions take in operands 
 An operand can be: 

 A register: the operand is the value stored in the register (e.g., 
ax, ebx) 

 A memory reference: the operand is a value stored in RAM at 
some address (see the next set of lecture notes) 

 An immediate: an integer constant only as an input operand 
(e.g., 12, -65) 

 Implicit: always the same operand only as an input operand (see 
the inc instruction on the next slide) 

 In the Intel syntax, when an operand is a destination, it is 
listed first and followed by the source operands 

 Operand sizes (in bytes) typically must match 
 Let’s see the add and inc instructions….



Adding values with add/inc
 The add instruction:               add op1, op2 
 High-level code equivalent:    op1 = op1 + op2

add eax, ebx    ; eax = eax + ebx (a 4-byte operation) 

add dl, cl      ; dl = dl + cl (a 1-byte operation) 

add edx, edx    ; edx = edx + edx (a 4-byte operation) 

add eax, dx     ; invalid (non-matching sizes) 

add eax, 12     ; eax = eax + 12 (a 4-byte operation) 

add 12, eax     ; invalid (a constant can’t be changed)

 The inc instruction:               inc op1 
 High-level code equivalent:    op1 += 1
inc eax        ; eax += 1 (a 4-byte operation) 

inc al         ; al += 1 (a 1-byte operation)



Immediate Operands and Bases
 Immediate operands can be written in decimal (default), binary 

(b), hex (h), or octal (o), with one syntactic oddity for hex

add eax, 12     ; 12 in decimal (as a 4-byte value) 

add eax, 1100b  ; 12 in binary (as a 4-byte value) 

add eax, 14o    ; 12 in octal (as a 4- byte value) 

add eax, 0Ch    ; 12 in hex (as a 4- byte value

There must always be 
a leading 0 for hex!

Even here! It’s because 
otherwise a hex number could 

look like a label (see later)

add eax, 0AABBCCDDh   ; NOT a 4.5-byte value :)



sub, dec, and neg
 Subtraction: just like we have add and inc, we have sub and dec 

 They work exactly the same 
 There is a “negate” instruction: neg 
 It simply performs the 2’s complement transformation: Flip and add 

one 
 If you interpret a value as signed, then it negates that values (i.e., 

makes it its opposite) 
 If you interpret a value as unsigned, then it does “nonsense”

mov al, 0FEh  ; FE: signed: -2    unsigned: +254 

neg al        ; 02: signed: +2    unsigned: +2

mov al, 012h  ; 12: signed: +18    unsigned: +18 

neg al        ; EE: signed: -18    unsigned: +238



Other arithmetic operations

 Multiplication and Division are more 
cumbersome, and we won’t need them for a 
while, so we’ll describe them later 

 There are bitwise operations, and we’ll have 
a whole module on them 

 So for now, let’s stick to adding and 
subtracting (and negating signed numbers)



The mov Instruction
 The mov instruction:   mov op1, op2 
 Copies the value of op2 into op1 (yes, “mov” isn’t a great name) 
 The first operand can be a register or a memory location 
 The second operand can be a register, a memory location, or an 

immediate value 
 Both operands must be the exact same size

mov eax, ebx    ; eax = ebx (a 4-byte copy) 
mov dl, cl      ; dl = cl (a 1-byte copy) 
mov edx, dl     ; invalid (non-matching sizes) 
mov cl, eax     ; invalid (non-matching sizes) 
mov eax, 0FFh   ; eax = 255 (a 4-byte value,  
                  without all leading zeros written) 
mov al, 0FFh    ; al = 255 or -1 (a 1-byte value) 
mov 42, dl      ; invalid (can’t change constant)



Paying attention to registers 

mov  ebx, 011223344h 
mov  ax, 0F111h 
add  bx, ax

 Let’s consider this fragment of code

In-class exercise: what’s 
the value of register ebx 
after these three 
instructions?



Paying attention to registers 

mov  ebx, 011223344h 
  ; ebx = 11 22 33 44 (bx = 33 44) 
mov  ax, 0F111h 
  ; ax = F1 11  (eax = ?? ?? F1 11) 
add  bx, ax 
  ; a 2-byte addition: 33 44 + F1 11 
  ; with a result of 24 55 (carry dropped) 
  ; and so ebx = 11 22 24 55  
   
  ; (AND NOT 11 23 24 55, which would be         
                          wrong and horrible)

 Let’s do it step by step (all numbers in hex)



Important Takeaways

 The set of X86 registers we can use: 
 eax (ax, ah, al), ebx (bx, bh, bl), etc. 
 esi, edi 

 Different possible operands to instructions: 
 registers, memory refs, immediate, implicit 

 The add/inc and sub/dec instructions 
 The neg instruction 
 The mov instruction



Conclusion

 Let’s do some of the posted practice 
problems…. 

 Before we can write any useful assembly, we 
have to learn about using the memory in 
addition to using the registers 

 This is the topic of the next set of lecture 
notes!


