NASM Basics |
Registers and Basic

Instructions

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

Outline

m 32-bit x86 registers

B X86 basic instructions

" J
The 8086 Registers

® To write assembly code for an ISA you must know
the name of registers

Because registers are places in which you put data on
which to perform computation and in which you find the
result of the computation

The registers are identified by binary numbers, but
assembly languages give them “easy-to-remember” names

® The 16-bit 8086 offered 16-bit registers

m Four general purpose 16-bit registers
AX
BX
CX
DX

The 8086 Registers

AX BX CX DX
AH | AL BH [BL CH]| CL DH | DL

® Each of the 16-bit registers consists of 8 “low bits”
and 8 “high bits”
Low: least significant
High: most significant
® The ISA makes it possible to refer to the low or high
bits individually
AH, AL
BH, BL
CH, CL
DH, DL

" JE
The 8086 Registers

AX BX CX DX
AH | AL BH [BL CH]| CL DH | DL

® The xH and xL registers can be used as 1-
byte registers to store 1-byte values
B |[mportant: both are “tied” to the 16-bit register

Changing the value of AX will change the values
of AH and/or AL

Changing the value of AH or AL will change the
value of AX

" J
The 8086 Registers

®m Two general-purpose 16-bit “index” registers:
S|
DI

B These are general-purpose registers

®m But by convention they are often used as
“pointers”, i.e., they contain addresses
instead of data

® And they cannot be decomposed into High
and Low 1-byte registers

" J
The 8086 Registers

m Two 16-bit special registers:
BP: (Stack) Base Pointer
SP: Stack Pointer

m \We'll discuss these at length later and we will
manipulate them

® They are used for implementing subprograms
(i.e., functions, methods, etc)

" J
The 8086 Registers

m Four 16-bit segment registers:
CS: Code Segment
DS: Data Segment
SS: Stack Segment
ES: Extra Segment (use for output of string-
manipulating instructions)

B These point to the currently used subset of each
region of the address space
Because we have in effect 20-bit addresses on a 16-bit
architecture (I have “hidden” slides on this if people
want to know)
® Programming with segments is known to be a pain
when any region of the program doesn’t fit in a
single segment

e.g., if the code is too long, one has to change the
value of CS time and again, which is very cumbersome

code

data

stack

Y

aoeds ssaJppe

" JE
The 8086 Registers

®m The 16-bit Instruction Pointer (IP) register:
Points to the next instruction to execute
Typically not used directly when writing assembly code

m The 16-bit FLAGS registers

The bits of the FLAGS register contain “status bits” that
each has its individual name and meaning

= |t's really a collection of bits, not a multi-bit value

Whenever an instruction is executed and produces a result,
it may modify some bit(s) of the FLAGS register

Example: Z (or ZF) denotes one bit of the FLAGS register,
which is set to 1 if the previously executed instruction
produced 0, or O otherwise

We'll see many uses of the FLAGS registers

The 8086 Registers

AH AL = AX
BH BL = BX
CH CL =CX
DH DL = DX
Sl
DI
BP
SP
(IP
(= FLAGS
CS
DS
SS

ES
.
~
\ 16 bits

N

Control]
Unit

The 8086 Registers

AH

AL

BH BL = BX
CH CL = CX
DH DL = DX
S
DI
BP
SP
(P
[= FLAGS
CS
DS
SS
ES
J
~
16 bits /
Control
—))
Unit

; The registers
' you can use in
N anywayyou
~want for holding |
- (some of) your

program’s data

The 8086 Registers

AH AL =AX
BH BL =BX
CH CL = CX
DH DL = DX
S
DI
=
SP
(P ‘
{ = FLAGS |
CS
DS
: SS ;
ES :
N - |
16 bits
w Control
))
Unit

- The registers
- you must not
~ use to store
4 your own data,
- or the program

will most likely

crash

"
32-bit x86

m \With the 80386 Intel introduced a processor
with 32-bit registers
B Addresses are 32-bit long
Segments are 4GiB

Meaning that we don’t really need to modify the
segment registers very often (or at all), and in fact
we’ll call assembly from C so that we won'’t see
segments at all (you can thank me later)

m | et’'s have a look at the 32-bit registers

" JE
The 80386 32-bit registers

® The general purpose registers: extended to 32-bit

EAX, EBX, ECX, EDX

For backward compatibility, AX, BX, CX, and DX refer to
the 16 low bits of EAX, EBX, ECX, and EDX

AH and AL are as before
There is no way to access the high 16 bits of EAX
separately
m Similarly, other registers are extended
EBX, EDX, ESI, EDI, EBP, ESP, EFLAGS

For backward compatibility, the previous names are used
to refer to the low 16 bits

" JE
The 8386 Registers

AX
A
14 \
| AH AL = EAX
BX
A
14 \
BH BL] = EBX
CX
A
14 \
| CH cL - ECX
DX
A
14 \
| DH DL = EDX
Sl = ESI
DI = EDI
BP = EBP
SP =ESP
FLAGS = EFLAGS
P = EIP
|\ J

32 bits

" J
The 8386 Registers

AX
A

14 \

(AH AL - EAX
BX
A

14 \

BH BL] = EBX

Poll: If | change the
[value of AH, have | then
1 necessarily changed the

~

l value of EAX?
S| = ESI
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
IP = EIP
“ J
Y~

32 bits

" JE
The 8386 Registers

AX
A

14 \

(AH AL - EAX
BX
A

14 \

BH BL] = EBX

Poll: If | change the
[value of AH, have | then
1 necessarily changed the

~

l value of EAX? YES
S| = ESI
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
P = EIP
i\ ~ J

32 bits

"
The 8386 Registers

AX
Al

AL

BX
A

BH

|

BL

= EAX

| =EBX

~

Poll: If | change the

(value of EAX, have |

~

then necessarily
changed the value of

| AX?
Ol =y |
DI = EDI
BP = EBP
SP = ESP
FLAGS = EFLAGS
IP = EIP

32 bits

"
The 8386 Registers

AX
Al

(AH

AL

BX
A

BH

|

BL

= EAX

| =EBX

~

Poll: If | change the

(value of EAX, have |

~

then necessarily
changed the value of
AX? NO

DI

BP

SP

FLAGS

IP

32 bits

| === |

= EDI
= EBP
= ESP
= EFLAGS
= EIP

"
“But my machine is 64-bit”

® \We now all have 64-bit machines
B S0 you may wonder why we're using a 32-bit architecture
Of course, a 64-bit machine can handle 32-bit code

m Basically, for what we need to do in this course it does
not matter whatsoever

For the code we'll write, we wouldn’t learn anything interesting/
different by going from 32-bit to 64-bit

® Going to 64-bit would just add more things that are
conceptually the same

e.g., we'd have 64-bit RAX, RBX, etc. registers that each
contain EAX, EBX, etc.

just like EAX, EBX, etc. contain AX, BX, etc.
m So for now in this course | am sticking to 32-bit x86

" JE
Registers are NOT Variables

® |t's tempting to think of the registers as
variables

m But they have no data type and you can do
absolutely whatever you want with them,
including horrible mistakes

® S0, really, registers are not variables, which
will be painfully clear when we write
assembly

Outline

m 32-bit x86 registers

m X386 basic instructions (NASM)

"
NASM

® |n this course we write assembly using NASM (https://
www.nasm.us), which uses the Intel syntax

® The alternative is the ATT syntax

® The two are conceptually completely equivalent, and learning
one when one knows the other takes almost zero time

Intel ATT

movl SO,
movl $1,

.loop:
addl %ecx, %eax
addl $1, %ecx

cmpl $6, %ecx
jne .loop

https://www.nasm.us
https://www.nasm.us

" JE
Instruction operands

®m Most x86 instructions take in operands

® An operand can be:

A register: the operand is the value stored in the register (e.g.,
ax, ebx)

A memory reference: the operand is a value stored in RAM at
some address (see the next set of lecture notes)

An immediate: an integer constant only as an input operand
(e.g., 12, -65)

Implicit: always the same operand only as an input operand (see
the inc instruction on the next slide)

® |n the Intel syntax, when an operand is a destination, it is
listed first and followed by the source operands

m Operand sizes (in bytes) typically must match
m Let's see the add and inc instructions....

"
Adding values with add/inc

® The add instruction: add opl, op2
® High-level code equivalent: opl

opl + op2

eax, ebx ; eax = eax + ebx (a 4-byte operation)
dl, cl ; dl = dl + ¢l (a 1-byte operation)
edx, edx ; edx = edx + edx (a 4-byte operation)
eax, dx

eax, 12 ; eax = eax + 12 (a 4-byte operation)

12, eax

® The inc instruction: inc opl
m High-level code equivalent: opl += 1

; eax += 1 (a 4-byte operation)

; al += 1 (a 1l-byte operation)

" JE
Immediate Operands and Bases

B [mmediate operands can be written in decimal (default), binary
(b), hex (h), or octal (o), with one syntactic oddity for hex

decimal (as a 4-byte value)

binary (as a 4-byte value)

octal (as a 4- byte wvalue)

hex (as a 4- byte wvalue

; Even here! It’s because {
{ otherwise a hex number could }
i look like a label (see later) |

' There must always be }
a leading 0 for hex! |

add eax, OAABBCCDD ; NOT a 4.5-byte value :)

sub, dec, and neg

m Subtraction: just like we have add and inc, we have sub and dec
They work exactly the same
m There is a “negate” instruction: neg

m |t simply performs the 2’s complement transformation: Flip and add
one

m |f you interpret a value as signed, then it negates that values (i.e.,
makes it its opposite)

m |f you interpret a value as unsigned, then it does “nonsense”

al, OFEh ; X : =2 unsigned: +254
al ; : : +2 unsigned: +2

al, 012h ; : : +18 unsigned: +18
al ; X : -18 unsigned: +238

" J——_
Other arithmetic operations

® Multiplication and Division are more
cumbersome, and we won't need them for a
while, so we’'ll describe them later

®m There are bitwise operations, and we'll have
a whole module on them

m So for now, let’s stick to adding and
subtracting (and negating signed numbers)

" S
The mov Instruction

® The mov instruction: mov opl, op2

m Copies the value of op2 into op1 (yes, “mov” isn’t a great name)
® The first operand can be a register or a memory location

® The second operand can be a register, a memory location, or an
Immediate value

B Both operands must be the exact same size

eax, ebx ; eax = ebx (a 4-byte copy)
dl, cl ; dl = cl (a 1l-byte copy)
edx, dl

cl, eax

eax, OFFh ; eax = 255 (a 4-byte value,

without all leading zeros written)
al, OFFh ; al = 255 or -1 (a 1l-byte value)
42, dl

"
Paying attention to registers

m | et’'s consider this fragment of code

mov ebx, 011223344h In-class exercise: what's
mov ax, OFlllh

the value of register ebx
after these three

add bx, ax instructions?

Paying attention to registers

m | et’'s do it step by step (all numbers in hex)

mov ebx, 011223344h
; ebx = 11 22 33 44 (bx = 33 44)
ax, OFllilh

ax = F1 11 (eax = ?? ?? F1 11)

bx, ax

a 2-byte addition: 33 44 + F1 11
; with a result of 24 55 (carry dropped)
; and so ebx = 11 22 24 55

(AND NOT 11 23 24 55, which would be

wrong and horrible)

" J
Important Takeaways

B The set of X86 registers we can use:
eax (ax, ah, al), ebx (bx, bh, bl), etc.
esi, edi

m Different possible operands to instructions:
registers, memory refs, immediate, implicit

®m [he add/inc and sub/dec instructions

m The neg instruction

®m [he mov instruction

" A
Conclusion

m | et's do some of the posted practice
problems....

m Before we can write any useful assembly, we
have to learn about using the memory Iin
addition to using the registers

® This is the topic of the next set of lecture
notes!

