
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

NASM Basics II
Data declarations

NASM Program Structure

 This is a typical program
written in assembly

 Before we know what any of
this means (if you can even
see it), we need to learn the
overall structure

 There are 3 main sections or
“segments”…

NASM Program Structure

declaration of
initialized data
declaration of

uninitialized data

code

statically allocated
data that is allocated
for the duration of
program execution

data segment

bss segment

text segment

 We’ll see later that in
source code these sections
don’t have to be in this
order and can be split up
and interleaved

 But for now, let’s assume
that all programs follow this
exact structure

Relation to high-level code

data segment

bss segment

text segment

int x = 12;

short y;

int main() {
 y = x + 12;
 printf(“%d”, y);
}

Relation to high-level code

data segment

bss segment

text segment

These lecture
notes

The data and bss segments
 Both segments contains data directives that declare pre-

allocated zones of memory
 There are two kinds of data directives

 DX directives: initialized data	 	 (D = “defined”)
 RESX directives: uninitialized data	 (RES = “reserved”)

 The “X” above refers to the data size:

Unit Letter(X) Size in bytes
byte B 1
word W 2

double word D 4
quad word Q 8

ten bytes T 10

The DX data directives

 One declares a zone of initialized memory
using three elements:
 Label: the name used in the program to refer to

that zone of memory
 A pointer to the zone of memory, i.e., an address

 DX, where X is the appropriate letter for the size
of the data being declared

 Initial value, with encoding information
 default: decimal
 b: binary
 h: hexadecimal
 o: octal
 quoted: ASCII

DX Examples
 L1	 db	 0

 1 byte, whose address is named L1, initialized to 0
 Henri	 dw	 1000

 2-byte value, initialized to 1000, the address of the first of
these two bytes is named Henri

 The label (i.e., the name) is the address of a byte
 In the case of multi-byte values, it’s the address of the first byte
 Often we say “a 2-byte value named Henri” for simplicity, but that

makes it sound like Henri is a variable that contains a 2-byte value
 This is NOT the case. Henri is a number, which is an address,

which is the address of the first byte of the 2-byte value
 The address of the second byte of the 2-byte value is Henri + 1
 Be prepared for me saying this over and over and for students not

really getting it over and over :)

DX Examples
 L1	 db	 0

 1 byte, whose address is named L1, initialized to 0
 Henri	 dw	 1000

 2-byte word, initialized to 1000, the address of the first of these
two bytes is named Henri

 L3	 db	 110101b
 1 byte, named L3, initialized to 110101 in binary

 what	 db	 0A2h
 1 byte, named what, initialized to A2 in hex (note the ‘0’)

 L5	 db	 17o
 1 byte, named L5, initialized to 17 in octal (1*8+7=15 in decimal)

 L6 	 dd	 0FFFF1A92h (note the ‘0’)
 4-byte double word, named L6, initialized to FFFF1A92 in hex

 L7	 db	 “A”

ASCII Code

 Associates 1-byte numerical codes to
characters
 Unicode, proposed much later, uses 2 bytes and

thus can encode 28 times more characters (room
for all languages, Chinese, Japanese, accents,
etc.)

 A few values to know:
 ‘A’ is 65d / 41h

 ‘B’ is 66d / 42h, etc…
 ‘a’ is 97d / 61h

 ‘b’ is 98d / 62h, etc…

DX for multiple elements
 Foo	 db	 0, 1, 2, 3

 Defines 4 1-byte values, initialized to 0, 1, 2 and 3
 Foo is a pointer to (i.e., the address of) the first byte

 The above is equivalent (in terms of memory
content) to:
 Stuff db 0
 What db 1
 Eggplant db 2
 Chair db 3

 The only difference is that in the second version
we have a name (label) for the address of each of
the four bytes

Strings as sequences of chars

 L9	db	 “w”, “o”, ‘r’, ‘d’, 0
 Defines 5 1-byte values, the first 4 being initialized by

an ASCII code (i.e., a character)
 Defines a null-terminated string, initialized to

“word\0”
 L9 is a pointer to the beginning of the string (i.e., the

address of the first character of the string)

 L10 db	 “word”, 0
 Equivalent to the above, more convenient to write

DX with the times qualifier

 Say you want to declare 100 bytes all
initialized to 0

 NASM provides a nice shortcut to do this, the
“times” qualifier

 L11 times 100 db 0
 Equivalent to L11 db 0,0,0,....,0 (100 times)

Uninitialized Data

 The RESX directive is very similar to the DX
directive, but always specifies the number of
values to reserve space for

 L20 	 resw	100
 100 uninitialized 2-byte values (so 200 bytes in

total)
 L20 is a pointer to the first (byte of the first) 2-byte

value
 This can’t be seen as a 100-element array!

 stuff	 resb 1
 One uninitialized byte “named” stuff

Data segment example
tmp	 	 dd	 -1
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh
i		 	 dw 	 0
message	 db	 “H”, “e”, “llo”, 0
buffer	 times 8	 db 0
max	 	 dd	 254

28 bytes

tmp
(4)

pixels
(4)

i
(2)

message
(6)

buffer
(8)

max
(4)

Data segment example
tmp	 	 dd	 -1
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh
i		 	 dw 	 0
message	 db	 “H”, “e”, “llo”, 0
buffer	 times 8	 db 0
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

28 bytes

tmp
(4)

pixels
(4)

i
(2)

message
(6)

buffer
(8)

max
(4)

Data segment example
tmp	 	 dd	 -1
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh
i		 	 dw 	 0
message	 db	 “H”, “e”, “llo”, 0
buffer	 times 8	 db 0
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp
(4)

pixels
(4)

i
(2)

message
(6)

buffer
(8)

max
(4)

This way of drawing the memory content
is actually confusing, because it makes it
look like labels are variables. A label is
only the address of a byte!
So let’s redraw it…

Data segment example
tmp	 	 dd	 -1
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh
i		 	 dw 	 0
message	 db	 “H”, “e”, “llo”, 0
buffer	 times 8	 db 0
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max

This is much better, but still a bit strange
perhaps because the address of a byte is
a number, not a symbol (like “tmp”)…

Labels are symbolic
 Labels (L1, Henri, etc.) are symbolic names of 32-bit integers that are

addresses of particular bytes
 When the program actually runs, each label then corresponds to an

actual 32-bit numerical value
 For instance, say we have this:

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max

Labels are symbolic
 Labels (L1, Henri, etc.) are symbolic names of 32-bit integers that are

addresses of particular bytes
 When the program actually runs, each label then corresponds to an

actual 32-bit numerical value
 For instance, say we have this:

 At run time, at some point, the above bytes are put in RAM somewhere by
the OS

 At that point, “tmp” is replaced by a numerical value, say AABBCC00
 And therefore, “pixels” is replaced by AABBCC04 (because pixels = tmp + 4)
 And “buffer” is replaced by AABBCD0 (because buffer = tmp + 16)

 When we reason about a memory layout though, we don’t typically give a
specific value to the addresses, but just reason relative to the first byte

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max

Endianness?

max	 	 dd	 254
00 00 00 FE

max

 In the previous slide I showed the above 4-byte memory
content for a double-word that contains 254 = 000000FEh

 While this seems to make sense, it turns out that Intel
processors do not do this!
 Yes, the last 4 bytes shown in the previous slide are wrong

 The scheme shown above (i.e., bytes in memory follow the
“natural” order): Big Endian

 Instead, Intel processors use Little Endian:

FE 00 00 00

max

Register vs. Memory order
 In registers, values are always in the “correct” order (i.e.,

the Big Endian order), which makes sense mathematically
 On a Little Endian machine, each time you write a register

value to RAM or you read a RAM value into a register, then
the byte order is reversed!

AA BB 12 4E AA BB 12 4E

4E 12 BB AA……… ………

RAM

EAX EBX
Write to

RAM
Read from

RAM

Little/Big Endian

 Motorola and IBM processors use(d) Big Endian
 Intel/AMD uses Little Endian (used in this class)
 When writing code in a high-level language one

rarely cares
 But in languages that expose addresses, like in

C, one can definitely expose the Endianness of
the computer

 And thus one can write C code that’s not portable
between an IBM and an Intel!!!

 Let’s do this RIGHT NOW just for fun…

Little/Big Endian

 Endianness only matters when writing multi-
byte quantities to memory and reading them
differently (e.g., byte per byte)

 When writing assembly code one often does
not care, but we’ll see several examples
when it matters, so it’s important to know this
inside out

Some processors are configurable (either in
hardware or in software) to use either type of
endianness (e.g., MIPS)

Example

 What is the layout and the content of the data
memory segment on a Little Endian
machine?
 Byte per byte, in hex

pixels	 times 4	 db	 0FDh
x		 	 dd 	 00010111001101100001010111010011b
blurb		 db	 “ad”, “b”, “h”, 0
buffer	 times 10	 db 14o
min	 	 dw	 -19

Example

 First thing to do: identify the multi-byte
quantities

pixels	 times 4	 db	 0FDh
x		 	 dd 	 00010111001101100001010111010011b
blurb		 db	 “ad”, “b”, “h”, 0
buffer	 times 10	 db 14o
min	 	 dw	 -19

Example

 First thing to do: identify the multi-byte
quantities
 EVERYTHING THAT’S NOT DECLARED AS “db”

IS MULTI-BYTE
 (L db “stuff” is NOT MULTI-BYTE, it’s a

sequence of bytes)
 In the above: x and min above are multi-byte values

pixels	 times 4	 db	 0FDh
x		 	 dd 	 00010111001101100001010111010011b
blurb		 db	 “ad”, “b”, “h”, 0
buffer	 times 10	 db 14o
min	 	 dw	 -19

Example
pixels	 times 4	 db	 0FDh
x		 	 dd 	 00010111001101100001010111010011b
blurb		 db	 “ad”, “b”, “h”, 0
buffer	 times 10	 db 14o
min	 	 dw	 -19

173615D3 61 64 62 68 00 ED FFFD FD FD FD

25 bytes

0C 0C 0C 0C 0C 0C 0C 0C 0C 0C

pixels x blurb buffer min

Example
pixels	 times 4	 db	 0FDh
x		 	 dd 	 00010111001101100001010111010011b
blurb		 db	 “ad”, “b”, “h”, 0
buffer	 times 10	 db 14o
min	 	 dw	 -19

173615D3 61 64 62 68 00 ED FFFD FD FD FD

25 bytes

0C 0C 0C 0C 0C 0C 0C 0C 0C 0C

pixels x blurb buffer min

Note that bits within byte are NOT reversed

What about Networks??
 Say you have a network with

 Machines that communicate messages that contain integers
 Some of them use Big Endian and some use Little Endian
 This happens all the time, everywhere

 If you’ve taken any OS/networking course, you know that data is read/
written from/to RAM and then written/read to/from the network “as is”
(i.e., it doesn’t come from registers)

 We have a problem: on a Little Endian machine the 4 hex bytes “00 00
00 10” in RAM mean 231, while on a Big Endian machine, they mean 16

 Somebody has to “lose”, and it turns out the network order is defined as
the Big Endian order: every multi-byte quantity on the network must
always be in the Big Endian order

 And so, when doing networking, ALL Little Endian machines must swap
bytes when sending / receiving

 That’s ok, it doesn’t take much time at all
 But how do we do this in practice?

Network Byte Order
 Say we need to exchange messages that contain this data

structure:
struct {
 int a;
 short b;
} my_data;

 These are 6 contiguous bytes, and so, we can send them over
the network doing something like this:

send_to_network(&my_data, 6);

 See a networking course for the gory details about low-level
communication APIs

 Let’s just assume we have hidden all networking stuff in the
above function, which is defined as:

void send_to_network(void *ptr, int num_bytes);

Network Byte Order
struct {
 int a;
 short b;
} my_data;

send_to_network(&my_data, 6);

 The above code will send the data over to the network exactly
as it is stored in RAM

 So on a Little Endian machine, that’s wrong!
 What we need to do is “package” our 6 bytes into a buffer,

where each multi-byte value has been
 Do do that, all systems provide helper functions
 Let’s see the code…

Network Byte Order
struct {
 int a;
 short b;
} my_data;

// Create a 6-byte buffer
char buffer[6];

// Reverse the bytes of 4-byte int into a new variable
int net_a = htonl(my_data.a);
// Reverse the bytes of the 2-byte short into a new variable
short net_b = htons(my_data.b);

// Copy the reversed values into the buffer
memcpy(buffer, &net_a, sizeof(net_a));
memcpy(buffer + sizeof(net_a), &net_b, sizeof(net_b));

// Send over to the network in network byte-order
send_to_network(buffer, 6);

Network Byte Order

 Of course, the same shenanigans have to
happen on the receiving side

 On a Big Endian machine, the hton*()
functions just do nothing

 On a Little Endian machine, the hton*()
functions perform the byte reversal

 That way, the C code on the previous slide will
work on any machine and is thus portable
 With some overhead of course…

 Wouldn’t the world be nicer if everybody did the
same endianness? :)

Important Takeaways

 The three sections of a NASM program (data,
bss, and text)

 The data and bss directives for declaring
labelled bytes

 The fact that labels are really addresses, and
not at all variables

 Little and Big Endianness
 How networks deal with endianness

Conclusion

 Let’s do some of the posted practice
problems…

 We can now look at programs that use
registers and memory, in the next set of
lecture notes

