NASM Basics |l
Data declarations

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" J
NASM Program Structure

segment .data n n n

® This is a typical program
msg_outputl "The number of ",0

msg_output2 "is "0

o written in assembly
m Before we know what any of

this means (if you can even
" s s see it), we need to learn the

asm‘mainé::ﬁ: 0,0 i setup routine Ove ral I Stru Ctu re

; initialize the counters
mov dword [count_1], ©
mov dword [count_2], ©

dword [count_3], 0

There are 3 main sections or

eax, msg_input
print_string

read_int i m "
eax, 0 Seg e n S L I I |
next_2 + If non-zero, then continue

dword [count_2] ; Increment the counter

; divide edx:eax by ecx
+ compare edx (the remainder) with @
+ If non-zero, then continue

NASM Program Structure

_declaration of

L statically allocated
Initialized data

>data that is allocated
declaration of for the duration of

uninitialized data | program execution
/

B \We'll see later that in

source code these sections
> code don’t have to be in this
order and can be split up
and interleaved

m But for now, let’'s assume
that all programs follow this
exact structure

" J
Relation to high-level code

data segment

bss segment

text segment int main() {
y = x + 12;

E ﬁ/ prlntf (\\%d” , y) ;

"

Relation to high-level code

wessnd These lecture }
wememsy NOtES ‘

text segment

" J
The data and bss segments

® Both segments contains data directives that declare pre-
allocated zones of memory

B There are two kinds of data directives
DX directives: initialized data (D = “defined”)
RESX directives: uninitialized data (RES = “reserved”)

B The “X” above refers to the data size:

Unit Letter(X) Size in bytes
byte B 1
word W 2
double word D 4
quad word Q 8
ten bytes T 10

" A
The DX data directives

® One declares a zone of initialized memory
using three elements:

Label: the name used in the program to refer to
that zone of memory

® A pointer to the zone of memory, i.e., an address
DX, where X is the appropriate letter for the size
of the data being declared
Initial value, with encoding information

m default: decimal

= b: binary

= h: hexadecimal

® O: octal
= quoted: ASCII

"
DX Examples

ml1 db 0
1 byte, whose address is named L1, initialized to O
® Henri dw 1000

2-byte value, initialized to 1000, the address of the first of
these two bytes is named Henri

[= The label (i.e., the name) is the address of a byte oo
. ® In the case of multi-byte values, it's the address of the first byte

i m Often we say “a 2-byte value named Henri” for simplicity, but that
. makes it sound like Henri is a variable that contains a 2-byte value

® This is NOT the case. Henri is a number, which is an address,
which is the address of the first byte of the 2-byte value

® The address of the second byte of the 2-byte value is Henri + 1
. m Be prepared for me saying this over and over and for students not

{ really getting it over and over :

"
DX Examples

ml1 db 0
1 byte, whose address is named L1, initialized to O
® Henri dw 1000

2-byte word, initialized to 1000, the address of the first of these
two bytes is named Henri

m|3 db 110101b

1 byte, named L3, initialized to 110101 in binary
®m what db 0A2h

1 byte, named what, initialized to A2 in hex (note the ‘0’)
m|5 db 170

1 byte, named L5, initialized to 17 in octal (1*8+7=15 in decimal)
m |6 dd OFFFF1A92h (note the 07)

4-byte double word, named L6, initialized to FFFF1A92 in hex
m|7 db “A”

" A
ASCII Code

m Associates 1-byte numerical codes to
characters

Unicode, proposed much later, uses 2 bytes and
thus can encode 28 times more characters (room

for all languages, Chinese, Japanese, accents,
etc.)

® A few values to know:
‘Ais65d/41h
= ‘B’ is 66d / 42h, etc...

‘a’is 97d / 61h
® ‘D’ is 98d / 62h, eftc...

" J——
DX for multiple elements

® Foo do 0,1,2,3
Defines 4 1-byte values, initialized to 0, 1, 2 and 3
Foo is a pointer to (i.e., the address of) the first byte
® The above is equivalent (in terms of memory
content) to:
Stuff db O
What db 1
Eggplant db 2
Chairdb 3
® The only difference is that in the second version

we have a name (label) for the address of each of
the four bytes

" J
Strings as sequences of chars

. L9 d b W” “O” 1 ! ‘d 0

Defines 5 1-byte values, the first 4 being initialized by
an ASCII code (i.e., a character)

Defines a null-terminated string, initialized to
“word\0”

L9 is a pointer to the beginning of the string (i.e., the
address of the first character of the string)

m[10db “word’, O

Equivalent to the above, more convenient to write

" J
DX with the times qualifier

®m Say you want to declare 100 bytes all
initialized to O

® NASM provides a nice shortcut to do this, the
“times” qualifier
m|11 times 100db O
Equivalentto L11 db 0,0,0,....,0 (100 times)

" A
Uninitialized Data

® The RESX directive is very similar to the DX
directive, but always specifies the number of
values to reserve space for

m |20 resw 100

100 uninitialized 2-byte values (so 200 bytes in
total)

L20 is a pointer to the first (byte of the first) 2-byte
value

This can’t be seen as a 100-element array!

m stuff resb 1
One uninitialized byte “named” stuff

"
Data segment example

tmp dd -1
pixels db OFFh, OFEh, OFDh, OFCh
i dw 0
message db “H”, “e”, “1llo”, 0
buffer times 8 db O
max dd 254
28 bytes
- AN
\ Y ! Y s el Y)\ Y g

tmp pixels i message buffer

(4) 4) (2 (6) (8)

"
Data segment example

tmp dd -1

pixels db OFFh, OFEh, OFDh, OFCh

i dw 0

message db “H”, “e”, “1llo”, 0

buffer times 8 db O

max dd 254

28 bytes
A

g
FF FF| FF| FF|FFFE/FD/FC 00| 00| 48| 65|6C 6C| 6F| 00{ 00{ 00| 00| 00| 00| 00| 00| 00| 00| 00|00
\ Y J \ Y) _'_; \ Y J \ Y J \ Y

tmp pixels i message buffer max

(4) 4) (2 (6) (8) (4)

"
Data segment example

tmp dd -1

— - = ~ -

plxel ThIS way of drawmg the memory Content

i ;'f is actually confusing, because it makes it §
messa

rursed 100K lIke labels are variables. A label is
masx only the address of a byte!

3 So let’s redraw it... ¢

FF|FF FFFF FF FE|FD FC 00| 00| 48| 65/6C 6C| 6F| 00,00, 00, 00, 00, 00| 00, 00| 00| 00| 00| 00

\ J \ J \ J] \ J \ J \

| | I \ { Y |
tmp pixels i message buffer max

(4) 4) (2 (6) (8) (4)

"
Data segment example

tmp dd -1
plxel R R R
i
! This is much better, but still a bit strange |
messa
buffe perhaps because the address of a byte i IS §
ax 1@ number, not a symbol (like “tmp”)...
FF| FF|FF FF|FF|FE/FD FC 00| 00| 48| 65|6C/6C|6F| 00| 00| 00/ 00, 00| 00] 00] 00{ 00] 00| 00| 00|FE

|

tmp

pixels

AN N

i message buffer max

"
Labels are symbolic

m L[abels (L1, Henri, etc.) are symbolic names of 32-bit integers that are
addresses of partlcular bytes

®m When the program actuaII?/ runs, each label then corresponds to an
actual 32-bit numerical value

®m For instance, say we have this:

FF|FF FFFF FF FE|FD FC 00| 00| 48| 65/6C 6C| 6F| 00,00, 00, 00, 00, 00| 00| 00| 00| 00| 00| 00

vt T X \ \

tmp pixels ' message buffer max

" J
Labels are symbolic

Labels (L1, Henri, etc.) are symbolic names of 32-bit integers that are

addresses of partlcular bytes

When the program actuaII?/ runs, each label then corresponds to an
ue

actual 32-bit numerical va
For instance, say we have this:

FFIFF

FF|FFFF FE|FDFC 00| 00| 48| 65/6C 6C 6F 00,00, 00, 00, 00| 00| 00| 00| 00

00/ 00|00

FE

\

tmp

VTN \

pixels ' message buffer

At run time, at some point, the above bytes are put in RAM somewhere by

the OS

:

max

At that point, “tmp” is replaced by a numerical value, say AABBCCO00
= And therefore, “pixels” is replaced by AABBCCO04 (because pixels = tmp + 4)

= And “buffer” is replaced by AABBCDO (because buffer = tmp + 16)

When we reason about a memory layout though, we don’t typically give a
specific value to the addresses, but just reason relative to the first byte

" A
Endianness?

00| 00| O0|FE
max dd 254 \)

{

max

In the previous slide | showed the above 4-byte memory
content for a double-word that contains 254 = 000000FEh

While this seems to make sense, it turns out that Intel
processors do not do this!
Yes, the last 4 bytes shown in the previous slide are wrong

The scheme shown above (i.e., bytes in memory follow the
“natural” order): Big Endian

Instead, Intel processors use Little Endian:

FE| 00| 00,00

\)
v

max

"
Register vs. Memory order

® |n registers, values are always in the “correct” order (i.e.,
the Big Endian order), which makes sense mathematically

® On a Little Endian machine, each time you write a register
value to RAM or you read a RAM value into a register, then

the byte order is reversed!
EBX

[An BB | 12] 4 |

EAX Write to Read from
RAM RAM

[Aa BB [12 | 4 |

"
Little/Big Endian

® Motorola and IBM processors use(d) Big Endian
® [ntel/AMD uses Little Endian (used in this class)

® \When writing code in a high-level language one
rarely cares

m But in languages that expose addresses, like in
C, one can definitely expose the Endianness of
the computer

® And thus one can write C code that’s not portable
between an IBM and an Intel!ll

m | et’'s do this RIGHT NOW just for fun...

"
Little/Big Endian

B Endianness only matters when writing multi-
byte quantities to memory and reading them
differently (e.g., byte per byte)

® \When writing assembly code one often does
not care, but we’ll see several examples

when it matters, so it's important to know this
inside out

B Some processors are configurable (either in
hardware or in software) to use either type of
endianness (e.g., MIPS)

Example

pixels times 4 db OFDh

X dd 00010111001101100001010111010011b
blurb db “ad”, “b”, “*h”, 0

buffer times 10 db 1l4do

min dw -19

® \What is the layout and the content of the data
memory segment on a Little Endian
machine?

Byte per byte, in hex

Example

pixels times 4 db OFDh

X dd 00010111001101100001010111010011b
blurb db “ad”, “b”, “*h”, 0

buffer times 10 db 1l4do

min dw -19

® First thing to do: identify the multi-byte

guantities

Example

pixels times 4 db OFDh

X dd 00010111001101100001010111010011b
blurb db “ad”, “b”, “*h”, 0

buffer times 10 db 1l4do

min dw -19

m First thing to do: identify the multi-byte
guantities

= EVERYTHING THAT'S NOT DECLARED AS “db”
IS MULTI-BYTE

m (L db “stuff’ is NOT MULTI-BYTE, it's a
sequence of bytes)

m |n the above: x and min above are multi-byte values

Example
pixels times 4 db OFDh
X dd 00010111001101100001010111010011b
blurb db \\adll , \\b// , \\h// , 0
buffer times 10 db 1l4do
min dw -19
25 bytes
A
4 A\
FDFDIFDFDD3 15| 36|17|61| 64| 62|68/ 00[0C0C|0C 0C|0C/0C0C|0C 0C/0CIED FF
pixels X blurb buffer min

Example
pixels times 4 db OFDh
X dd 00010111001101100001010111010011b
blurb db \\adll , \\b// , \\h// , 0
buffer times 10 db 1l4do
min dw -19
25 bytes
A
4 A\
FDFDIFDFDD3 15| 36|17|61| 64| 62|68/ 00[0C0C|0C 0C|0C/0C0C|0C 0C/0CIED FF
pixels X blurb buffer min

Note that bits within byte are NOT reversed

" A
What about Networks??

® Say you have a network with
Machines that communicate messages that contain integers
Some of them use Big Endian and some use Little Endian
This happens all the time, everywhere

m |f you've taken any OS/networking course, you know that data is read/
written from/to RAM and then written/read to/from the network “as is”
(i.e., it doesn’t come from registers)

® We have a problem: on a Little Endian machine the 4 hex bytes “00 00
00 10” in RAM mean 231, while on a Big Endian machine, they mean 16

®m Somebody has to “lose”, and it turns out the network order is defined as
the Big Endian order: every multi-byte quantity on the network must
always be in the Big Endian order

® And so, when doing networking, ALL Little Endian machines must swap
bytes when sending / receiving

That’s ok, it doesn’t take much time at all
® But how do we do this in practice?

"
Network Byte Order

B Say we need to exchange messages that contain this data
structure:

struct {
int a;

short b;
} my data;

® These are 6 contiguous bytes, and so, we can send them over
the network doing something like this:

send to network (&my data, 6);

= See a networking course for the gory details about low-level
communication APls

m | et’s just assume we have hidden all networking stuff in the
above function, which is defined as:

void send to network(void *ptr, int num bytes) ;

" S
Network Byte Order

struct {
int a;
short b;

} my data;

send to network (&my data, 6);

® The above code will send the data over to the network exactly
as it is stored in RAM

® So on a Little Endian machine, that’s wrong!

® \What we need to do is “package” our 6 bytes into a buffer,
where each multi-byte value has been

® Do do that, all systems provide helper functions
m | et's see the code...

"
Network Byte Order

struct {
int a;
short b;

} my data;

char buffer[6];

int net a (my data.a);

short net b = (my data.b);

memcpy (buffer, &net a, sizeof(net a));
memcpy (buffer + sizeof(net a), &net b, sizeof(net b));

send to network (buffer, 6);

"
Network Byte Order

®m Of course, the same shenanigans have to
happen on the receiving side

® On a Big Endian machine, the hton* ()
functions just do nothing

m On a Little Endian machine, the hton* ()
functions perform the byte reversal

® That way, the C code on the previous slide will
work on any machine and is thus portable

With some overhead of course...

® \Wouldn’t the world be nicer if everybody did the
same endianness? :)

" J
Important Takeaways

® The three sections of a NASM program (data,
bss, and text)

® The data and bss directives for declaring
labelled bytes

® The fact that labels are really addresses, and
not at all variables

m | ittle and Big Endianness
® How networks deal with endianness

" A
Conclusion

m | et's do some of the posted practice
problems...

® \We can now look at programs that use

registers and memory, in the next set of
lecture notes

