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NASM Program Structure

 This is a typical program 
written in assembly 

 Before we know what any of 
this means (if you can even 
see it), we need to learn the 
overall structure 

 There are 3 main sections or 
“segments”…



NASM Program Structure

declaration of 
initialized data
declaration of 

uninitialized data

code

statically allocated 
data that is allocated 
for the duration of 
program execution

data segment

bss segment

text segment

 We’ll see later that in 
source code these sections 
don’t have to be in this 
order and can be split up 
and interleaved 

 But for now, let’s assume 
that all programs follow this 
exact structure



Relation to high-level code

data segment

bss segment

text segment

int x = 12; 

short y; 

int main() { 
  y = x + 12; 
  printf(“%d”, y); 
}



Relation to high-level code

data segment

bss segment

text segment

These lecture 
notes



The data and bss segments
 Both segments contains data directives that declare pre-

allocated zones of memory 
 There are two kinds of data directives 

 DX directives: initialized data	 	 (D = “defined”) 
 RESX directives: uninitialized data	 (RES = “reserved”) 

 The “X” above refers to the data size:

Unit Letter(X) Size in bytes
byte B 1
word W 2

double word D 4
quad word Q 8

ten bytes T 10



The DX data directives

 One declares a zone of initialized memory 
using three elements: 
 Label: the name used in the program to refer to 

that zone of memory 
 A pointer to the zone of memory, i.e., an address 

 DX, where X is the appropriate letter for the size 
of the data being declared 

 Initial value, with encoding information 
 default: decimal 
 b: binary 
 h: hexadecimal 
 o: octal 
 quoted: ASCII



DX Examples
 L1	 db	 0 

 1 byte, whose address is named L1, initialized to 0 
 Henri	 dw	 1000 

 2-byte value, initialized to 1000, the address of the first of 
these two bytes is named Henri 

 The label (i.e., the name) is the address of a byte 
 In the case of multi-byte values, it’s the address of the first byte 
 Often we say “a 2-byte value named Henri” for simplicity, but that 

makes it sound like Henri is a variable that contains a 2-byte value 
 This is NOT the case. Henri is a number, which is an address, 

which is the address of the first byte of the 2-byte value 
 The address of the second byte of the 2-byte value is Henri + 1 
 Be prepared for me saying this over and over and for students not 

really getting it over and over :) 



DX Examples
 L1	 db	 0 

 1 byte, whose address is named L1, initialized to 0 
 Henri	 dw	 1000 

 2-byte word, initialized to 1000, the address of the first of these 
two bytes is named Henri 

 L3	 db	 110101b 
 1 byte, named L3, initialized to 110101 in binary 

 what	 db	 0A2h 
 1 byte, named what, initialized to A2 in hex (note the ‘0’) 

 L5	 db	 17o 
 1 byte, named L5, initialized to 17 in octal (1*8+7=15 in decimal) 

 L6 	 dd	 0FFFF1A92h (note the ‘0’) 
 4-byte double word, named L6, initialized to FFFF1A92 in hex 

 L7	 db	 “A” 



ASCII Code

 Associates 1-byte numerical codes to 
characters 
 Unicode, proposed much later, uses 2 bytes and 

thus can encode 28 times more characters (room 
for all languages, Chinese, Japanese, accents, 
etc.) 

 A few values to know: 
 ‘A’ is 65d / 41h 

 ‘B’ is 66d / 42h, etc… 
 ‘a’ is 97d / 61h 

 ‘b’ is 98d / 62h, etc…



DX for multiple elements
 Foo	 db	 0, 1, 2, 3 

 Defines 4 1-byte values, initialized to 0, 1, 2 and 3  
 Foo is a pointer to (i.e., the address of) the first byte 

 The above is equivalent (in terms of memory 
content) to: 
 Stuff db 0 
 What db 1 
 Eggplant db 2 
 Chair db 3 

 The only difference is that in the second version 
we have a name (label) for the address of each of 
the four bytes



Strings as sequences of chars

 L9	db	 “w”, “o”, ‘r’, ‘d’, 0 
 Defines 5 1-byte values, the first 4 being initialized by 

an ASCII code (i.e., a character) 
 Defines a null-terminated string, initialized to 

“word\0” 
 L9 is a pointer to the beginning of the string (i.e., the 

address of the first character of the string) 

 L10 db	 “word”, 0 
 Equivalent to the above, more convenient to write



DX with the times qualifier

 Say you want to declare 100 bytes all 
initialized to 0 

 NASM provides a nice shortcut to do this, the 
“times” qualifier 

 L11  times  100 db  0 
 Equivalent to   L11  db 0,0,0,....,0  (100 times)



Uninitialized Data

 The RESX directive is very similar to the DX 
directive, but always specifies the number of 
values to reserve space for 

 L20 	 resw	100 
 100 uninitialized 2-byte values (so 200 bytes in 

total) 
 L20 is a pointer to the first (byte of the first) 2-byte 

value 
 This can’t be seen as a 100-element array! 

 stuff	 resb 1 
 One uninitialized byte “named” stuff



Data segment example
tmp	 	 dd	 -1 
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh 
i		 	 dw 	 0 
message	 db	 “H”, “e”, “llo”, 0 
buffer	 times  8	 db  0 
max	 	 dd	 254

28 bytes

tmp 
(4)

pixels 
(4)

i 
(2)

message 
(6)

buffer 
(8)

max 
(4)



Data segment example
tmp	 	 dd	 -1 
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh 
i		 	 dw 	 0 
message	 db	 “H”, “e”, “llo”, 0 
buffer	 times  8	 db  0 
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

28 bytes

tmp 
(4)

pixels 
(4)

i 
(2)

message 
(6)

buffer 
(8)

max 
(4)



Data segment example
tmp	 	 dd	 -1 
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh 
i		 	 dw 	 0 
message	 db	 “H”, “e”, “llo”, 0 
buffer	 times  8	 db  0 
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp 
(4)

pixels 
(4)

i 
(2)

message 
(6)

buffer 
(8)

max 
(4)

This way of drawing the memory content 
is actually confusing, because it makes it 
look like labels are variables. A label is 
only the address of a byte!  
So let’s redraw it…



Data segment example
tmp	 	 dd	 -1 
pixels	 db	 0FFh, 0FEh, 0FDh, 0FCh 
i		 	 dw 	 0 
message	 db	 “H”, “e”, “llo”, 0 
buffer	 times  8	 db  0 
max	 	 dd	 254

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max 

This is much better, but still a bit strange 
perhaps because the address of a byte is 
a number, not a symbol (like “tmp”)…



Labels are symbolic
 Labels (L1, Henri, etc.) are symbolic names of 32-bit integers that are 

addresses of particular bytes 
 When the program actually runs, each label then corresponds to an 

actual 32-bit numerical value 
 For instance, say we have this:

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max



Labels are symbolic
 Labels (L1, Henri, etc.) are symbolic names of 32-bit integers that are 

addresses of particular bytes 
 When the program actually runs, each label then corresponds to an 

actual 32-bit numerical value 
 For instance, say we have this:

 At run time, at some point, the above bytes are put in RAM somewhere by 
the OS 

 At that point, “tmp” is replaced by a numerical value, say AABBCC00 
 And therefore, “pixels” is replaced by AABBCC04 (because pixels = tmp + 4) 
 And “buffer” is replaced by AABBCD0 (because buffer = tmp + 16) 

 When we reason about a memory layout though, we don’t typically give a 
specific value to the addresses, but just reason relative to the first byte

FF FE FD FC 00 00 48 65 6C 6C 6F 00 00 00 00 00 00 00 00 00 00 00 00 FEFF FF FF FF

tmp pixels i message buffer max



Endianness?

max	 	 dd	 254
00 00 00 FE

max

 In the previous slide I showed the above 4-byte memory 
content for a double-word that contains 254 = 000000FEh 

 While this seems to make sense, it turns out that Intel 
processors do not do this! 
 Yes, the last 4 bytes shown in the previous slide are wrong 

 The scheme shown above (i.e., bytes in memory follow the 
“natural” order): Big Endian 

 Instead, Intel processors use Little Endian:

FE 00 00 00

max



Register vs. Memory order
 In registers, values are always in the “correct” order (i.e., 

the Big Endian order), which makes sense mathematically 
 On a Little Endian machine, each time you write a register 

value to RAM or you read a RAM value into a register, then 
the byte order is reversed!

AA BB 12 4E AA BB 12 4E

4E 12 BB AA……… ………

RAM

EAX EBX
Write to  

RAM
Read from  

RAM



Little/Big Endian

 Motorola and IBM processors use(d) Big Endian 
 Intel/AMD uses Little Endian (used in this class) 
 When writing code in a high-level language one 

rarely cares 
 But in languages that expose addresses, like in 

C, one can definitely expose the Endianness of 
the computer 

 And thus one can write C code that’s not portable 
between an IBM and an Intel!!! 

 Let’s do this RIGHT NOW just for fun…



Little/Big Endian

 Endianness only matters when writing multi-
byte quantities to memory and reading them 
differently (e.g., byte per byte) 

 When writing assembly code one often does 
not care, but we’ll see several examples 
when it matters, so it’s important to know this 
inside out 

Some processors are configurable (either in 
hardware or in software) to use either type of 
endianness (e.g., MIPS) 



Example

 What is the layout and the content of the data 
memory segment on a Little Endian 
machine? 
 Byte per byte, in hex

pixels	 times 4	 db	 0FDh 
x		 	 dd 	 00010111001101100001010111010011b 
blurb		 db	 “ad”, “b”, “h”, 0 
buffer	 times  10	 db  14o 
min	 	 dw	 -19



Example

 First thing to do: identify the multi-byte 
quantities

pixels	 times 4	 db	 0FDh 
x		 	 dd 	 00010111001101100001010111010011b 
blurb		 db	 “ad”, “b”, “h”, 0 
buffer	 times  10	 db  14o 
min	 	 dw	 -19



Example

 First thing to do: identify the multi-byte 
quantities 
 EVERYTHING THAT’S NOT DECLARED AS “db” 

IS MULTI-BYTE 
 (L db “stuff” is NOT MULTI-BYTE, it’s a 

sequence of bytes) 
 In the above: x and min above are multi-byte values

pixels	 times 4	 db	 0FDh 
x		 	 dd 	 00010111001101100001010111010011b 
blurb		 db	 “ad”, “b”, “h”, 0 
buffer	 times  10	 db  14o 
min	 	 dw	 -19



Example
pixels	 times 4	 db	 0FDh 
x		 	 dd 	 00010111001101100001010111010011b 
blurb		 db	 “ad”, “b”, “h”, 0 
buffer	 times  10	 db  14o 
min	 	 dw	 -19

173615D3 61 64 62 68 00 ED FFFD FD FD FD

25 bytes

0C 0C 0C 0C 0C 0C 0C 0C 0C 0C

pixels x blurb buffer min



Example
pixels	 times 4	 db	 0FDh 
x		 	 dd 	 00010111001101100001010111010011b 
blurb		 db	 “ad”, “b”, “h”, 0 
buffer	 times  10	 db  14o 
min	 	 dw	 -19

173615D3 61 64 62 68 00 ED FFFD FD FD FD

25 bytes

0C 0C 0C 0C 0C 0C 0C 0C 0C 0C

pixels x blurb buffer min

Note that bits within byte are NOT reversed



What about Networks??
 Say you have a network with  

 Machines that communicate messages that contain integers 
 Some of them use Big Endian and some use Little Endian 
 This happens all the time, everywhere 

 If you’ve taken any OS/networking course, you know that data is read/
written from/to RAM and then written/read to/from the network “as is” 
(i.e., it doesn’t come from registers) 

 We have a problem: on a Little Endian machine the 4 hex bytes “00 00 
00 10” in RAM mean 231, while on a Big Endian machine, they mean 16 

 Somebody has to “lose”, and it turns out the network order is defined as 
the Big Endian order: every multi-byte quantity on the network must 
always be in the Big Endian order 

 And so, when doing networking, ALL Little Endian machines must swap 
bytes when sending / receiving  

 That’s ok, it doesn’t take much time at all 
 But how do we do this in practice?



Network Byte Order
 Say we need to exchange messages that contain this data 

structure:
struct { 
  int a; 
  short b; 
} my_data;

 These are 6 contiguous bytes, and so, we can send them over 
the network doing something like this:

send_to_network(&my_data, 6);

 See a networking course for the gory details about low-level 
communication APIs 

 Let’s just assume we have hidden all networking stuff in the 
above function, which is defined as:

void send_to_network(void *ptr, int num_bytes);



Network Byte Order
struct { 
  int a; 
  short b; 
} my_data; 

send_to_network(&my_data, 6);

 The above code will send the data over to the network exactly 
as it is stored in RAM 

 So on a Little Endian machine, that’s wrong! 
 What we need to do is “package” our 6 bytes into a buffer, 

where each multi-byte value has been 
 Do do that, all systems provide helper functions 
 Let’s see the code…



Network Byte Order
struct { 
  int a; 
  short b; 
} my_data; 

// Create a 6-byte buffer 
char buffer[6]; 

// Reverse the bytes of 4-byte int into a new variable 
int net_a = htonl(my_data.a); 
// Reverse the bytes of the 2-byte short into a new variable 
short net_b  = htons(my_data.b); 

// Copy the reversed values into the buffer 
memcpy(buffer, &net_a, sizeof(net_a)); 
memcpy(buffer + sizeof(net_a), &net_b, sizeof(net_b)); 

// Send over to the network in network byte-order 
send_to_network(buffer, 6); 



Network Byte Order

 Of course, the same shenanigans have to 
happen on the receiving side 

 On a Big Endian machine, the hton*() 
functions just do nothing 

 On a Little Endian machine, the hton*() 
functions perform the byte reversal 

 That way, the C code on the previous slide will 
work on any machine and is thus portable 
 With some overhead of course… 

 Wouldn’t the world be nicer if everybody did the 
same endianness? :)



Important Takeaways

 The three sections of a NASM program (data, 
bss, and text) 

 The data and bss directives for declaring 
labelled bytes 

 The fact that labels are really addresses, and 
not at all variables 

 Little and Big Endianness 
 How networks deal with endianness



Conclusion

 Let’s do some of the posted practice 
problems… 

 We can now look at programs that use 
registers and memory, in the next set of 
lecture notes


