
Henri Casanova (henric@hawaii.edu)

ICS312
Machine-Level and

Systems Programming

NASM Basics III
Using Registers
and RAM

Indirection
 In C, indirection is done with the * operator
int *var; // var is an integer that is
 // the address of some byte in RAM
*var = 2; // *var is the value at address var

 In assembly, indirection is done with []
[eax] ; if eax contains an integer that
 ; is the 32-bit address of some byte
 ; in RAM, then [eax] is the value
 ; at that address.

[ax] ; Invalid since ax is a 16-bit integer,
 ; and addresses are 32 bits!

Memory Reference Operands
 Remember that we had said that instructions can take operands

that are memory locations
 This is done using the [] brackets, for instance:

 add eax, [ebx]
 eax = eax + 4-byte content in RAM, where the address of the

first byte is the value of ebx (we often will say “at address ebx”)
 mov [ecx], dx

 Write to RAM, at address ecx, the 2-byte value in dx (the first
byte will be written at address bx, the second byte at address
bx + 1)

 mov [L1], bh
 Write to RAM, at address L1, the 1-byte value in bh

 In all the above, it’s easy to know how many bytes are read/written
because one of the operands is a register

 But what if none of the operands is a register?

Data Size Specifiers
 Say we write in our program: mov [eax], 12
 This is ambiguous: Do we mean a 1-byte value, a 2-byte value, or

a 4-byte value?
 The assembler (in our case NASM) will actually throw an error

message that says “operation size not specified”
 We need to specify the data size:

 mov byte [eax], 12 ; writes 0C to RAM
 mov word [eax], 12 ; writes 000C to RAM
 mov dword [eax], 12 ; writes 0000000C to RAM
 add word [ebx], 12 ; performs a 2-byte add

 It’s commonplace to forget the size specifier, but since the
assembler complains about it, we never run the risk of leaving it
ambiguous in our programs

At Most One Memory Operand
 At most one of the operands to an instruction can be a memory

location
 mov eax, [ebx] ; OK
 mov [eax], ebx ; OK
 mov [eax], [ebx] ; NOT OK
 add dword [eax], 12 ; OK
 add dword [eax], [ebx] ; NOT OK

 So if we need, for instance, to copy a 4-byte value from one
memory location to another, we have to use 2 instructions and a
register:

mov dword [L2], [L1] ; forbidden
; instead do it in two steps, “wasting” a register
mov edx, [L1] ; read 4 bytes from RAM
mov [L2], edx ; write them back to RAM

Use of Labels
 In the previous slide, we had things like [L1]
 This makes sense because L1 is an address, not a value
 Therefore, a common use of the label in the code is as a

memory operand, in between square brackets ‘[‘ ‘]’
 LABELS HAVE NO TYPE!

 It’s tempting to think of them as variables, but they are
much more limited: just the address of a byte somewhere

 So, regardless of how a label was defined, we can do:
 mov al, [L1] ; a 1-byte copy
 mov ax, [L1] ; a 2-byte copy
 mov eax,[L1] ; a 4-byte copy

 Just to make sures it’s clear, let’s see an example

Labels have NO TYPE
 Say we have the following data segment
	 	 L	 db	 0F0h, 0F1h, 0F2h, 0F3h
 It seems that the programmer means this as 4-

element array of 1-byte values
 But if we do: mov ax, [L]
 Then, ax = F1 F0
 That is, although we declared 1-byte values, here we

“glue” two of them as a 2-byte value
 Something that high-level languages often prohibit

 The only thing that matters is what bytes are in RAM,
and that some of them have addresses for which we
have symbolic names (like L1)

 In fact, there are many equivalent declarations…

Labels have NO TYPE
L1	 db	 0F0h, 0F1h, 0F2h, 0F3h

L1	 dw	 0F1F0h, 0F3F2h

L1	 dd	 0F3F2F1F0h

 The above three declarations are THE SAME
 They define the exact same 4 consecutive byte

values in RAM: F0 F1 F2 F3
 The address of the first byte is L1

 Each way of writing it may give us some guess about
the programmer’s intent, but that’s it
 And the programmer could be purposely cryptic

Register-Order Values in Programs
 In the data segment declarations and the code, all

immediate values (numerical constants) are written in
register order (when written in hex, binary, octal)

 This should have been obvious all along, but just in case
 Consider the following data segment declaration
 L1	 dd	 0AABBCCDDh

 The instruction mov eax,[L1] would put AABBCCDD into eax
 Because the memory content was DDCCBBAA!

Consider the following instruction:
 add 	eax, 00001h

 The above adds 1 to eax, and not 2^8 (i.e., 0100 in hex)

 It would be really confusing to write numbers in (little
endian) memory order in the program

Little Endian

mov eax, 0AFBBCCDDh ; sets value of register EAX
mov [M1], eax ; copy EAX’s value to RAM
mov ebx, [M1] ; copy value from RAM to EBX

[M1]

ebx

eax

Registers Memory

 Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

Little Endian

mov eax, 0AFBBCCDDh ; sets value of register EAX
mov [M1], eax ; copy EAX’s value to RAM
mov ebx, [M1] ; copy value from RAM to EBX

[M1]

ebx

eax

Registers Memory

 Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

AF BB CC DD

Little Endian

mov eax, 0AFBBCCDDh ; sets value of register EAX
mov [M1], eax ; copy EAX’s value to RAM
mov ebx, [M1] ; copy value from RAM to EBX

[M1]

ebx

eax

Registers Memory

 Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

AF BB CC DD AFBBCCDD

Little Endian

mov eax, 0AFBBCCDDh ; sets value of register EAX
mov [M1], eax ; copy EAX’s value to RAM
mov ebx, [M1] ; copy value from RAM to EBX

[M1]

ebx

eax

Registers Memory

 Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

AF BB CC DD AFBBCCDD

AF BB CC DD

Example

 Data segment (little endian):
 L1	 db	 0AAh, 0BBh
 L2	 dw	 0CCDDh
 L3	 db	 0EEh, 0FFh
 Program:
 mov eax, [L2]
 mov ax, [L3]
 mov [L1], eax

 What’s the final memory content?

Solution (1)
 Data segment (little endian):
L1	 db	 0AAh, 0BBh
L2	 dw	 0CCDDh
L3	 db	 0EEh, 0FFh

AA BB DD CC EE FF
L1 L2 L3

Solution (2)

mov eax, [L2] ; eax = FF EE CC DD

mov ax, [L3]	 ; eax = FF EE FF EE

mov [L1], eax ; write EE FF EE FF in RAM

AA BB DD CC EE FF
L1 L2 L3

EE FF EE FF EE FF
L1 L2 L3

Final memory content

Brackets or no Brackets
 mov eax, [L]

 Copies the content at address L into eax
 Copies 32 bits of content, because eax is a 32-bit register

 mov eax, L
 Copies the 32-bit address L into eax
 eax now contains a number that happens to be an address (we call that

a pointer!)
 mov ebx, [eax]

 Copies the content at the address whose value is stored in eax into ebx
 In this example, given the above instructions, eax = L

 inc eax
 Increase eax by one (so now eax = L + 1, given the above instructions)

 mov ebx, [eax]
 Copies the content at the address whose value is stored in eax (= L + 1

in this example so far) into ebx

Indirection with an Offset

 You can add/subtract a constant offset to the
address insides the []

mov	 eax, L
add	 eax, 2
mov 	 dword [eax], 42

mov	 eax, L
mov 	 dword [eax+2], 42

mov 	 dword [L+2], 42

mov 	 dword [M-3], 42

Indirection with an Offset

 In assembly when we say “+2” to an address it’s
necessarily adding 2 to the address to “jump over” 2
bytes
 Because we do not have a notion of data types!

 High-level languages that support pointers (C, C++,
Rust, etc) however, try to be helpful because we
declared data types in our programs!

 This creates quite a bit of confusion when learning
assembly programming after learning high-level
programming

 So let’s remove that confusion right now with a
simple example…

Low-/High-Level Indirection

int *ptr;
*(ptr + 2) = -1;

?? ?? ?? ?? ?? ??

ptr

?? ?? FF FF FF FF

ptr + 2 * sizeof(int)

mov eax, ptr;
mov dword [eax + 8], -1

The compiler is “helping”: ptr is a
pointer to 4-byte values, so when
the user wrote “+2” they really
mean “jump over the next two
elements” not “jump over the next
two bytes”

In assembly we don’t have data
types: the only thing we can
“talk about” are bytes. So to
skip over two 4-byte elements,
we have to do +8, not +2

Low-level-like High-level Code

int *ptr;
*(ptr + 2) = -1;

int *ptr;
*((int *)((char *)ptr + 8)) = -1;

 These two code fragments do the exact same thing
 By casting the int* pointer to a char* pointer, we “tell”

the compiler that ptr is now a pointer to 1-byte elements
 So when we do +8, that means skip over 8 1-byte values
 Then we cast the pointer back to in int* pointer
 So that we write a 4-byte value (FF FF FF FF) at that

address

“Big” Example
first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

What is the content of the data segment after the code
executes on a Little Endian Machine?

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00

first second third

4F 12 A4 A5 00 61 64 66 00 00

00 00 00 00

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

00 00

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00 4F 12 A4 A5 00 61 64 66 xx xx

00 00 00 00

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

xx xx

Put an address into eax
(this works because
our addresses are 32-bit
and thus fit into 4-byte
registers, just like any
other 4-byte values!)

first second third

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00 4F 12 A4 A5 00 61 64 66 xx xx

00 00 00 00

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

xx xx

Increment that address
by 1, thus now pointing
to the next byte

first second third

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00 4F 12 A4 A5 00 61 64 66 xx xx

A5 A4 12 4F

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

xx xx

Put the 4 bytes at
that address into ebx
(note the Little Endian)

first second third

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00 4F 12 A4 4F 12 A4 A5 66 xx xx

A5 A4 12 4F

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

xx xx

Copy 4 bytes to memory
at address second

first second third

“Big” Example

mov	 eax, first
inc	 eax
mov	 ebx, [eax]
mov	 [second], ebx
mov 	 byte [third], 11o

00 4F 12 A4 4F 12 09 A5 66 xx xx

A5 A4 12 4F

eax

ebx

first		 db	 00h, 04Fh, 012h, 0A4h
second	 dw	 165
third		 db	 “adf”

xx xx

Write 1 byte at address
third

first second third

Label values
 Note that after the instruction mov eax, first, I didn’t

show a value for eax but just the classical “pointer arrow”
to the correct byte

 This is because although at runtime the label first will
actually have some numerical value, we don’t know what it
will be without running the program

 I could have added to the example something like: “oh, and
by the way, first = FF FF 12 38”

 Then, we could have known the numerical value of all the
addresses that the program manipulates

 Instead of saying “the address of the 2nd byte” or instead of
drawing some pointer arrow, we could have just said FF FF 12 39

Assembly is Dangerous
 The previous example is really a terrible program
 But it’s a good demonstration of why the assembly

programmer must be really careful
 For instance, we were able to store 4 bytes into a 2-byte label,

thus overwriting the first 2 characters of a string that merely
happened to be stored in memory next to that 2-byte label
 again: LABELS ARE NOT VARIABLES AT ALL

 Playing such tricks can lead to very clever programs that do
things that would be impossible (or very cumbersome) to do
with many high-level programming language (e.g., in Java)

 But you really must know what you’re doing
 Typically such behaviors are bugs, which you will have, which

is why we’re doing all this
 Let’s try to reproduce that behavior in C, which is done by

doing “casting of pointers” as in a few slides ago…

x86 Assembly is Dangerous
 Another dangerous thing we did in our assembly program was the

use of unaligned memory accesses
 We stored a 4-byte quantity at some address
 We incremented the address by 1
 We read a 4-byte quantity from the incremented address!
 This really removes all notion of a structured memory (it’s only bytes)

 Some architectures (not x86) only allow aligned accesses
 Accessing an X-byte quantity can only be done for an address that’s a

multiple of X!

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

bytes

words

dwords

qwords

Important Takeaways

 Indirection with the [] bracket NASM syntax
 At most one set of brackets for operands to an

instruction
 The need to specify data size when

ambiguous
 The fact that labels are not variables,

because they have no types
 The difference between an address offset in

low-level assembly and in high-level code
 The “danger” / “power” of being able to

dereference any address willy-nilly

Conclusion
 Some of the programs we’ve seen are horrible, and you’re thinking “I’ll

never do that”
 But, you will have bugs and your code will do horrible stuff like that even

though you don’t mean it to
 So you need to be able to trace/understand such behaviors for debugging

purposes
 And also to reverse-engineer code that’s just clever and exploits the “danger”

aspect of assembly
 Let’s do some of the practice problems for these lecture notes…
 We also have a sample homework assignment

 Next week we’ll have an in-class quiz on this module
 Our first midterm will about about this content

 Date to be announced (midterm will be after we’re done with the next
module)

