NASM Basics i
Using Registers
and RAM

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

Indirection

® |n C, indirection is done with the * operator

int *var;

*var = 2;

// var is an integer that is
// the address of some byte in RAM
// *var is the wvalue at address var

B |n assembly, indirection is done with []

[eax] ;

4

°
4

[ax] ;

if eax contains an integer that

; is the 32-bit address of some byte

in RAM, then [eax] is the wvalue
at that address.

Invalid since ax is a 16-bit integer,
and addresses are 32 bits!

" J
Memory Reference Operands

B Remember that we had said that instructions can take operands
that are memory locations
® This is done using the [] brackets, for instance:
add eax, [ebx]

m eax = eax + 4-byte content in RAM, where the address of the
first byte is the value of ebx (we often will say “at address ebx”)
mov [ecx], dx
= Write to RAM, at address ecx, the 2-byte value in dx (the first
byte will be written at address bx, the second byte at address
bx + 1)
mov [L1l], bh

= \Write to RAM, at address L1, the 1-byte value in bh

® |n all the above, it's easy to know how many bytes are read/written
because one of the operands is a register

m But what if none of the operands is a register?

" J——
Data Size Specifiers

m Say we write in our program: mov [eax], 12

® This is ambiguous: Do we mean a 1-byte value, a 2-byte value, or
a 4-byte value?

® The assembler (in our case NASM) will actually throw an error
message that says “operation size not specified”
® \We need to specify the data size:
mov byte [eax], 12 ; writes 0C to RAM
mov word [eax], 12 ; writes 000C to RAM
mov dword [eax], 12 ; writes 0000000C to RAM
add word [ebx], 12 ; performs a 2-byte add

® |t's commonplace to forget the size specifier, but since the
assembler complains about it, we never run the risk of leaving it
ambiguous in our programs

At Most One Memory Operand

® At most one of the operands to an instruction can be a memory

location
mov eax, [ebx]
mov [eax], ebx
mov [eax], [ebx]
add dword [eax], 12
add dword [eax], [ebx]

; OK
; OK
; NOT OK
; OK
NOT OK

b Y

m So if we need, for instance, to copy a 4-byte value from one
memory location to another, we have to use 2 instructions and a

register:
mov dword [L2}], [L1]} ;
; instead do it in two
mov edx, [L1l] ;
mov [L2], edx ;

forbidden

steps, “wasting” a register
read 4 bytes from RAM
write them back to RAM

" A
Use of Labels

® |n the previous slide, we had things like [L1]
® This makes sense because L1 is an address, not a value

®m Therefore, a common use of the label in the code is as a
memory operand, in between square brackets ‘[‘]’

m | ABELS HAVE NO TYPE!

It's tempting to think of them as variables, but they are
much more limited: just the address of a byte somewhere

m S0, regardless of how a label was defined, we can do:
mov al, [L1l] ;a 1-byte copy
mov ax, [L1l] ;a 2-byte copy
mov eax, [L1l] ;a 4-byte copy

m Just to make sures it’s clear, let's see an example

" A
Labels have NO TYPE

®m Say we have the following data segment
L db OFOh, OFlh, OF2h, OF3h

® |t seems that the programmer means this as 4-
element array of 1-byte values

m But if we do: mov ax, [L]

m Then,ax=F1FO

® That is, although we declared 1-byte values, here we
“glue” two of them as a 2-byte value

= Something that high-level languages often prohibit

® The only thing that matters is what bytes are in RAM,
and that some of them have addresses for which we
have symbolic names (like L1)

B |n fact, there are many equivalent declarations...

" A
Labels have NO TYPE

db OFOh, OFlh, OF2h, OF3h

L1 dw OF1FOh, OF3F2h

L1 dd OF3F2F1FOh

B The above three declarations are THE SAME

= They define the exact same 4 consecutive byte
values in RAM: FOF1 F2 F3

= The address of the first byte is L1

®m Each way of writing it may give us some guess about
the programmer’s intent, but that's it

= And the programmer could be purposely cryptic

"
Register-Order Values in Programs

® |n the data segment declarations and the code, all
immediate values (numerical constants) are written in
register order (when written in hex, binary, octal)

This should have been obvious all along, but just in case
m Consider the following data segment declaration

L1l dd OAABBCCDDh
The instruction mov eax, [L1] would put AABBCCDD into eax
Because the memory content was DDCCBBAA!
m Consider the following instruction:
add eax, 00001h
The above adds 1 to eax, and not 2”8 (i.e., 0100 in hex)

® [t would be really confusing to write numbers in (little
endian) memory order in the program

'_
Little Endian

® Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

mov eax, OAFBBCCDDh ; sets value of register EAX
mov [Ml], eax ; copy EAX’'s value to RAM
mov ebx, [M1l] ; copy value from RAM to EBX

'_
Little Endian

® Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

mov eax, OAFBBCCDDh ; sets value of register EAX
mov [Ml], eax ; copy EAX’'s value to RAM
mov ebx, [M1l] ; copy value from RAM to EBX

ISEIEED

'_
Little Endian

® Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

mov eax, OAFBBCCDDh ; sets value of register EAX
mov [Ml], eax ; copy EAX’'s value to RAM
mov ebx, [M1l] ; copy value from RAM to EBX

AF(BB CClOD o[cc] s | AF

'_
Little Endian

® Now that we know how to have memory locations as operands,
we can see the Little Endian behavior in assembly

mov eax, OAFBBCCDDh ; sets value of register EAX
mov [Ml], eax ; copy EAX’'s value to RAM
mov ebx, [M1l] ; copy value from RAM to EBX

AF(BB CClOD o[cc] s | AF

ISEIEED

"
Example

m Data segment (little endian):

L1 db OAAh, OBBh
L.2 dw OCCDDh
L3 db OEEh, OFFh

® Program:
mov eax, [L2]
mov ax, [L3]
mov [Ll], eax

® \What's the final memory content?

Solution (1)

m Data segment (little endian):

L1l
L2
L3

db
dw
db

0AAh, OBBh
0CCDDh

OEEh, OFFh

L1

L2

L3

BB

DD

CC

EE

FF

"
Solution (2)

L1 L2 L3
AA BB |DD|CC|EE |FF

mov eax, [L2] ; eax = FF EE CC DD
mov ax, [L3] ; eax = FF EE FF EE

mov [Ll], eax ; write EE FF EE FF in RAM

L1 L2 L3
EE |FF [EE|FF |[EE|FF Final memory content

" A
Brackets or no Brackets

B mov eax, [L]
Copies the content at address L into eax
Copies 32 bits of content, because eax is a 32-bit register

® mov eax, L
Copies the 32-bit address L into eax

eax now contains a number that happens to be an address (we call that
a pointer!)

® mov ebx, [eax]

Copies the content at the address whose value is stored in eax into ebx
In this example, given the above instructions, eax = L

B |nc eax
Increase eax by one (so now eax = L + 1, given the above instructions)

® mov ebx, [eax]

Copies the content at the address whose value is stored in eax (=L + 1
in this example so far) into ebx

" A
Indirection with an Offset

® You can add/subtract a constant offset to the
address insides the [|

mov eax, L

add eax, 2

mov dword [eax], 42
mov eax, L
mov dword [eax+2], 42

mov dword [L+2], 42

mov dword [M-3], 42

" A
Indirection with an Offset

® |n assembly when we say “+2” to an address it's
necessarily adding 2 to the address to “jump over” 2
bytes

Because we do not have a notion of data types!

® High-level languages that support pointers (C, C++,
Rust, etc) however, try to be helpful because we
declared data types in our programs!

® This creates quite a bit of confusion when learning
assembly programming after learning high-level
programming

® S0 let’'s remove that confusion right now with a
simple example...

Low-/High-Level Indirection

ptr —\

ptr + 2 * sizeof(int) —\

e “,

The compiler is “helping”: ptris a
pointer to 4-byte values, so when
the user wrote “+2” they really
mean “jump over the next two
elements” not “jump over the next
two bytes”

w

P77 |7 |7 1707 |77

??

??

??

FF [FF[FF

mov eax, ptr;
mov dword [eax

=

In assembly we don’t have data
 types: the only thing we can
“talk about” are bytes. So to
skip over two 4-byte elements,
we have to do +8, not +2

" J
Low-level-like High-level Code

int *ptr;
*(ptr)

int *ptr;
*((int *) ((char *)ptr

® These two code fragments do the exact same thing

= By casting the int* pointer to a char* pointer, we “tell”
the compiler that ptr is now a pointer to 1-byte elements

= So when we do +8, that means skip over 8 1-byte values
= Then we cast the pointer back to in int* pointer

= So that we write a 4-byte value (FF FF FF FF) at that
address

"
“Big” Example

first db OOh, O04Fh, 012h, OA4h
second dw 165
third db “adf”

mov eax, first

inc eax

mov ebx, [eax]

mov [second], ebx
mov byte [third], 11lo

What is the content of the data segment after the code
executes on a Little Endian Machine?

"
“Big” Example

first db OOh, 04Fh, 012h, 0OA4h
second dw 165
third db “adf”
mov eax, first
inc eax
mov ebx, [eax]
mov [second], ebx
mov byte [third], 11lo
00(4F| 12| A4 A5/ 00| 61| 64| 66 00{ 00| 00|00
first second third 00(00| 00| 00

eax

ebx

"
“Big” Example

eax

ebx

first db 00h, 04Fh, 012h, OA4dh
second dw 165
third db “adf”
mev. . ea® first Put an address into eax
inc eax (this works because
mov ebx, [eax] our addresses are 32-bit
mov [second] , ebx and thUS f|t IntO 4'byte
byt third], 11 registers, just like any
mev yte [third] © other 4-byte values!)
00|4F| 12| A4| A5/ 00| 61| 64| 66 XX [XX | XX | XX
t t 1 —
first second third 00| 00| 00| 00

"
“Big” Example

eax

first db OOh, 0O4Fh, 012h, OA4h

second dw 165

third db “adf”
mov eax, first
inc eax Increment that address
mov ebx, [eax] by 1, thus now pointing
mov [second], ebx to the next byte
mov byte [third], 11lo

00|4F| 12 A4| A5| 00 6“\& XX | XX | XX

T

first

T

T

second third

00l 0ol 0oloo] €bx

"
“Big” Example

eax

ebx

first db OOh, 0O4Fh, 012h, OA4h
second dw 165
third db “adf”
mov eax, first
inc eax Put the 4 bytes at
mov ebx, [eax] that address into ebx
mov [second] , ebx (nOte the Little Endian)
mov byte [third], 11lo
00| 4F| 12| A4| A5| 00 6“\& XX | XX | XX
1 t —
first second third AS| A4\ 12| 4F

"
“Big” Example

first db OOh, 04Fh, 012h, OA4h
second dw 165
third db “adf”

mov eax, first

inc eax Copy 4 bytes to memory
mov ebx, [eax] at address second

mov [second] , ebx
mov byte [third], 11lo

00| 4F] 12] A4l 2F] 12 Aﬁ eax

t t 1 ~— ebx
first second third A5|A4| 12| 4F

"
“Big” Example

first db OOh, 04Fh, 012h, OA4h
second dw 165
third db “adf”

mov eax, first
inc eax Write 1 byte at address
mov ebx, [eax] third

mov [second] , ebx
mov byte [third], 11lo

00| 4F| 12| A4 4F] 12 om eax

t t 1 ~— ebx
first second third A5|A4| 12| 4F

" A
Label values

m Note that after the instruction mov eax, first, | didn’t
show a value for eax but just the classical “pointer arrow”
to the correct byte

m This is because although at runtime the label £irst will
actually have some numerical value, we don’'t know what it
will be without running the program

® | could have added to the example something like: “oh, and
by the way, first = FF FF 12 38"

® Then, we could have known the numerical value of all the
addresses that the program manipulates

Instead of saying “the address of the 2nd byte” or instead of
drawing some pointer arrow, we could have just said FF FF 12 39

Assembly is Dangerous

The previous example is really a terrible program

But it's a good demonstration of why the assembly
programmer must be really careful

For instance, we were able to store 4 bytes into a 2-byte label,
thus overwriting the first 2 characters of a string that merely
happened to be stored in memory next to that 2-byte label

again: LABELS ARE NOT VARIABLES AT ALL

Playing such tricks can lead to very clever programs that do
things that would be impossible (or very cumbersome) to do
with many high-level programming language (e.g., in Java)

But you really must know what you're doing

Typically such behaviors are bugs, which you will have, which
IS why we're doing all this

Let’s try to reproduce that behavior in C, which is done by
doing “casting of pointers” as in a few slides ago...

"
x86 Assembly is Dangerous

®m Another dangerous thing we did in our assembly program was the
use of unaligned memory accesses

We stored a 4-byte quantity at some address

We incremented the address by 1

We read a 4-byte quantity from the incremented address!

This really removes all notion of a structured memory (it's only bytes)
®m Some architectures (not x86) only allow aligned accesses

Accessing an X-byte quantity can only be done for an address that's a
multiple of X!

bytes

words

dwords

gwords

00 01 02 03 04 05 06 07 08 09 OA OB OCOD OE OF 10 11 12 13 14 15 16 17

"
Important Takeaways

B |ndirection with the [| bracket NASM syntax

At most one set of brackets for operands to an
Instruction

® The need to specify data size when
ambiguous

B The fact that labels are not variables,
because they have no types

B The difference between an address offset in
low-level assembly and in high-level code

® The “danger” / “power” of being able to
dereference any address willy-nilly

" A
Conclusion

m Some of the programs we've seen are horrible, and you’re thinking “I'll
never do that”

m But, you will have bugs and your code will do horrible stuff like that even
though you don’t mean it to

®m So you need to be able to trace/understand such behaviors for debugging
purposes

And also to reverse-engineer code that’s just clever and exploits the “danger”
aspect of assembly

m | et's do some of the practice problems for these lecture notes...
m \We also have a sample homework assignment

® Next week we'll have an in-class quiz on this module
®m Qur first midterm will about about this content

Date to be announced (midterm will be after we’re done with the next
module)

