Numerical Overflow

ICS312
Machine-Level and
Systems Programming

Henri Casanova (henric@hawaii.edu)

" A
Overfilow

m \We’ve seen add and sub for additions and subtractions

m Both instructions can be used either on a pair of signed
numbers or on a pair of unsigned numbers

The 2's complement “magic”

Mixing of signed and unsigned numbers will “work™ but give
bogus results

® \We encode numbers with finite numbers of bits
® Sometimes the numerical result would require more bits!

® |n this case, the CPU proceeds with the computation, but
drops extra bits that can't fit

As we saw in the “NASM Basics” module
® The numerical result of the operations is then wrong
m \We call this overflow

"
Overflow and Range (1-byte)

® 1-byte unsigned numbers have range 0, 255
® 1-byte signed numbers have range -128, + 127
® Example additions

adding 1-byte unsigned quantity 240d to 1-byte unsigned quantity
100d will lead to an overflow because 340d > 255d

subtracting 1-byte unsigned quantity 240d from 1-byte unsigned
quantity 100d will lead to an overflow because -140d < 0d

adding 1-byte signed quantity 100d to 1-byte signed quantity 120d
will lead to an overflow because 220d > 127d

etc.
m | et’'s see how, as humans, we can detect/understand overflow...

Of course one full-proof way is to convert everything to
decimal and check whether the result is in range

But it's much easier to reason about the numbers...

" J
Unsigned Overfiow

® Say all our numbers are meant to be
unsigned for now

® \\Ve have overflow when:

An addition would lead to left-over carry

m j.e., the result that can’t be encoded in the required
number of bits

= Happens when adding something big to something big

A subtraction would lead to a negative result

= Happens when subtracting something big from
something small

m | et's see 1-byte examples...

" JEEE
Unsigned Overflow Examples

m 1-byte Example (all in hex):

FF + 02 OVERFLOW (result would be 101h)
m 255 +2>255

01-05 OVERFLOW (result cannot be negative)
m1-5<0

8A - OF NO OVERFLOW (result is 7Bh)
m138-15=123

= \We’re subtracting something small (OF) from something big (8A),
so we can’t be negative

®|n a nutshell
Addition: overflows if there is a leftover carry
Subtraction:
m BIGGER - SMALLER never overflows
s SMALLER - BIGGER always overflows

" J
In-Class Exercise: Unsigned

® \Which of these unsigned operations cause overflow?

OF12 + F212 (2-byte values)
OOE3 + F74F (2-byte values)
F1-FA (1-byte values)
FB12 - ASAA (2-byte values)

A314 - BO10 (2-byte values)

" A
In-Class Exercise: Solutions

® \Which of these unsigned operations cause overflow?
OF12
+ F212
= 10124 OVERFLOW

00E3
+ FT74F
F832 NO OVERFLOW

F1 - FA: smaller - bigger OVERFLOW
FB12 - ABAA: bigger - smaller NO OVERFLOW
A314 - BO10: smaller - bigger OVERFLOW

" A
Nuclear Ghandi

® And of course the ‘
“Nuclear Ghandi” 5 3
urban legend: https:// WLIZATION VI W
en.wikipedia.org/wiki/ ‘
Nuclear Gandhi

® Although the Nuclear Ghandi is made up,
integer overflows are horrible bugs that exit in

the real world (see the end of these lecture
notes)

https://en.wikipedia.org/wiki/Nuclear_Gandhi
https://en.wikipedia.org/wiki/Nuclear_Gandhi
https://en.wikipedia.org/wiki/Nuclear_Gandhi
https://en.wikipedia.org/wiki/Nuclear_Gandhi

" J
Signed Overflow

® |[t's more difficult to think about ranges for signed numbers
because both positive and negative values are possible

m 1-byte Example (all in hex, same as before):

FF + 02 NO OVERFLOW (result is 01h)
m-1+2=+1

01-02 NO OVERFLOW (result is FFh)
m1-2=-1

8A - OF OVERFLOW (result would be < 80h)

m 8Ais negative, and is equal to -76h = -118d
m -118 - 15 < -128, and thus cannot a 1-byte signed quantity

= \We subtract a positive number from a number that’s already very
close to the left edge of the valid range, we get out of range

® S0 how can we, as humans, easily tell whether something will
overflow or not?

"
Signed Overflow

® A way to determine whether a particular signed operation
overflows is to see whether the sign of the result makes sense

If it doesn’t that means we “wrapped around” the range
B Same example as before: 8A - OF

8A <0 and OF >0, so the result should be negative
Let’'s compute the result
| don’t like hex subtractions, so | instead compute -OF = +F1
= “flip and add one” to negate the number (the neg instruction)
In hex: 8A+ F1 =7B (the carry is dropped to fit in 8 bits)
/B is positive! OVERFLOW
® |n a nutshell:
POSITIVE + POSITIVE should be POSITIVE
NEGATIVE + NEGATIVE should be NEGATIVE
POSITIVE + NEGATIVE never causes overflow!

" JE
In-Class Exercise: Signed

® \Which of these signhed operations cause overflow?
OOE3 + FF4F (2-byte values)
F1-7A (1-byte values)
FF847CAA + 7T8AA0401 (4-byte values)
DF + EF (1-byte values)

m Recall that, in a nutshell:
POSITIVE + POSITIVE should be POSITIVE
NEGATIVE + NEGATIVE should be NEGATIVE
POSITIVE + NEGATIVE never causes overflow!

" A
In-Class Exercise: Solutions

® \Which of these signed operations cause overflow?
OOE3 + FF4F
= POSITIVE + NEGATIVE: NO OVERFLOW
F1-7A
® | do the hex addition: F1-7A=F1+86=77
= Should be negative: OVERFLOW
FF847CAA + 78AA0401
= NEGATIVE + POSITIVE: NO OVERFLOW
DF + EF
= SMALL NEGATIVE + SMALL NEGATIVE: NO OVERFLOW
= DF + EF = CE (dropped a carry), which is negative

On web site as

U nSig ned ove rfl oW ics312_overflow_unsigned.asm

mov al, OFOh ; al = FOh

mov bl, OA3h ; bl = A3h

add al, bl ; al = al + bl

movzx eax, al ; increase size for printing
call print_int; ; print al as an integer

As a programmer we decided to do some computation with unsigned values
We put value FOh in al (unsigned FOh is decimal 240)

We put value A3h in bl (unsigned A3h is decimal 163)

We add them together

The “true” result should be decimal 240+163 = 403, which cannot be encoded on 8
bits (should be < 255)

But the processor just goes ahead: FO + A3 = 193h, and then drops the leftmost bits
to truncate to a 1-byte value to get 93h!

Tocallprint int, we need the integer in eax, so we movzx al into eax
print_int prints the decimal value corresponding to 00000093h, that is: 147!

This is obviously wrong, and we can tell (or will be able to shortly) because the carry
bit is in fact set to 1

Note that this is all correct if we assume signed values and replace movzx by movskx,
but then our initial interpretation of the two values is different

On web site as

Sig ned ove rfl Ow ics312_overflow_signed.asm

mov al, 09Ah ; al = 9Ah

mov bl, 073h ; bl = 73h

sub al, bl ; al = al - bl

movsx eax, al ; increase size for printing
call print_int ; print al as an integer

As a programmer we decided to do some computation with signed values
We put value 9Ah in al (signed 9Ah is decimal -102)

We put value 73h in bl (signed 73h is decimal +115)

We subtract bl from al

The “true” result should be decimal -102 - 115 =-217, which cannot be encoded on 8
bits (should be >= -128)

But the processor just goes ahead: 9Ah - 73h = 9Ah + 8Dh = 27h
Tocallprint int, we need the integer in eax, so we movsx al into eax
print_int prints the decimal value corresponding to 00000027h, that is: 39!

This is obviously wrong, and we can tell (or will be able to shortly) because the
overflow bit is in fact set to 1

Note that this is all correct if we assume unsigned values and replace movsx by
movzx, but then our initial interpretation of the two values is different

" JE
Overflow is your Responsibility

® The processor merely computes bits and puts
them into the destination location, possibly
dropping bits, and it's your responsibility to
check the overflow!

® |n your program you should have checks for
overflow, which is more work

= That's true in high-level languages as well!

= \Which is why we often use too many bits (e.g., 4-
byte values for numbers we know to be small)

= This wastes memory, but we're pretty sure to avoid
overflow in most cases

= Until we don’t and everything falls apart!!!

" J
The FLAG register

® You probably have forgotten it by now, but at

the beginning of the semester | mentioned
the FLAG register

® |t's basically a bunch of bits that are set/unset
when instructions are executed

® They have many different uses

m Two of those bits have to do with overflow:
The carry bit
The overflow bit

®m The CPU sets those bits for you....

" JEE—
Detecting Overflow in Code

m |f there is an overflow assuming UNSIGNED values
then the carry bit in the FLAG register is set (to 1)
otherwise it is unset (set to 0)

= |f the carry bit is set to 1, that means there was a leftover
carry or borrow, and we’d need more bits to store the result
m |f there is an overflow assuming SIGNED values
then the overflow bit in the FLAG register is set
(to 1) otherwise it is unset (set to 0)

This bit is set to 1 when the sign of the result does not
agree with the signs of the operands

m Both bits are set/unset each time an arithmetic
operation is performed

We'll see later how to check the values of those bits

To remember

domain overflow detector
unsigned carry bit
signed overflow bit

m After a valid unsigned operation, the overflow bit could be set
® After a valid signed operation, the carry bit could be set

®m Both bits are set/unset because the CPU does not know your
interpretation of your numbers

= |t's your job to check the bit you should care about

"
High-Level Languages

® Say you have to write a function in C/C++:

void f(unsigned int a, unsigned int b) {
unsigned int x = a + b;
for (unsigned int i=0; i < x; i++) {

// do something
I3
I3

m |f a user passes numbers whose sum is too big,
the value of variable x will be bogus

® |n high-level code we cannot check the carry bit
= \We can in assembly, as we'll see

® S0 we have to check overflow “by hand” :(

m| et’'s see the code...

" J
High-Level Languages (2)

#include <limits.h>

void f(unsigned int a, unsigned int b) {
if (a > UINT_MAX - b) {
exit(1);| // Overflow
}

unsigned ipt x = a + b;

for (unsig@ed int i=0; i < x; i++) {
// do soflething

¥

Note that writinga + b > UINT MAX doesn’'t work because

the sum can overflow! But bigger - smaller never overflows,
so we can safely compute UINT MAX - b.

" J
High-Level Languages (2)

#include <limits.h>

void f(unsigned int a, unsigned int b) {
if (a > UINT_MAX - b) {
exit(1); // Overflow
}

unsigned int x = a + b;

for (unsigned int i=0; i < x; i++) {
// do something

I3

® You may have had to do this, e.g., when practicing
for the coding interview on some sites like Leetcode

" J
High-Level Languages (3)

#include <limits.h>

void f(int a, int b) {
int x;
if ((b >0 && a < INT_MAX - b) ||
(b<@ & a > INT_MIN - b)) {

X = a + b;
} else {

exit(1); // Overflow
¥

® For signed integers, you have to check “both” ends, since you
can overflow on either side

= |f b >0 thencheckthata +b <INT_MAX
= |f b <0thencheckthata+b>INT_MIN

"
High-Level Languages (4)

® |f you want to write robust code, you have to catch overflows, to
avoid the deadly silent overflow bug

® Note that sometimes overflow is actually a feature of a program

= |.e., the program relies on the weird “wrap-around” behavior that
happens when you have overflow

® Easiest but far from full proof approach: always use bigger data
types than what you think is needed, and pray that you'll never
use really big values (scary....)

m Different languages provide different way of dealing with
overflow in a much better approach

® |n Java, you can use special “overflow catching” methods of the
Math package (e.g., Math.addExact())

m |[n C/C++ you can give flags to the compiler...

"
High-Level Languages (4)

® \We can ask the C/C++ compiler to add (assembly) code to the
check for overflow for all integer operations

= As we'll learn to do in assembly in the next module
m |{'s easy for the compiler based on the signed-ness of numbers
= |nsert code to check the carry bit or to check the overflow bit
m |f overflow is detected, abort the program

= But if your program uses overflow as a “feature”, then that
will be a problem!

m \With gcc: -ftrapv will do this for signed overflow

m Alternatively, with gcc: you can call
__builtin_sadd_overflow(a,b,&c) for an addition that checks
overflow and returns true/false

m But that won’t work with other compilers

" A
Do we care?

m Clearly, dealing with overflow is a pain (not in assembly
though, as we'll see!)

This may be the one thing this semester which is better in
assembly than in high-level languages

m Let’'s look at:

https://cwe.mitre.org/top25/archive/
2023/2023_top25_list.html

https://cwe.mitre.org/top25/archive/
2024/2024 top25_list.html

® Some of the examples on that site say “and then there
will be a buffer overflow”
Buffer overflow has nothing to do with integer overflow

Stay tuned for a discussion of that vulnerability in the
“Subprogram” (post-midterm) module

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2024/2024_top25_list.html
https://cwe.mitre.org/top25/archive/2024/2024_top25_list.html

" A
Do we care?

m Clearly, dealing with overflow is a pain (not in assembly
though, as we’ll see!)
This may be the one thing this semester which is better in
assembly than in high-level languages

m [et's look at:
https://cwe.mitre.org/top25/archive/2023/2023 _top25_list.html
https://cwe.mitre.org/top25/archive/2024/2024 _top25_list.html

Some of the examples on these sites say “and then there will be
a buffer overflow”

m Buffer overflow has nothing to do with integer overflow

m Stay tuned for a discussion of that vulnerability in the “Subprogram”
(post-midterm) module

® Good news: LLMs are great at popping up overflow
warnings in your IDE via static code analysis you're too
lazy to do :)

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2024/2024_top25_list.html

" J
Important Takeaways

® Overflow occurs when we “don’t have enough bits” when
doing computer arithmetic

® Unsigned overflow:

We have a leftover carry that would require our data size to
be larger by 1 bit

In this case, the CPU sets the carry bit to 1

m Signed overflow:

The sign of the result doesn’'t make sense given the signs of
the operands

In this case the CPU sets the overflow bit to 1

® |n high-level languages, one can

Check for overflow “by hand” (making sure the check never
computes anything that could overflow)

Use “special” functions/APIs

" A
Conclusion

® One has to be careful when doing arithmetic
operations because the processor happily
produces result bits regardless

® |t's your responsibility to check for overflow/
carry bits (in assembly) or to check for
overflow manually (in high-level languages)

m | et's look at some practice problems...
®m There is a sample homework as well...

