Computer

Architecture
Overview

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

"
1946: The ENIAC

® The ENIAC (Electronic Numerical Integrator and Computer)
was unveiled in 1946

® The first all-electronic, general-purpose digital computer
that could be (re)programmed

® Main sponsor: University of Pennsylvania / Ballistic
Research Laboratory

Designed by Mauchly and Eckert
® First programmers: a team a 6 women during WWII
B Specs

17,468 vacuum tubes

1,800 sqft

30 tons

174 kilowatt of power
1,000-bit memory

"
The ENIAC in Pictures

The Army's ENIAC can give you the
answor ln o fraction of & sacend !

Thonk that's o steerger T Yo dosidl &

o the EXIACH prodierns! Teaks vuimnis (it
i Pt o ey Meadd sun a0 1M ' T
foet bevuzd . . . ot saldraatin, wait
plication, divislon —wquare rod 1
sy eoal. Salemd By 0 Seeetild ergens

svabers of clivats spevateyg LEIER) cla biom
siwow 30 Lpping g wvades 2 W

Tie ENIAL Ie svvebedb of vasny sramring
Anay devices wifh o belllsed Boine bor you!
The o Bopadar Ay voods tam with 2300
tade for soentific work, ol ae sne o 1he lint

) § i e postomar ern, yout land s 34

tn oom e peonnel Bowr ol fpeetun jola

TOUR SLSULAR ARMY SERNES THE NATON
ANE MANNIMG IN WAR AN3 PRACH

OCETONER 1se

HOW MUCH 18 V2589 7

) Lore raistel Yod U foal
hvt o A rowy ey ol

be et artractive fields are filling

Gan it the hde the prtizg's

wd! LS, Sand Ty or el blramon are wen

y the Regaler Arooy to asehilae poreeg Eedi

-
\

cvalifed, I you endist for 3 yocs,
o way chme yudr own bemsch ol the ser.
of Thase still spen. Gat Lall itaie o

wray twdrost Array Meevuitiag Stalom

A GOOD /OB FOR YOU

U.S. Army

CHNOOSE TNIS
FINE PROFESSION

NOWI

" A
The Von Neumann Architecture

®m ENIAC design finalized in 1943

®|n 1944, John von Neumann learned about
ENIAC and joined the group.

® He wrote a memo about computer
architecture, formalizing the ideas that came
out of ENIAC and transferring them to a
wider audience

® This became the Von Neumann architecture,
which we still use today...

" A
Disclaimer

m Several of the next few slides may also have
been show in ICS332

Because ICS312 and ICS332 are not in a
prerequisite chain

® S0 you may have seen them before
® Or you may see them again

B Regardless, it's good to be reminded of
computer architecture basics!

" A
The Von-Neumann Architecture

® Three hardware systems

A Central Processing Unit (CPU): performs operations and
controls the sequence of operations

A Memory Unit: stores both code and data
Input/Output devices to interact with the machine

m Computers today are still very close to this basic
architecture

CPU <y Memory

/O
System

" A
The Von-Neumann Architecture

® Three hardware systems

A Central Processing Unit (CPU): performs operations and
controls the sequence of operations

A Memory Unit: stores both code and data
Input/Output devices to interact with the machine

®m Computers today are still very close to this basic
architecture

CPU

/O
System

" J
The Memory Unit

m Called “Memory” or RAM (Random Access Memory)
m All “information” in the computer is in binary form
Since Claude Shannon’s M.S. thesis in the 1930’s
0: zero voltage, 1: positive voltage (e.g., 5V)
bit (binary digit): the smallest unit of information (0 or 1)

® The basic unit of memory is a byte
1 Byte = 8 bits, e.g., “0101 1101”
1 KiB = 210 byte = 1,024 bytes
1 MiB = 210 KiB = 220 bytes (~ 1 Million)
1 GiB = 210 MiB = 230 pytes (~ 1 Billion)
1 TiB = 210 GiB = 240 bytes (~ 1 Trillion)
1 PiB = 210 TiB = 250 bytes (~ 1000 Trillion)
1 EiB = 210 PiB = 260 bytes (~ 1 Million Trillion)

" J
Data Stored in Memory

®m Each byte in memory is labeled by a unique address

® An address is a number that identifies the memory location of
each byte in memory

e.g., the byte at address 3 is 00010010
e.g., the byte at address 241 is 10110101
m Typically, we write addresses in binary as well
e.g., the byte at address 00000011 is 00010010
e.g., the byte at address 11110001 is 10110101
m \We talk of a byte-addressable memory
m All addresses in RAM have the same number of bits
e.g., 8-bit addresses

B The processor has instructions that say “Read the byte at
address X and give me its value” and “Write some value into the
byte at address X"

® The Memory Unit (Bus + RAM) has the hardware to do this

"
Example Byte-Addressable RAM with

16-bit addresses
address

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000

content

0110

1110

1111

0100

0000

0000

0000

0000

0101

1110

1010

1101

0000

0001

0100

0000

1111

0101

" A
Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
(1000010000 0000, 0010) 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
+00! At address 0000 0000 0000 0010 |
oool }the conte_nt‘ |s,00000000 .

0000 0000 0000 1000 1111 0101

" A
Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0OO0O1 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0OO11 0000 0000
(1000010990000 0200) o101 1110

-00| At address 0000 0000 0000 0100 |

o0o{ _ the contentis 01011110 |
0000 0000 0000 1000 1111 0101

" J——_
Example

m | et's consider machine with 8-bit addresses, and a program
that does: “At address 1000 0000, store the address of the
first 7 (i.e., value 0000111) in memory”

Address

Content

0000
0000
0000
0000
0000
0000
0000
0000

1000
1000

0000
0001
0010
0011
0100
0101
0110
0111

0000
0001

0000
0010
1111
1000
0000
1011
1111
1101

1010
1011

0011
1010
0101
0000
0111
1111
1111
0000

1101
0000

m)

Address

Content

0000
0000
0000
0000
0000
0000
0000
0000

1000
1000

0000
0001
0010
0011
0100
0101
0110
0111

0000
0001

0000
0010
1111
1000
1100
1011
1111
1101

0000
1011

0011
1010
0101
0000
0101
1111
1111
0000

0100
0000

" J—
Example

m | et’'s consider machine with 8-bit addresses, and a program
that does: “At address 1000 0000, store the address of the
first 7 (i.e., value 0000111) in memory”

Address Content Address Content

0000 0000 NNNN NN11 NNNN NNNN 0000 0011
0000 000 \010 1010
0000 001 111 0101
0000 0o11ANybody can teII.me the name |55 0000
0000 o010(Of the concept this program 100 0101
0000 010 imp|ements? 011 1111
0000 011 111 1111
0000 011 llOl 0000
1000 0000 {1010 1101 1000 0000 0000 0100
1000 0001 [1011 0000 1000 0001 [1011 0000

" A
Indirection

® An address is just information (a number)

® |n the previous example, the program
Implemented indirection

The memory content at a memory location is the
address of another memory location

We call this content a pointer / reference
® |t's just an address, that is, just a number

At that address there is some content that
presumably we care about
= |n the example, the value 7’

m But if it was another address, then we’d have a double
indirection, and so on...

" A
Address vs. Values

® |t's the job of the programmer to know what memory
content means (to the CPU, it’s just a bunch of
numbers)

B This is a well-known difficulty when writing assembly
(ICS312/ICS331)

® High-level programming languages do all this for you,
but in C of course you can do whatever you want

e.g., on a 64-bit architecture a C pointer is simply an
unsigned long

unsigned long x = 42;

int *ptr = (int *)x; // bogus pointer

" A
Hardware Instructions

B Some high-level pseudo-code

Step 1) Set the content of variable A to the content at address 1000 0000
Step 2) Set the content of variable B to the content at address 1000 0001
Step 3) Add A and B together and store the result in A

Step 4) Set the content at address 1000 0010 to the contents of A

Step 5) Go back to Step 1

® Assembly translations

// MIPS-like (ICS 331) // x86-like (ICS 312)
S1: LOAD A, (1000 0000) S1: MOV AL, [1000 0000]
S2: LOAD B, (1000 0001) S2: MOV BL, [1000 0001]
S3: ADD A,B S3: ADD AL, BL

S4: STORE A, (1000 0010) S4: MOV [1000 0010], AL

S5: JMP S1 S5: JMP S1

Instruction Encoding

B |nstructions are encoded in binary (the “binary code”),
based on the specifications of the microprocessor

B Here are some x86 instruction encodings
Instruction Encoding (hex) Size
SUB ECX, EDX 29D1 2 bytes
ADD EAX, -1 83COFFFFFFFF 6 bytes
ADD AX, 2 050200 3 bytes

® More instructions leads to larger executable binaries

= An assembler transforms assembly code into binary code,
so assembly programmers typically don’t know the binary
code for instructions

Address Space

m A program is stored in RAM

Address

Content

Meaning

{ 0000
0000

0000
0001

29
D1

SUB ECX, EDX

0000
0000

0010
0011
0100

05
02
00

ADD AX, 2

code

< 0000
0000
0000
0000
0000
\ 0000

0101
0110
0111
1000
1001

83
Cco
FF
FF
FF

ADD EAX, -10000

" A
Address Space

m A program is stored in RAM along with data

Address Content Meaning
(0000 0000 |29 SUB ECX, EDX
0000 0001 |[D1
0000 0010 (05 ADD AX, 2

0000 0011 |02
< 0000 0100 |00

0000 0101 |83 ADD EAX, -10000
0000 0110 |CO
0000 0111 |FF
0000 1000 |FF
\ 0000 1001 |FF

code

1000 0010 |61 Character ‘a’
1000 0011 |00 Character ‘\0’
1000 0100 |FF Integer -1

data

1000 0101 (FF
1000 0110 (FF
1000 0111 [FF

" A
Address Space

m A program is stored in RAM along with data

Add Content Meani :
(0000 0000 |20 |suB Ecx, EpX m All the bytes in RAM
0000 0001 |D1 113 ”
0000 0010 |05 ADD AX, 2 that "belong” to the
8) coco oace loe program are called the
8< 0000 0101 (83 ADD EAX, -10000 program’s address
0000 0110 |CO
0000 0111 |FF space
0000 1000 |FF
\ 0000 1001 |r¥ = This address space
L A contains the code and
1000 0010 |61 Character ‘a’ the data
1000 0011 |00 Character ‘\0’ .
'% 1000 0100 |FF Integer -1 [And Other thlngS
- | 1000 o101 |FF ,
1000 0110 |FF we’ll see later
1000 0111 |FF

" A
The CPU

Memory

/0O

System

m |t's the job of the programmer to know what memory content means
(to the CPU, it’s just a bunch of numbers)

® This is a well-known difficulty when writing assembly (ICS312/1CS331)

® High-level programming languages do all this for you, but in C of
course you can do whatever you want

e.g., on a 64-bit architecture a C pointer is simply an unsigned long

" A
What’s in the CPU?

(-)
[Program counter [register
current instruction [register
[register
\ I 4 Memory
Control
N o
v
/O

System

" A
What’s in the CPU?

(-)

[Program counter [register

register

current instruction] [

[register

Registers: values that hardware instructions work with

Data can be loaded from memory into a register

Data can be stored from a register back into memory

Operands and results of computations are ALL in registers

Accessing a register is really fast

There is a limited number of registers (which will make our life a bit difficult)

" A
What’s in the CPU?

G N
[Program counter [register
current instruction] [register

[register
\ Y,
Control
Unit

Arithmetic and Logic Unit: what you do computation with

used to compute a value based on current register values and
store the result back into a register

+, %, /, -, OR, AND, XOR, etc.

What’s in the CPU?

- N
[Program counter [register
current i struction][register

[register
N)

Unit

Control]

Program Counter: Points to the next instruction

Special register that contains the address in memory of the next instruction

that should be executed

(gets incremented after each instruction, or can be set to whatever value
whenever there is a change of control flow)

" J—
What’s in the CPU?

- N
[Program counter [register
current instruction] [register

[register
N)

Control]
Unit

Current Instruction: Holds the instruction that’s currently being executed

" A
What’s in the CPU?

-

\

[Program counter

[

register

current instruction] [

register

register

/

Control

Unit

Control Unit: Decodes instructions and make them happen

Logic hardware that decodes instructions (i.e., based on their bits) and sends
the appropriate (electrical) signals to hardware components in the CPU

"
Fetch-Decode-Execute Cycle

®m The Fetch-Decode-Execute cycle

The control unit fetches the next program instruction from memory

® Using the program counter to figure out where that instruction is located in the
memory

The control unit decodes the instruction and signals are sent to
hardware components

® e.g., is the instruction loading something from memory? is it adding
two register values together?

The instruction is executed
m QOperands are fetched from memory and put in registers, if needed

= The ALU executes computation, if any, and stores the computed
results in the registers

m Register values are stored back to memory, if needed
Repeat

m Computers today implement MANY variations on this model
m But one can still program with the above model in mind
But then without understanding performance issues

Fetch-Decode-Execute

Address Value

Memory

Fetch-Decode-Execute

-

program counter [register

0000 1100

[register

current instruction

[register

/IA AKM

_/‘

N Control
§ Unit

N\

Address

N
y
4

Somehow, the program counter is

initialized to some content, which is an
address (done by the OS - see ICS332)

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory

Fetch-Decode-Execute

N
y
4

4)
program counter [register
0000 1100 -
[register]
current instruction _
0110 1011 [register J
_ /
N)
Control ¢
ALU A y . N
Unit
J

Fetch the content (instruction) at
address 0000 1100, which is “0110
10117, and store it in the “current
instruction” register

Address Value

0000 1100 (ouo 1011)
0000 1101 (1111 001o>
0000 1110 @010 oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory

Fetch-Decode-Execute

-

program counter

0000 1101

register

current instruction

register

0110 1011

register

_

ALU A

1

Control
Unit

\

Address

N
y
4

J

Increment the program counter

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory

Fetch-Decode-Execute

Address

N
y
4

4)
program counter [register
0000 1101 :
[register]
current instruction _
0110 1011 [register J
_ J
N)
Control ¢
ALU A y . N
Unit
J

Decode instruction “0110 1011”. Let’s
pretend it means: “Load the value at
address 1000 0000 and store it in the
second register”

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Fetch-Decode-Execute

Send signals to all hardware
components to execute the

instruction: load the value at address
1000 0000, which is “1111 0000” and

store it in the second register

1000

1111

4 program counter [register)
0000 1101
- - (1111 0000
current instruction _
0110 1011 [register J Address Value
\ /
0000 1100 <0110 1011)
ALU >[Control J—L—% 0000 1101 (1111 0010)
N | 4 . 4
Unit
/ 0000 1110 @010 oooQ

Fetch-Decode-Execute

Address

N
y
4

4)
program counter [register
0000 1101
(1111 0000
current instruction _
1111 0010 [register]
_ /
L)
Control
ALU A y .
Unit
J

Fetch the content (instruction) at
address 0000 1101, which is “1111
00107, and store it in the “current
instruction” register

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory

Fetch-Decode-Execute

-

program counter

~

0000 1110

register

current instruction

1111 0000

1111 0010

register

_

ALU A

1

Control
Unit

\

N
y
4

J

Increment the program counter

Address Value

0000 1100 (pllo 1011)
0000 1101 (}111 001o>
0000 1110 <p01o 0001)
1000 0000 (}111 oooo)

1111 0010 (plol

Memory

Fetch-Decode-Execute

Address

Decode instruction “1111 0010”. Let’s
pretend it means: “Do a logical NOT
on the second register”

4)
program counter [register
0000 1110
(1111 0000
current instruction _
1111 0010 [register J
_ J
L)
Control ¢ A
ALU A y : ‘ b
Unit
/

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Memory

Fetch-Decode-Execute

N
y
4

4)
program counter [register
0000 1110
(0000 1111
current instruction _
1111 0010 [register J
_ /
N)
Control
ALU A y :
Unit
/

Send signals to all hardware
components to execute the

instruction: do a logical NOT on the

second register

Address Value

0000 1100 <0110 1011)
0000 1101 (1111 001o>
0000 1110 @010 oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory

Fetch-Decode-Execute

N
y
4

4)
program counter [register
0000 1110
(0000 1111
current instruction _
0010 0001 [register J
_ /
N)
Control
ALU A y :
Unit
J

Fetch the content (instruction) at
address 0000 1110, which is “0010
00017, and store it in the “current
instruction” register

Address Value

0000 1100 <0110 1011)
0000 1101 (1111 001o>
0000 1110 <001o oooQ
1000 0000 (1111 oooo)
1111 0010 <0101 1111)

Memory

Fetch-Decode-Execute

-

program counter

~

0000 1111

register

current instruction

0000 1111

0010 0001

register

_

ALU A

1

Control
Unit

\

N
y
4

J

Increment the program counter

Address Value

0000 1100 (pllo 1011)
0000 1101 (}111 001o>
0000 1110 <p01o 0001)
1000 0000 (}111 oooo)

1111 0010 (plol

Memory

Fetch-Decode-Execute

Address

Decode instruction “0010 0001”. Let’s
pretend it means: “Store the value in

the second register to memory at
address 1111 0010”

4)
program counter [register
0000 1111
(0000 1111
current instruction _
0010 0001 [register J
_ J
N)
Control ¢ A
ALU A y . ¢ v
Unit
/

0000 1100 (pllo

0000 1101 (}111

0000 1110 <p01o

1000 0000 (}111

1111 0010 (plol

Fetch-Decode-Execute

Send signals to all hardware
components to execute the
iInstruction: store the value in the

second register, which is 0000 1111,

to memory at address 1111 0010

1000

1111

4 program counter register)
0000 1111
0000 1111
current instruction _
0010 0001 register] Address Value
_ /
0000 1100 <0110 1011)
ALU K >[Control J—L—% 0000 1101 (1111 0010)
Unit f
~ 0000 1110 @010 oooQ

" A
Fetch-Decode-Execute

® This is only a simplified view of the way things work

® The “control unit” is not a single thing
Control and data paths are implemented by several complex
hardware components
®m There are multiple ALUs, there are caches, there are
multiple CPUs in fact (“cores”)

m Execution is pipelined: e.g., while one instruction is
fetched, another one is being executed

®m Decades of computer architecture research have gone into
improving performance, thus often leading to staggering
hardware complexity
Doing smart things in hardware requires more logic gates and
wires, thus increasing processor cost

m But conceptually, fetch-decode-execute is it

" A
The Clock

® Every computer maintains an internal clock that
regulates how quickly instructions can be executed, and
IS used to synchronize system components

Just like a metronome

®m Each “event’ in the fetch-decode-execute cycle happen
at a different “tick” of the clock

® The frequency of the clock is called the clock rate

B The time in between two clock ticks is called a clock
cycle or cycle for short
m Clockcycle = 1/ Clock Rate
Clock rate = 2.4 GHz
Clock cycle = 1/(2.4*1000*1000*1000)
=0.416 e sec
= 0.416 ns (nanosec)

" A
Faster/slower Clock Rate

®m The higher the clock rate, the shorter the clock cycle

m |t's tempting to think that a faster clock rate means a faster computer

m But it all depends of what amount of work is done in a clock cycle!
Computer A: clock rate of 2GHz and a multiplication requires 10 cycles
Computer B: clock rate of 1.5GHz and a multiplication requires 5 cycles

Computer B is faster than Computer A to run a program that performs a
lot of multiplications

m Therefore, clock rates should not be used to compare computers in
different families

A core of a 3.0GHz Intel i7 is most likely slower than a core of a 3.5GHz
Intel i7

A core of a 3.0GHz Intel i7 could be slower than a core of a 2.8GHz IBM
POWER9

® Furthermore, comparisons depends on the type of applications
Computer A faster than Computer B for some applications
Computer B faster than Computer A for other applications

" A
Multi-Core

® \What we have described is what happens in
a single core

®m But nowadays all our machines are multi-
core (e.g., my laptop has 10 cores)

m | et's see why that is...

" A
Moore’s Law

® |In 1965, Gordon Moore (co-founder
of Intel) predicted that transistor
density of semiconductor chips
would double roughly every 24 months
(often “misquoted” as 18 months)

He was right

But, the law was often wrongly interpreted as:
“Computers get twice as fast every 2 years”

This wrong interpretation was true for a while, but
no longer...

"
50-year Trend

O Cores (count) S
16407 Io§Y Y
O Frequency (MHz) Vs g
A Process (nm) Predicted growth
Vv Transistors (thousands) (x2 every two years)
1e+05

1e+03 - -
\Y O
Agé%é O
1e+01 1 08 @gég 0
y EDHDEDDD B4
' oooo O O
O O O AV
® %
1e_01 T T T T T T
1970 1980 1990 2000 2010
Year

2020
Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

"
50-year Trend

O Cores (count)
1e+07 -
et O Frequency (MHz) This plateau
A
Process (nm) (was really, really
Vv Transistors (thousands)
. bad news
1e+03 1
\4
1e+01 4
3 \V
=[>
o
1e-01 - : i ! '
1970 1980 1990 2000
Year

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

"
50-year Trend

O Cores (count) _ -t

140711 Frequency (MHz) This plateau | This 1?NadS tf‘:e

7 Process (nm) (| was really, really ‘ Wf:% 'to cd

vV Transist th d 4h
o5 ransistors (thousands) bad news 1 WI |
1e+03 -

\%
1e+01 -

: O

1e_01 i T O T T T T T

1970 1980 1990 2000 2010 2020

Year

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

" A
Multi-core Chips

B Constructors cannot increase clock rate further
Power/heat issues

® They bring you multi-core processors
Multiple “low” clock rate processors on a chip

m |t's really a solution to a problem, not a cool new
advance

® Most developers would rather have a 100GHz
core than 50 2GHz cores
In which case we would not need to write concurrent
programs

m But we don’t have 100GHz cores, which is why
you should take ICS 432 :)

1/0

CPU

Memory

II O mouse keyboard printer monitor

oo ¢ & & | |

L

disk graphics
CPU contiollor USB controller adapter

memory

Figure 1.2 A moderncomputersystem.

[reproduced from Operating Systems Concepts (Silberschatz, Galvin, Gagne)]

® \We've all used may |/O devices (screens, keyboard, disks,

B These all have their specific hardware controllers
® That’s all | am going to say for now

2)

"
Main Takeaways

B The ENIAC was the first electronic computer

B The Von Neumann Architecture is “it” for
now

® RAM, addresses, and “values” (indirection)

B |[nstruction set architectures

® The CPU: registers, ALU, control unit

® The Fetch-Decode-Execute cycle

B The Clock and Clock Rate

® Moore’s Law and why we have multi-core
machines

" A
Conclusion

B Computer Architecture is
obviously a very large topic

® |f you want to know more

Take a computer architecture
course

Classic Textbook: Computer
Organization and Design, Fourth
Edition: The Hardware/Software
Interface (Patterson and
Hennessy, Morgan Kaufmann)

m | et’'s now talk more about memory...

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTWARE INTERFACE

DAVID A. PATTERSON
JOHN L. HENNESSY

