
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Computer
Architecture
Overview

1946: The ENIAC
 The ENIAC (Electronic Numerical Integrator and Computer)

was unveiled in 1946
 The first all-electronic, general-purpose digital computer

that could be (re)programmed
 Main sponsor: University of Pennsylvania / Ballistic

Research Laboratory
 Designed by Mauchly and Eckert

 First programmers: a team a 6 women during WWII
 Specs

 17,468 vacuum tubes
 1,800 sqft
 30 tons
 174 kilowatt of power
 1,000-bit memory

The ENIAC in Pictures

The Von Neumann Architecture
 ENIAC design finalized in 1943
 In 1944, John von Neumann learned about

ENIAC and joined the group.
 He wrote a memo about computer

architecture, formalizing the ideas that came
out of ENIAC and transferring them to a
wider audience

 This became the Von Neumann architecture,
which we still use today…

Disclaimer

 Several of the next few slides may also have
been show in ICS332
 Because ICS312 and ICS332 are not in a

prerequisite chain
 So you may have seen them before
 Or you may see them again

 Regardless, it’s good to be reminded of
computer architecture basics!

The Von-Neumann Architecture
 Three hardware systems

 A Central Processing Unit (CPU): performs operations and
controls the sequence of operations

 A Memory Unit: stores both code and data
 Input/Output devices to interact with the machine

 Computers today are still very close to this basic
architecture

CPU Memory

I/O
System

The Von-Neumann Architecture
 Three hardware systems

 A Central Processing Unit (CPU): performs operations and
controls the sequence of operations

 A Memory Unit: stores both code and data
 Input/Output devices to interact with the machine

 Computers today are still very close to this basic
architecture

CPU Memory

I/O
System

The Memory Unit
 Called “Memory” or RAM (Random Access Memory)
 All “information” in the computer is in binary form

 Since Claude Shannon’s M.S. thesis in the 1930’s
 0: zero voltage, 1: positive voltage (e.g., 5V)
 bit (binary digit): the smallest unit of information (0 or 1)

 The basic unit of memory is a byte
 1 Byte = 8 bits, e.g., “0101 1101”
 1 KiB = 210 byte = 1,024 bytes
 1 MiB = 210 KiB = 220 bytes (~ 1 Million)
 1 GiB = 210 MiB = 230 bytes (~ 1 Billion)
 1 TiB = 210 GiB = 240 bytes (~ 1 Trillion)
 1 PiB = 210 TiB = 250 bytes (~ 1000 Trillion)
 1 EiB = 210 PiB = 260 bytes (~ 1 Million Trillion)
 ...

Data Stored in Memory
 Each byte in memory is labeled by a unique address
 An address is a number that identifies the memory location of

each byte in memory
 e.g., the byte at address 3 is 00010010
 e.g., the byte at address 241 is 10110101

 Typically, we write addresses in binary as well
 e.g., the byte at address 00000011 is 00010010
 e.g., the byte at address 11110001 is 10110101

 We talk of a byte-addressable memory
 All addresses in RAM have the same number of bits

 e.g., 8-bit addresses
 The processor has instructions that say “Read the byte at

address X and give me its value” and “Write some value into the
byte at address X”

 The Memory Unit (Bus + RAM) has the hardware to do this

Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0010
the content is 0000 0000

Example Byte-Addressable RAM with
16-bit addresses

address content
0000 0000 0000 0000 0110 1110
0000 0000 0000 0001 1111 0100
0000 0000 0000 0010 0000 0000
0000 0000 0000 0011 0000 0000
0000 0000 0000 0100 0101 1110
0000 0000 0000 0101 1010 1101
0000 0000 0000 0110 0000 0001
0000 0000 0000 0111 0100 0000
0000 0000 0000 1000 1111 0101

... ...

At address 0000 0000 0000 0100
the content is 0101 1110

Example Byte-Addressable RAM with
16-bit addresses

Example

Address Content
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
…
1000 0000
1000 0001

0000 0011
0010 1010
1111 0101
1000 0000
0000 0111
1011 1111
1111 1111
1101 0000
…
1010 1101
1011 0000

Address Content
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
…
1000 0000
1000 0001

0000 0011
0010 1010
1111 0101
1000 0000
1100 0101
1011 1111
1111 1111
1101 0000
…
0000 0100
1011 0000

 Let’s consider machine with 8-bit addresses, and a program
that does: “At address 1000 0000, store the address of the
first 7 (i.e., value 0000111) in memory”

Example

Address Content
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
…
1000 0000
1000 0001

0000 0011
0010 1010
1111 0101
1000 0000
0000 0111
1011 1111
1111 1111
1101 0000
…
1010 1101
1011 0000

Address Content
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
…
1000 0000
1000 0001

0000 0011
0010 1010
1111 0101
1000 0000
1100 0101
1011 1111
1111 1111
1101 0000
…
0000 0100
1011 0000

 Let’s consider machine with 8-bit addresses, and a program
that does: “At address 1000 0000, store the address of the
first 7 (i.e., value 0000111) in memory”

Anybody can tell me the name
of the concept this program
implements?

Indirection

 An address is just information (a number)
 In the previous example, the program

implemented indirection
 The memory content at a memory location is the

address of another memory location
 We call this content a pointer / reference

 It’s just an address, that is, just a number
 At that address there is some content that

presumably we care about
 In the example, the value ‘7’
 But if it was another address, then we’d have a double

indirection, and so on…

Address vs. Values
 It’s the job of the programmer to know what memory

content means (to the CPU, it’s just a bunch of
numbers)

 This is a well-known difficulty when writing assembly
(ICS312/ICS331)

 High-level programming languages do all this for you,
but in C of course you can do whatever you want
 e.g., on a 64-bit architecture a C pointer is simply an

unsigned long

unsigned long x = 42;
int *ptr = (int *)x; // bogus pointer

Hardware Instructions
 Some high-level pseudo-code

 Assembly translations

Step 1) Set the content of variable A to the content at address 1000 0000

Step 2) Set the content of variable B to the content at address 1000 0001

Step 3) Add A and B together and store the result in A

Step 4) Set the content at address 1000 0010 to the contents of A

Step 5) Go back to Step 1

// MIPS-like (ICS 331)

S1: LOAD A, (1000 0000)

S2: LOAD B, (1000 0001)

S3: ADD A,B

S4: STORE A, (1000 0010)

S5: JMP S1

// x86-like (ICS 312)

S1: MOV AL, [1000 0000]

S2: MOV BL, [1000 0001]

S3: ADD AL, BL

S4: MOV [1000 0010], AL

S5: JMP S1

Instruction Encoding
 Instructions are encoded in binary (the “binary code”),

based on the specifications of the microprocessor
 Here are some x86 instruction encodings

 More instructions leads to larger executable binaries

 An assembler transforms assembly code into binary code,
so assembly programmers typically don’t know the binary
code for instructions

Instruction Encoding (hex) Size

SUB ECX, EDX 29D1 2 bytes

ADD EAX, -1 83C0FFFFFFFF 6 bytes

ADD AX, 2 050200 3 bytes

Address Space
 A program is stored in RAM

Address Content Meaning
0000 0000 29 SUB ECX, EDX
0000 0001 D1
0000 0010 05 ADD AX, 2
0000 0011 02
0000 0100 00
0000 0101 83 ADD EAX, -10000
0000 0110 C0
0000 0111 FF
0000 1000 FF
0000 1001 FF

.

1000 0010 61 Character ‘a’
1000 0011 00 Character ‘\0’
1000 0100 FF Integer -1
1000 0101 FF
1000 0110 FF
1000 0111 FF
.

co
de

da
ta

Address Space
 A program is stored in RAM along with data

Address Content Meaning
0000 0000 29 SUB ECX, EDX
0000 0001 D1
0000 0010 05 ADD AX, 2
0000 0011 02
0000 0100 00
0000 0101 83 ADD EAX, -10000
0000 0110 C0
0000 0111 FF
0000 1000 FF
0000 1001 FF

.

1000 0010 61 Character ‘a’
1000 0011 00 Character ‘\0’
1000 0100 FF Integer -1
1000 0101 FF
1000 0110 FF
1000 0111 FF
.

co
de

da
ta

Address Space
 A program is stored in RAM along with data

 All the bytes in RAM
that “belong” to the
program are called the
program’s address
space

 This address space
contains the code and
the data
 And other things

we’ll see later

Address Content Meaning
0000 0000 29 SUB ECX, EDX
0000 0001 D1
0000 0010 05 ADD AX, 2
0000 0011 02
0000 0100 00
0000 0101 83 ADD EAX, -10000
0000 0110 C0
0000 0111 FF
0000 1000 FF
0000 1001 FF

.

1000 0010 61 Character ‘a’
1000 0011 00 Character ‘\0’
1000 0100 FF Integer -1
1000 0101 FF
1000 0110 FF
1000 0111 FF
.

co
de

da
ta

The CPU

CPU Memory

I/O
System

 It’s the job of the programmer to know what memory content means
(to the CPU, it’s just a bunch of numbers)

 This is a well-known difficulty when writing assembly (ICS312/ICS331)
 High-level programming languages do all this for you, but in C of

course you can do whatever you want
 e.g., on a 64-bit architecture a C pointer is simply an unsigned long

What’s in the CPU?

Memory

I/O
System

Control
UnitALU

Program counter register

register

register
current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Registers: values that hardware instructions work with

Data can be loaded from memory into a register
Data can be stored from a register back into memory
Operands and results of computations are ALL in registers
Accessing a register is really fast
There is a limited number of registers (which will make our life a bit difficult)

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Arithmetic and Logic Unit: what you do computation with

used to compute a value based on current register values and
store the result back into a register

+, *, /, -, OR, AND, XOR, etc.

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Program Counter: Points to the next instruction

Special register that contains the address in memory of the next instruction
that should be executed
(gets incremented after each instruction, or can be set to whatever value
whenever there is a change of control flow)

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Current Instruction: Holds the instruction that’s currently being executed

current instruction

What’s in the CPU?

Control
UnitALU

Program counter register

register

register

Control Unit: Decodes instructions and make them happen

Logic hardware that decodes instructions (i.e., based on their bits) and sends
the appropriate (electrical) signals to hardware components in the CPU

current instruction

Fetch-Decode-Execute Cycle
 The Fetch-Decode-Execute cycle

 The control unit fetches the next program instruction from memory
 Using the program counter to figure out where that instruction is located in the

memory
 The control unit decodes the instruction and signals are sent to

hardware components
 e.g., is the instruction loading something from memory? is it adding

two register values together?
 The instruction is executed

 Operands are fetched from memory and put in registers, if needed
 The ALU executes computation, if any, and stores the computed

results in the registers
 Register values are stored back to memory, if needed

 Repeat
 Computers today implement MANY variations on this model
 But one can still program with the above model in mind

 But then without understanding performance issues

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1100
register

register

register

program counter

current instruction

Somehow, the program counter is
initialized to some content, which is an
address (done by the OS - see ICS332)

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1100
register

register

register

program counter

Fetch the content (instruction) at
address 0000 1100, which is “0110
1011”, and store it in the “current
instruction” register

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

register

register

program counter

Increment the program counter

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

register

register

program counter

Decode instruction “0110 1011”. Let’s
pretend it means: “Load the value at
address 1000 0000 and store it in the
second register”

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Send signals to all hardware
components to execute the
instruction: load the value at address
1000 0000, which is “1111 0000” and
store it in the second register

current instruction
0110 1011

Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1101
register

1111 0000

register

program counter

Fetch the content (instruction) at
address 0000 1101, which is “1111
0010”, and store it in the “current
instruction” register

current instruction
1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

Increment the program counter

current instruction
1111 0010

1111 0000

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

1111 0000

Decode instruction “1111 0010”. Let’s
pretend it means: “Do a logical NOT
on the second register”

Fetch-Decode-Execute

Memory

0010 00010000 1110

1111 00001000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101 1111 0010

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

register

program counter

current instruction
1111 0010

0000 1111

Send signals to all hardware
components to execute the
instruction: do a logical NOT on the
second register

Fetch-Decode-Execute

Memory

0010 00010000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1110
register

0000 1111

register

program counter

Fetch the content (instruction) at
address 0000 1110, which is “0010
0001”, and store it in the “current
instruction” register

current instruction
0010 0001

1111 0000

1111 0010

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

Increment the program counter

0010 0001

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0101 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Decode instruction “0010 0001”. Let’s
pretend it means: “Store the value in
the second register to memory at
address 1111 0010”

Fetch-Decode-Execute

Memory

0000 1110

1000 0000

... ...

Address Value

0000 1100 0110 1011

0000 1101

0000 11111111 0010

... ...

Control
Unit

ALU

0000 1111
register

0000 1111

register

program counter

current instruction
0010 0001

1111 0000

1111 0010

0010 0001

Send signals to all hardware
components to execute the
instruction: store the value in the
second register, which is 0000 1111,
to memory at address 1111 0010

Fetch-Decode-Execute
 This is only a simplified view of the way things work
 The “control unit” is not a single thing

 Control and data paths are implemented by several complex
hardware components

 There are multiple ALUs, there are caches, there are
multiple CPUs in fact (“cores”)

 Execution is pipelined: e.g., while one instruction is
fetched, another one is being executed

 Decades of computer architecture research have gone into
improving performance, thus often leading to staggering
hardware complexity

 Doing smart things in hardware requires more logic gates and
wires, thus increasing processor cost

 But conceptually, fetch-decode-execute is it

The Clock
 Every computer maintains an internal clock that

regulates how quickly instructions can be executed, and
is used to synchronize system components

 Just like a metronome
 Each “event” in the fetch-decode-execute cycle happen

at a different “tick” of the clock
 The frequency of the clock is called the clock rate
 The time in between two clock ticks is called a clock

cycle or cycle for short
 Clock cycle = 1 / Clock Rate

 Clock rate = 2.4 GHz
 Clock cycle = 1 / (2.4*1000*1000*1000)
	 	 	 = 0.416 e-9 sec
	 	 	 = 0.416 ns (nanosec)

Faster/slower Clock Rate
 The higher the clock rate, the shorter the clock cycle
 It’s tempting to think that a faster clock rate means a faster computer
 But it all depends of what amount of work is done in a clock cycle!

 Computer A: clock rate of 2GHz and a multiplication requires 10 cycles
 Computer B: clock rate of 1.5GHz and a multiplication requires 5 cycles
 Computer B is faster than Computer A to run a program that performs a

lot of multiplications
 Therefore, clock rates should not be used to compare computers in

different families
 A core of a 3.0GHz Intel i7 is most likely slower than a core of a 3.5GHz

Intel i7
 A core of a 3.0GHz Intel i7 could be slower than a core of a 2.8GHz IBM

POWER9
 Furthermore, comparisons depends on the type of applications

 Computer A faster than Computer B for some applications
 Computer B faster than Computer A for other applications

Multi-Core

 What we have described is what happens in
a single core

 But nowadays all our machines are multi-
core (e.g., my laptop has 10 cores)

 Let’s see why that is…

Moore’s Law

 In 1965, Gordon Moore (co-founder
of Intel) predicted that transistor
density of semiconductor chips
would double roughly every 24 months

 (often “misquoted” as 18 months)
 He was right
 But, the law was often wrongly interpreted as:

“Computers get twice as fast every 2 years”
 This wrong interpretation was true for a while, but

no longer...

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

This was the
way to deal
with it

Multi-core Chips
 Constructors cannot increase clock rate further

 Power/heat issues
 They bring you multi-core processors

 Multiple “low” clock rate processors on a chip
 It’s really a solution to a problem, not a cool new

advance
 Most developers would rather have a 100GHz

core than 50 2GHz cores
 In which case we would not need to write concurrent

programs
 But we don’t have 100GHz cores, which is why

you should take ICS 432 :)

I/O

CPU Memory

I/O
System

I/O

 We’ve all used may I/O devices (screens, keyboard, disks, ..)
 These all have their specific hardware controllers
 That’s all I am going to say for now

[reproduced from Operating Systems Concepts (Silberschatz, Galvin, Gagne)]

Main Takeaways

 The ENIAC was the first electronic computer
 The Von Neumann Architecture is “it” for

now
 RAM, addresses, and “values” (indirection)
 Instruction set architectures
 The CPU: registers, ALU, control unit
 The Fetch-Decode-Execute cycle
 The Clock and Clock Rate
 Moore’s Law and why we have multi-core

machines

Conclusion

 Computer Architecture is
obviously a very large topic

 If you want to know more
 Take a computer architecture

course
 Classic Textbook: Computer

Organization and Design, Fourth
Edition: The Hardware/Software
Interface (Patterson and
Hennessy, Morgan Kaufmann)

 Let’s now talk more about memory…

