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RAM is “slow”
 Often programs are slow because the memory is slow  
 Accessing a register is very fast  

 e.g., a 4GHz CPU can update a register in 0.25 
nanosecond (1 cycle)  

 Accessing the memory can take ~50 ns 
 What does the CPU do while it’s waiting for the 

memory to give it data?  

 NOTHING!! (yes, this is a problem) 
 This is the famous “Von-Neumann Bottleneck”  

 Many techniques have been developed to address 
this problem
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The Memory Hierarchy

 We would like a gigantic and fast memory 
 Could we just build the memory just as 

gazillions of registers? 
 No!!! Cost/physics make it impossible 

 Instead, we play a trick to provide the illusion 
of a fast memory 

 This trick is called the memory hierarchy
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A Real System
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 2 sockets 
 On each socket: 

 24 hyperthreaded cores 
 3 levels of cache 

 Split Data/
Instruction L1 
caches



The Memory Hierarchy in a Nutshell

 When a program accesses a byte in memory 
 It checks whether the byte is in cache, and if so, it 

just gets it (and puts it in a register) 
 Otherwise, the byte value is brought from the 

(slow) memory into the (fast) cache 
 The values around the byte are also brought into 

the cache  
 This can happen at all levels 

 Each level of the hierarchy serves as a “cache” 
for the level below it



The Memory Hierarchy: Analogy

 To write a paper at your desk at home you need a reference 
book from the library 

 You go to the library and find the book on a shelf, noticing that 
the books around it are on the same topic! You can...  

 Option #1: Leave the book at the library and go to the library each 
time you need one reference 

 Option #2: Take only the one book and reuse it at will... but if it 
makes a reference to another book on the same topic you’ll have to 
go back to the library  

 Option #3: Take the one book and the books around it and put 
them on your desk... and if the reference makes a reference to 
another book, maybe you’ll have the referred book right there 

 Option #3 above is: “your desk is a cache for the library” 
 The set of books you grabbed is called a “cache line” or “memory 

line”



Misses and Hits
 Cache hit:  the processor references an address, 

and the data at that address is in cache 
 The good case 
 You hope for most of your references to be hits 

 Cache miss: the processor references an address, 
and the data at that address is not in cache 
 The bad case, which takes much more time 
 A memory line is brought into the cache 

 The bytes you need and some bytes around it 
 So that next time, all those bytes will be in cache 

 Let’s see this on a picture…
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We had the blue line in cache, but evicted 
it, so now we’ll incur another cache miss…



All this Happens in Hardware
 All cache management is done in hardware 
 The OS or the programmer can’t dictate how the 

cache works 
 Real hardware is more complex than what we saw in 

the previous slides 
 Several levels of cache (the “hierarchy”) 
 What happens on a write? (update only the cache or both 

the catch and the memory?) 
 Which cache lines should be evicted? 
 What happens with multiple cores? 
 See a Computer Architecture course 

 But regardless, why does it all work?



Locality in your Programs
 The memory hierarchy is useful because of 

“locality” 
 Temporal locality: a memory location that was 

referenced in the past is likely to be referenced 
again 
 If you reference a byte, you’ll reference it again 

soon (think of updating a counter) 
 Spatial locality: a memory location next to one 

that was referenced in the past is likely to be 
referenced in the near future 
 If you reference a byte, you’ll soon reference a 

byte close to it (think of going through an array)



Locality for the developer

 In general, all useful programs have some 
locality 

 But programming for best locality is a well-
known challenge (see ICS432, ICS433, 
ICS621) 

 This means we can write a program with 
horrible locality just to see how bad it is 

 Let’s do that…



How Much Does Locality Help?
 Say you have an array A of bytes in RAM 
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++) 

  A[i]++;

for (int repeat = 0; repeat < 100; repeat++) { 

for (int i=0; i < N; i+=100) 

  A[I]++; 

}
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How Much Does Locality Help?
 Say you have an array A of bytes in RAM 
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++) 

  A[i]++;

for (int repeat = 0; repeat < 100; repeat++) { 

for (int i=0; i < N; i+=100) 

  A[I]++; 

}

Running this on my laptop: 

Loop #1: 0.724 sec 
Loop #2: 4.713 sec 

Good locality: 6.5x faster execution 



Direct Memory Access (DMA)
 Often, one has to copy large chunks of data to/from RAM 

from/to some peripheral device (graphics card, network 
card, sound card, disk)  

 In the pure Von-Neumann model, the CPU has to be 
involved for each copy operation  

 The problem is that memory copies take a long time (even 
with caches), and the CPU spends its life twiddling its 
thumbs while the copies are taking place 

 It would be better to have copies occur independently so 
that the CPU can do something useful while the memory 
copies are taking place 

 This is called Direct Memory Access 
 The “let’s not have the CPU do this” is a common theme



Direct Memory Access (DMA)

 DMA is used on all modern computers  

 e.g., the M1 chip on my laptop has a (pretty 
fancy) DMA controller 

 How DMA works (without getting into details): 
 The CPU simply tells the DMA controller to initiate 

a RAM copy 
 When the copy is complete the DMA controller 

tells the CPU “it’s done” by generating an 
interrupt (more on interrupts very soon) 

 In the meantime, the CPU was free to do 
whatever



Direct Memory Access (DMA)
 To perform data transfers the DMA controller uses 

the memory bus  

 In the meantime, the code executed by the CPU 
likely also uses the memory bus  

 Therefore, they can interfere with each other  

 There are several ways in which this interference can 
be managed (give priority to DMA, to CPU, weight 
usage, ...)  

 See a Computer Architecture course  
 In general, using DMA leads to much better 

performance anyway and (good) software should use 
it as often as possible 



Main Takeaways
 The way we cope with slow RAM is via a Memory 

Hierarchy, using “caching” 
 Caching works because our programs have natural 

locality behavior 
 Temporal and Spatial 

 CPU caches are managed by the hardware (not the OS) 
 When you reference a byte, you get the whole “line” (hoping 

for spatial locality) and you keep it around in cache (hoping 
for temporal locality) 

 As a programmer you can influence locality of your 
program a lot, which can be hard to do 

 But simple examples should appear staightforward



Conclusion
 This concludes are lightning fast review/overview 

of computer architecture 
 You don’t need to be computer architecture 

experts for this course 
 But since the OS is in charge of interacting with 

the hardware, you need to know these basics 
 And many of the principles behind what we’ve 

talked about in this module are reused in software 
by the OS (and programs in general) 

 We’ll have a quiz on this module next week


