
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Memory
Bottleneck

RAM is “slow”
 Often programs are slow because the memory is slow
 Accessing a register is very fast

 e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

 Accessing the memory can take ~50 ns
 What does the CPU do while it’s waiting for the

memory to give it data?

 NOTHING!! (yes, this is a problem)
 This is the famous “Von-Neumann Bottleneck”

 Many techniques have been developed to address
this problem

RAM is “slow”
 Often programs are slow because the memory is slow
 Accessing a register is very fast

 e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

 Accessing the memory can take ~50 ns
 What does the CPU do while it’s waiting for the

memory to give it data?

 NOTHING!! (yes, this is a problem)
 This is the famous “Von-Neumann Bottleneck”

 Many techniques have been developed to address
this problem

The Memory Hierarchy

 We would like a gigantic and fast memory
 Could we just build the memory just as

gazillions of registers?
 No!!! Cost/physics make it impossible

 Instead, we play a trick to provide the illusion
of a fast memory

 This trick is called the memory hierarchy

The Memory Hierarchy

Registers
O(kB), 1 ns

Control
UnitALU

Program counter register

register

register
current instruction

Intel 8088

Caches
O(MB), 1-50 ns

The Memory Hierarchy

Intel
Netburst

Processor

 Memory
O(GB), ~100 ns

The Memory Hierarchy

Dell laptop
motherboard

The Memory Hierarchy

 Disks
O(TB), ~10,000 ns

Apple
laptop

The Memory Hierarchy

Registers
O(kB), 1 ns

Caches
O(MB), 1-50 ns

 Memory
O(GB), ~100 ns

 Disks
O(TB), ~10,000 ns

Faster

Slower

Smaller

Bigger

A Real System

Machine (62GB total)

Package L#0

L3 (36MB)

L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#0

PU L#0
P#0

PU L#1
P#48

L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#1

PU L#2
P#2

PU L#3
P#50

24x total
L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#23

PU L#46
P#46

PU L#47
P#94

NUMANode L#0 P#0 (31GB)

0.6

0.6

PCI 00:11.5

PCI 00:17.0

0.6 PCI 03:00.0

0.6

0.6

PCI 04:00.0

Net eno8303

PCI 04:00.1

Net eno8403

1.2

1.2

1.2

1.2

PCI 4c:00.0

Net eno12419

PCI 4c:00.1

Net eno12429

1.2

1.2

PCI 4b:00.0

Net eno12399

PCI 4b:00.1

Net eno12409

16 16 PCI 65:00.0

Block sdb
14 TB

Block sda
894 GB

Package L#1

L3 (36MB)

L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#24

PU L#48
P#1

PU L#49
P#49

L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#25

PU L#50
P#3

PU L#51
P#51

24x total
L2 (1280KB)

L1d (48KB)

L1i (32KB)

Core L#47

PU L#94
P#47

PU L#95
P#95

NUMANode L#1 P#1 (31GB)

Host: disco
Date: Fri 29 Aug 2025 09:29:52 AM HST

Picture generated by lstopo
on my Linux server (sudo
apt-get install hwloc)

 2 sockets
 On each socket:

 24 hyperthreaded cores
 3 levels of cache

 Split Data/
Instruction L1
caches

The Memory Hierarchy in a Nutshell

 When a program accesses a byte in memory
 It checks whether the byte is in cache, and if so, it

just gets it (and puts it in a register)
 Otherwise, the byte value is brought from the

(slow) memory into the (fast) cache
 The values around the byte are also brought into

the cache
 This can happen at all levels

 Each level of the hierarchy serves as a “cache”
for the level below it

The Memory Hierarchy: Analogy

 To write a paper at your desk at home you need a reference
book from the library

 You go to the library and find the book on a shelf, noticing that
the books around it are on the same topic! You can...

 Option #1: Leave the book at the library and go to the library each
time you need one reference

 Option #2: Take only the one book and reuse it at will... but if it
makes a reference to another book on the same topic you’ll have to
go back to the library

 Option #3: Take the one book and the books around it and put
them on your desk... and if the reference makes a reference to
another book, maybe you’ll have the referred book right there

 Option #3 above is: “your desk is a cache for the library”
 The set of books you grabbed is called a “cache line” or “memory

line”

Misses and Hits
 Cache hit: the processor references an address,

and the data at that address is in cache
 The good case
 You hope for most of your references to be hits

 Cache miss: the processor references an address,
and the data at that address is not in cache
 The bad case, which takes much more time
 A memory line is brought into the cache

 The bytes you need and some bytes around it
 So that next time, all those bytes will be in cache

 Let’s see this on a picture…

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Cache space for
2 memory lines

Array that fits in 6
memory lines

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 20”

Bring whole line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want to access
byte at address

17”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great! It’s

already in cache”cache
hit

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at

address 5”

Bring cache line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

And now, the cache is full!

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

We need to “evict” a memory line from the
cache to create space (say the blue one)

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Let’s say we evict the Least Recently Used
(LRU) line from the cache (blue one)

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 43”

Bring cache line from RAM to Cachecache
miss

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“Great, now I can

access it”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

Cache/Memory Lines

Memory {8-byte
memory line

Cache

CPU
Processor

Program says:
“I want byte at
address 12”

We had the blue line in cache, but evicted
it, so now we’ll incur another cache miss…

All this Happens in Hardware
 All cache management is done in hardware
 The OS or the programmer can’t dictate how the

cache works
 Real hardware is more complex than what we saw in

the previous slides
 Several levels of cache (the “hierarchy”)
 What happens on a write? (update only the cache or both

the catch and the memory?)
 Which cache lines should be evicted?
 What happens with multiple cores?
 See a Computer Architecture course

 But regardless, why does it all work?

Locality in your Programs
 The memory hierarchy is useful because of

“locality”
 Temporal locality: a memory location that was

referenced in the past is likely to be referenced
again
 If you reference a byte, you’ll reference it again

soon (think of updating a counter)
 Spatial locality: a memory location next to one

that was referenced in the past is likely to be
referenced in the near future
 If you reference a byte, you’ll soon reference a

byte close to it (think of going through an array)

Locality for the developer

 In general, all useful programs have some
locality

 But programming for best locality is a well-
known challenge (see ICS432, ICS433,
ICS621)

 This means we can write a program with
horrible locality just to see how bad it is

 Let’s do that…

How Much Does Locality Help?
 Say you have an array A of bytes in RAM
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++)

 A[i]++;

for (int repeat = 0; repeat < 100; repeat++) {

for (int i=0; i < N; i+=100)

 A[I]++;

}

How Much Does Locality Help?
 Say you have an array A of bytes in RAM
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++)

 A[i]++;

for (int repeat = 0; repeat < 100; repeat++) {

for (int i=0; i < N; i+=100)

 A[I]++;

} If N is a multiple of 100,
both codes do the exact
same number of
memory accesses

How Much Does Locality Help?
 Say you have an array A of bytes in RAM
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++)

 A[i]++;

for (int repeat = 0; repeat < 100; repeat++) {

for (int i=0; i < N; i+=100)

 A[I]++;

}

Perfect Spatial Locality

Zero Spatial Locality

How Much Does Locality Help?
 Say you have an array A of bytes in RAM
 Loop #1:

 Loop #2:

for (int i=0; i < N; i++)

 A[i]++;

for (int repeat = 0; repeat < 100; repeat++) {

for (int i=0; i < N; i+=100)

 A[I]++;

}

Running this on my laptop:

Loop #1: 0.724 sec
Loop #2: 4.713 sec

Good locality: 6.5x faster execution

Direct Memory Access (DMA)
 Often, one has to copy large chunks of data to/from RAM

from/to some peripheral device (graphics card, network
card, sound card, disk)

 In the pure Von-Neumann model, the CPU has to be
involved for each copy operation

 The problem is that memory copies take a long time (even
with caches), and the CPU spends its life twiddling its
thumbs while the copies are taking place

 It would be better to have copies occur independently so
that the CPU can do something useful while the memory
copies are taking place

 This is called Direct Memory Access
 The “let’s not have the CPU do this” is a common theme

Direct Memory Access (DMA)

 DMA is used on all modern computers

 e.g., the M1 chip on my laptop has a (pretty
fancy) DMA controller

 How DMA works (without getting into details):
 The CPU simply tells the DMA controller to initiate

a RAM copy
 When the copy is complete the DMA controller

tells the CPU “it’s done” by generating an
interrupt (more on interrupts very soon)

 In the meantime, the CPU was free to do
whatever

Direct Memory Access (DMA)
 To perform data transfers the DMA controller uses

the memory bus

 In the meantime, the code executed by the CPU
likely also uses the memory bus

 Therefore, they can interfere with each other

 There are several ways in which this interference can
be managed (give priority to DMA, to CPU, weight
usage, ...)

 See a Computer Architecture course
 In general, using DMA leads to much better

performance anyway and (good) software should use
it as often as possible

Main Takeaways
 The way we cope with slow RAM is via a Memory

Hierarchy, using “caching”
 Caching works because our programs have natural

locality behavior
 Temporal and Spatial

 CPU caches are managed by the hardware (not the OS)
 When you reference a byte, you get the whole “line” (hoping

for spatial locality) and you keep it around in cache (hoping
for temporal locality)

 As a programmer you can influence locality of your
program a lot, which can be hard to do

 But simple examples should appear staightforward

Conclusion
 This concludes are lightning fast review/overview

of computer architecture
 You don’t need to be computer architecture

experts for this course
 But since the OS is in charge of interacting with

the hardware, you need to know these basics
 And many of the principles behind what we’ve

talked about in this module are reused in software
by the OS (and programs in general)

 We’ll have a quiz on this module next week

