The Memory
Bottieneck

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
RAM is “slow”

m Often programs are slow because the memory is slow

B Accessing a register is very fast

e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

®m Accessing the memory can take ~50 ns

® What does the CPU do while it’s waiting for the
memory to give it data?

" A
RAM is “slow”

m Often programs are slow because the memory is slow

B Accessing a register is very fast

e.g., a 4GHz CPU can update a register in 0.25
nanosecond (1 cycle)

®m Accessing the memory can take ~50 ns

® What does the CPU do while it’s waiting for the
memory to give it data?

B NOTHING!! (yes, this is a problem)
® This is the famous “Von-Neumann Bottleneck”

® Many techniques have been developed to address
this problem

"
The Memory Hierarchy

® \We would like a gigantic and fast memory

® Could we just build the memory just as
gazillions of registers?

®m Nol!!l Cost/physics make it impossible

B |nstead, we play a trick to provide the illusion
of a fast memory

m This trick is called the memory hierarchy

The Memory Hierarchy

Program counter]

register

current instruction

register]

register

Control

Unit

Intel 8088

Instruction Instruction
register decode

ALU Registers
registers
Car
Iookahrgad [
ALU
PC / stack

flags

The Memory Hierarchy

oo N
Caches
O(MB), 1-50 ns

Microcode
ROM

! Rename/
Trace Cache uOP Queueing Allocate?

Scheduler and
000 Buffers

ssayng ||I4 ayoeD aoes)

Trace Cache Fetch

Branch Predictor

- Slow ALU?
L1 Data Cache

Load/Store 16 KB B Way | R ey Floating Point and SIMD

INT Registers § Execution
32-bit Half

Memory Ordering Fast ALUs

175 Flags
b | ITLB? L1 Data Cache ' girucm s, Y
7 885 ; :
Fast ALUs INT Registers §
L2 Instruction Fetch vAE ST bR Hal

L2 Control and FSB Interface

Intel |
Netburst i

Processor s hinm

2 MB 8-Way

L2 Cache
Data Array

siayng |Ii4 21

! =

) JIIX;TFF,

et

Feet il

The

emory Hierarchy

Memory
O(GB), ~100 ns

Yoo uos,

23200011280
Ik IIU‘IIIII (UL}
00039

NS
ELLRINE N/

98Y2LYPILL00
LR ER IV

v
000LENI00V Nar

Dell laptop
motherboard

"
The Memory Hierarc

Disks
O(TB), ~10,000 ns

The Memory Hierarchy

A\

Faster Smaller

Registers

| O(kB), 1 ns
Voo N

Caches
O(MB), 1-50 ns

Memory
O(GB), ~100 ns

Slower Bigger

Disks
O(TB), ~10,000 ns

A Real System

m 2 sockets

® On each socket:
= 24 hyperthreaded cores
= 3 |evels of cache

= Split Data/
Instruction L1
caches

Picture generated by 1stopo
on my Linux server (sudo
apt-get install hwloc)

Machine (62GB total)

Package L#0

NUMANode L#0 P#0 (31GB)

L3 (36MB) PCl 00:11.5
L2 (1280KB) | | L2 (1280kB) | O OO | L2 (1280KB) PCI 00:17.0
24x total
L
L1d (48KB) L1d (48KB) L1d (48KB) 0.6 0.6 PCI 03:00.0
1
L1i (32KB) L1i (32KB) L1i (32KB) 0.6 |0.6| PCI 04:00.0
Core L#0 Core L#1 Core L#23 Net eno8303
PU L#0 PU L#2 PU L#46
0.6 :
P#0 P#2 P#46 PCI 04:00.1
PU L#1 PU L#3 PU L#47 Net eno8403
P#48 P#50 P#94
16 16 | PCI 65:00.0
Block sdb
14 TB
Block sda
894 GB
Package L#1
NUMANode L#1 P#1 (31GB)
L3 (36MB)
L2 (1280KB) | | L2 (1280kB) | O O O | L2 (1280KB)
24x total
L1d (48KB) L1d (48KB) L1d (48KB)
L1i (32KB) L1i (32KB) L1i (32KB)
Core L#24 Core L#25 Core L#47
PU L#48 PU L#50 PU L#94
P#1 P#3 P#47
PU L#49 PU L#51 PU L#95
P#49 P#51 P#95

"
The Memory Hierarchy in a Nutshell

® \When a program accesses a byte in memory

It checks whether the byte is in cache, and if so, it
just gets it (and puts it in a register)

Otherwise, the byte value is brought from the
(slow) memory into the (fast) cache

The values around the byte are also brought into
the cache

®m This can happen at all levels

Each level of the hierarchy serves as a “cache”
for the level below it

" JEE
The Memory Hierarchy: Analogy

® To write a paper at your desk at home you need a reference
book from the library

® You go to the library and find the book on a shelf, noticing that
the books around it are on the same topic! You can...

Option #1: Leave the book at the library and go to the library each
time you need one reference

Option #2: Take only the one book and reuse it at will... but if it
makes a reference to another book on the same topic you’ll have to
go back to the library

Option #3: Take the one book and the books around it and put
them on your desk... and if the reference makes a reference to
another book, maybe you’ll have the referred book right there

= Option #3 above is: “your desk is a cache for the library”

The set of books you grabbed is called a “cache line” or “memory
line”

" A
Misses and Hits

m Cache hit: the processor references an address,
and the data at that address is in cache

The good case
You hope for most of your references to be hits
B Cache miss: the processor references an address,
and the data at that address is not in cache
The bad case, which takes much more time

A memory line is brought into the cache
= The bytes you need and some bytes around it

So that next time, all those bytes will be in cache
m | et's see this on a picture...

"
Cache/Memory Lines

Processor
CPU

Cache

Memory - (TTFTTTFTTTATTITTTITY

o’

8-byte
memory line

Cache/Memory Lines

Processor

CPU

Cache

J Cache space for

\l 2 memory lines

Array that fits in 6
memory lines

\4

Memory

[T

o’

8-byte

memory line

"

Cache/Memory Lines

Processor
CPU

Cache | | |

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache | | |

vormory AT TTHEAT T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache (NI

vorory (NI 1T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (NI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (LTI

vormory TN TN T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache

Memory

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache ([T

vomory NN THAARAT T

8-byte
memory line

"
Cache/Memory Lines

Processor
CPU

Cache [[TTTTTITTITTITY

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache [T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

ache [T

vormory NN TR TR T

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (TN

vormory NN TR TR T

8-byte
memory line

Cache/Memory Lines

Processor
CPU

Cache

vorory (NI T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache [T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (T

vomory NN THAARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor
CPU

Cache (T

omory NN TETRARAT T

8-byte
memory line

"

Cache/Memory Lines

Processor

8-byte
memory line

" J
All this Happens in Hardware

m All cache management is done in hardware

®m The OS or the programmer can’t dictate how the
cache works

®m Real hardware is more complex than what we saw in
the previous slides
Several levels of cache (the “hierarchy”)

What happens on a write? (update only the cache or both
the catch and the memory?)

Which cache lines should be evicted?
What happens with multiple cores?
See a Computer Architecture course

® But regardless, why does it all work?

"
Locality in your Programs

® The memory hierarchy is useful because of
“locality”
® Temporal locality: a memory location that was
referenced in the past is likely to be referenced
again
m |f you reference a byte, you'll reference it again
soon (think of updating a counter)

m Spatial locality: a memory location next to one
that was referenced in the past is likely to be
referenced in the near future

m |[f you reference a byte, you'll soon reference a
byte close to it (think of going through an array)

" J
Locality for the developer

® |n general, all useful programs have some
locality

®m But programming for best locality is a well-
known challenge (see 1CS432, 1CS433,
ICS621)

® This means we can write a program with
horrible locality just to see how bad it is

m | et's do that...

"
How Much Does Locality Help?

B Say you have an array A of bytes in RAM
m | oop #1:

for (int i=0; i < N; i++)
A[i]++;

B | oop #2:

for (int repeat = 0; repeat < 100; repeat++) {
for (int 1=0; i < N; i+=100)
A[I]++;

"
How Much Does Locality Help?

B Say you have an array A of bytes in RAM
m | oop #1:

for (int i=0; i < N; i++)
A[i]++;

B | oop #2:

for (int repeat = 0; repeat < 100; repeat++) ({
for (int 1=0; i < N; i+=100)
A[I]++;
} GN IS a multiple of 10(D
both codes do the exact
same number of

MemOory aCCeSsSses
N W,

"
How Much Does Locality Help?

B Say you have an array A of bytes in RAM
m | oop #1:

for (int i=0; i < N; i++)

A[i]++; #
Perfect Spatial Localit
B | oop #2: i i }

for (int repeat = 0; repeat < 100; repeat++) ({
for (int 1=0; i < N; i+=100)
A[I]++;

Zero Spatial Locality }

"
How Much Does Locality Help?

B Say you have an array A of bytes in RAM
m |oop #1:

L Running this on my laptop:

= Loop #4Loop #1: 0.724 sec
fLoop #2: 4.713 sec

"
Direct Memory Access (DMA)

m Often, one has to copy large chunks of data to/from RAM
from/to some peripheral device (graphics card, network
card, sound card, disk)

® |n the pure Von-Neumann model, the CPU has to be
involved for each copy operation

® The problem is that memory copies take a long time (even
with caches), and the CPU spends its life twiddling its
thumbs while the copies are taking place

® |t would be better to have copies occur independently so
that the CPU can do something useful while the memory
copies are taking place

® This is called Direct Memory Access
The “let’s not have the CPU do this” is a common theme

"
Direct Memory Access (DMA)

® DMA is used on all modern computers

e.g., the M1 chip on my laptop has a (pretty
fancy) DMA controller

® How DMA works (without getting into details):

The CPU simply tells the DMA controller to initiate
a RAM copy

When the copy is complete the DMA controller
tells the CPU “it's done” by generating an
interrupt (more on interrupts very soon)

In the meantime, the CPU was free to do
whatever

"
Direct Memory Access (DMA)

® To perform data transfers the DMA controller uses
the memory bus

® |n the meantime, the code executed by the CPU
likely also uses the memory bus

® Therefore, they can interfere with each other

® There are several ways in which this interference can
be managed (give priority to DMA, to CPU, weight
usage, ...)
See a Computer Architecture course

® |n general, using DMA leads to much better
performance anyway and (good) software should use
it as often as possible

"
Main Takeaways

®m The way we cope with slow RAM is via a Memory
Hierarchy, using “caching”

m Caching works because our programs have natural
locality behavior
Temporal and Spatial

® CPU caches are managed by the hardware (not the OS)

When you reference a byte, you get the whole “line” (hoping
for spatial locality) and you keep it around in cache (hoping
for temporal locality)
®m As a programmer you can influence locality of your
program a lot, which can be hard to do

But simple examples should appear staightforward

" A
Conclusion

® This concludes are lightning fast review/overview
of computer architecture

® You don’t need to be computer architecture
experts for this course

® But since the OS is in charge of interacting with
the hardware, you need to know these basics

® And many of the principles behind what we've
talked about in this module are reused in software
by the OS (and programs in general)

m \We'll have a quiz on this module next week

