
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Introduction

Course Goal
 At this point in your life you:

 Have used at least one OS
 Know which OS runs on your computer
 Know that without the OS you couldn’t use your computer

 Yet, for most of you, the OS is pretty mysterious
 Say your art major friend asks: “What really happens

when I double click on an icon to run an application on my
computer?”

 Could you give a decent answer besides: “Amazingly, it all
works?”

 As a Computer Scientist it’s ok to not know much about
how a car/fridge/airplane works, but it’s not ok to be
clueless about how an OS works

Motivation to Study OSes?
 Let’s be clear, very few of you will develop an actual OS
 But, most of you will work on complex systems that

couple together many components
 Obvious Motivation: These systems all use the OS heavily

 Important to know how to the use the OS
 Important to know that the OS can and cannot do
 Important to know what happens under the cover to

understand bug, security, performance, etc.
 Meta Motivation (you have to trust me on this one): Knowing

OS principles makes you a better software/system designer
 OS concepts are massively re-usable in your own projects

 Asking oneself “how does the OS do this?” is always useful
 Studying “operating systems” makes you better at “systems” :)

OS in the News

 If you follow the news, general or tech-oriented,
you know there are quite a few OS-related item
each month
 Some about new “exciting” features targeted at

consumers, often very vague on details
 Some about virus/problems/bugs, typically more

targeted at computer professionals
 After taking this course you should be able to

understand these, or at least the OS side to them
 Note that understanding computer architecture is also

needed, as vulnerabilities/attacks are typically at the
software/hardware interface

A Few Example

 General news:
 Articles about Specter/Meltdown (2018)
 Articles about TLBleed (2018)

 Technical content:
 New Virtual Memory feature in Linux (2022)
 New Scheduling feature in Windows/Intel (2025)
 A Windows vulnerability report (2024)
 A Linux/Android vulnerability report (2022)

 I highlight terms we’ll learn about in this course
 Note that there are mistakes in some of the general

news content!!

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

January ’18
“Spectre,

Meltdown”

June ’18
“TLBleed”

The current page reclaim is too expensive
in terms of CPU usage and often making
poor choices about what to evict. We would
like to offer a performant, versatile and
straightforward augment.

reasoning in terms of active and inactive
pages did not appear to be useful for job
scheduling in server environments and led
to biased page eviction on Android and
Chrome OS with negative impact on UI
rendering.

this means pages are grouped into
generations, with each generation being
comprised of all pages referenced since the
previous generation. Generations are
discovered using differential scan. Older
generations are marked evictable and are
eventually evicted through a process of
aging that keeps into account whether a
page has been used since the last scan.

The scheduler takes all the information
from Thread Director, constantly as a guide

If there’s an obvious potential for better IPC
or better efficiency, then it suggests the
thread is moved

What makes Windows 11 better than
Windows 10 in this regard is that Windows
10 focuses more on the power of certain
cores, whereas Windows 11 expands that
to efficiency as well.

In 2017, there was a refactoring in the ALSA driver to move the lock
acquisition out of snd_ctl_elem_{write|read}() functions and further
up the call graph for the SNDRV_CTL_IOCTL_ELEM_{READ|
WRITE} ioctls. However, this commit only addressed the 64-bit ioctl
code, introducing a race condition into the 32-bit compatibility layer
SNDRV_CTL_IOCTL_ELEM_{READ|WRITE}32 ioctls.

Instead, the exploit uses their initial arbitrary write to construct a
new fake fops table within the .data section of the kernel. The
exploit writes into the init_uts_ns kernel symbol, in particular the
part of the associated structure that holds the uname of the kernel.
Overwriting data in this structure provides a clear indicator of when
the race conditions are won and the arbitrary write succeeds (the
uname syscall returns different data than before).

Disclaimer (1)
 It would be great for us to develop an OS during the semester
 Sadly, it’s not feasible:

 Too hard, time-consuming, programming-heavy for most students at this stage
in their education, especially students who may struggle with low-level
programming (Assembly, C, C++, Rust, etc.)

 Or at least given the expected number of hours a student should put into an
undergraduate course...

 As a result, undergraduate OS courses are often less “hands-on” than
what some students expect

 Typically a few of you come into this thinking we’re going to do awesome hacks in
the Linux kernel….and will be disappointed

 If your dream is to get your hands dirty with the OS kernel you can:

 Do an internship at a company that does low level / OS-related work, do an OS-
related Google Summer of code, ..

 Take the OS graduate course
 Do it on your own (each semester there is at least one student who does this and

there are tons of on-line resources!)

Disclaimer (2)
 I am not an “OS geek”
 If you’ve read the source code of some OS, if you have

worked on an OS (internship), if you have any useful
knowledge, you are more than welcome to share with
the class whenever relevant

 And I’m always happy to have the course content evolve
dynamically based on students suggested topics within some
reasonable bounds

 This said, the class is more on general principles than
specific implementations (since those change often, as
we will see)

 You can learn a lot about OSes without necessarily spending
hours looking at OS code

Teaching OS is not easy
 A significant part of the material is of the “here is how it

works and why it’s a good idea” kind

 Precisely because it’s not feasible to have the full-fledged
hands-on experience at the undergraduate level

 Don’t fear, there will be plenty of programming / hands-on
activities in this course

 Although I try to make the course as interactive as
possible, there is just a limit to what any instructor can do
for some of this material at the undergraduate level

 Bottom line:

 The course is fun when students are engaged and ask
questions

 And when we answer questions by writing code in class
 The course is dull when students are silent

What we will learn (1)
 Roles of an operating system

 Fundamental principles of operating system design and
kernel implementation

 Key features of operating systems of practical
importance

 The course content is not specific to a particular OS
 Many OSes do things in similar way, but they also have key

differences
 We will often reference Unix derivatives (Mac OS, Linux, iOS,

Android, ...) and Windows
 We will mention ”historical” OSes whenever relevant
 We will not study special-purpose OSes (e.g., real-time,

network operating systems, ...)

What we will learn (2)
 Fundamental components and principles of

modern operating systems:

 Processes and Threads Management
Scheduling

 Synchronization (barely scratching the surface here)
 Memory and Virtual Memory Management
 Storage and, if time, File Systems
 Virtual Machines and Containers

 The programming assignments are more about
“using” the OS than about “implementing” the OS
 i.e., what most of you will need most in your profession

ICS332 and the ICS Curriculum

ICS 332

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

Hardware
Assembly Programming

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

Discrete-Math
Algorithms

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

Networks

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

ICS 355

Security

ICS332 and the ICS Curriculum

ICS 332

ICS 312/331

ICS
141/241/311

ICS 351

ICS 355

ICS 432
Concurrent

Programming

Course Website
 Located at:

 https://courses.ics.hawaii.edu/ics332_spring2026/
 Linked from my personal homepage

 Google for “Henri Casanova”
 Organized as Modules

 All lecture notes as PDF files
 Pointers to useful on-line material
 All assignments
 Announcements
 A link to the Syllabus

 Which we’re going over now in these slides
 Let’s look at the Web site...

http://courses.ics.hawaii.edu/ics332_fall2023

Textbook
 Operating Systems: Three Easy Pieces (a.k.a. OSTEP)

1.00 by Arpaci-Dusseau, R. H. and Arpaci-Dusseau, A. C
 Freely available!

 Lectures are tightly connected to particular chapters
therein

 There will be reading assignments from this textbook, as
indicated on the lecture notes

 Up to you whether you prefer to read them before or
after our lectures....

 Some exam questions and assignments will be directly
from or inspired by the textbook

 There are several classic texts for Operating Systems
(see the “syllabus” page on the course Web site)

https://pages.cs.wisc.edu/~remzi/OSTEP/

Lecture Notes

 Lecture notes are posted on the course’s
Web site regularly
 You can read them before or after the lecture, up

to you really
 I am notorious for spacing out on putting the

notes up on the site, so just drop me a one-line e-
mail

Inverted Lectures

 A few lectures will be “inverted”
 You watch a screencast at your own pace
 The lecture period is for questions and practice

exercises
 I do this for a few topics in the course that are

more “mechanical” or “difficult”
 You must watch the screencast ahead of time!

 E-mails reminders will be sent out
 Scheduling may be imperfect

 Out-of-order and/or overlapping modules
 We might end a few lecture periods early

Screencast Lectures

 A few lectures will be screencast
 This is because I am sometimes required to travel

 More information later…

 Course Content

 In spite of my best efforts it happens that the
course Web site could have small problems
(typos, missing link, etc.)

 Anytime you see anything strange/broken on
the Web site, please let me know right away!
 A one-line e-mail, a DM on Discord, etc.

Grading on 1000 points

 Sample and optional homework assignments for
0 points

 Three exams
 Midterm #1 exam (300 points)
 Midterm #2 exam (300 points)
 Final exam (330 points)

 Quizzes (70 points)
 8 10-point quizzes, worst grade is discarded

Homework Assignments
 All homework assignments in this course are either

“sample homework” or “optional homework”, worth
zero points

 Sample homework assignments:
 Posted as regular assignments would be
 Solutions are provided on the assignment’s page
 You cannot turn them in

 Optional homework assignments:
 Posted as regular assignments would be
 You can turn them in and there is a due date
 You will receive feedback
 Solutions are available upon request after the due date

 Why? …

Homework Assignments
 Rationale for 0 points on homework assignments:

 The use of LLMs has rendered homework unfair across
students (blatantly seen last semester)

 Students in this course used to “write a lot of code and
struggle somewhat on assignments”, but this is no
longer a thing

 The whole point of the course has always been to teach
key concepts, not to attempt to make you assembly
programming pros

 Writing code was only a means-to-an-end for learning in
this course anyway

 Graded homework assignments used to be a way to
force students to be prepared for exams

Homework Assignments
 Can students learn the important concepts without going

through the works of doing homework assignments?
 Nobody really knows, some people think “absolutely” and some

think “absolutely not”
 I think it completely depends on the student:

 For some of you, not attempting the homework assignments
or practice problems on your own will lead to catastrophic
results

 Some of you will ace all exams regardless
 The assumption in this “new world” is now that students are

adults and know what they need to do to pass exams 😬

 We will do quite a bit of practice and live-coding in class!
 And you should never hesitate asking “can we live-code this?”

during lecture

Exams
 Exams are taken in class, closed-note
 Pocket calculators, not programmable calculators or

phones, allowed (but not needed)
 Exams are randomly generated and students have

different exams
 So don’t cheat with your neighbors, it’s super obvious

if you do (and it always happens!)
 Each exam will have mostly exercises that match

exactly homework assignments and practice
problems

 The final exam will have one selected exercise from
each of the previous midterm exams
 And I’ll tell you which kind of exercise

Quizzes
 8 Quizzes in the semester
 Taken on the first lecture day of the week

 Always on a Tuesday, unless that Tuesday is a holiday, in
which case it will be on a Thursday

 Always announced the previous week ON THE
COURSE’S WEB SITE

 Taken at the beginning of the lecture period, in the
first 10 minutes
 You cannot take the quiz if you show up more than 5

minutes late to the lecture
 No make-up quizzes, unless a documented reason
 But the worst quiz grade is discarded

CES Evaluation
 Extra credit given to all students:

 0 points if CES completion rate is < 80%
 5 points if CES completion rate is >= 80%
 10 points if CES completion rate is 90%

 Why?
 I do look at the evaluation every semester and evolve the

course accordingly
 Even if you love the course, it’s important for me to hear what

things didn’t work
 These evaluations have more impact than you may think

and are taken seriously
 Impact for individual faculty, for the whole department, for future

students, etc.

The Linux CLI (Shell)
 Knowledge of the UNIX/Linux CLI (Shell) is needed in this course

 Show of hand: who feels somewhat familiar with the Unix/Linux
CLI?

 A huge potential side-benefit of taking this course is to become
decent/good with the command-line

 About 25% of students passing the course tell me that they are forever
grateful that they forced themselves to learn/use the Shell

 This is also something we hear from alumni who, once in a job,
“discover” that 99% of back-end systems are Linux based and using the
Shell is a daily activity

 This module (Getting Started) contains some pointers. Let’s look
at them now...

 Many of you really want to look at this material to prepare for upcoming
programming assignments

 In case you’re not convinced …..

ICS Alumnus
Brian Hall

Brian Hall <bdh@briandavidhall.com>
Email him to request access to his Udemy course on the CLI (for free!)

On the Importance of Terminology

 As we learn about Operating Systems we will encounter
a lot of terminology

 Recognizing and using the correct terminology is part of
what we learn in this course

 Knowing the terminology is very important (e.g., in a job
interview, in a professional context)

 So, in class, whenever a student asks a question (which
is highly encouraged!), I might rephrase the question
using proper terminology

 This is not to be annoying or belittling, it’s to make sure we all
come out of this course speaking the language of Operating
Systems (and of Computer Science)

 Of course, terminology will be part of the quizzes/exams

How to not do well in this course?
 Don’t come to class (“the slides are nice”)

 We do a LOT of stuff in class, including live coding, and I
give a lot of explanations, examples

 Don’t attempt the homework assignments or
practice problems
 Putting in time on those is the best way to learn the

material
 Don’t come to office hours (“The instructor is

scary because he shows ‘how to no do well in
this course?’ slides”)
 After you struggle for a while on something, drop by
 Instructor and TA office hours are an amazing service

provided to you, and yet, they go mostly unused

How to not do well in this course?
 Cheat

 Cheating is bad for many reasons, including hurting the
reputation of ICS graduates!

 If you are caught cheating or enabling cheating:
 zero on the assignment/exam
 overall grade lowered by a step (i.e., a “B” becomes a “C”)
 reported to UH’s Office of Judicial Affairs (as required)

 Expect that “what can I do for extra credit?” will be met
with a positive response

 Don’t study for the quizzes

 “It’s only a small fraction of the grade”
 But studying for quizzes is a HUGE help to prepare for exams
 When I don’t do quizzes, the average grade drops!

Software/Hardware for ICS332
 You’ll have to use a Linux “machine”

 Let’s look at Homework Assignment #0, which is
ungraded but which you should do as soon as
possible in the semester
 If you intend to do any programming at all (which you

really should!)

Questions?

 Any questions on the syllabus?

 Any questions on the course in general?

Participation Verification

 As you know, each instructor has to report on
“Student Participation” and certify the class
roster
 If you have not “participated”, you could be dropped

from the course

 IMPORTANT: Do the ungraded “Participation
Verification” Assignment posted on Lamakū

Conclusion

 If no more questions, let’s adjourn for today
 But before let’s do an ungraded quiz!

