A Very Brief

History of OSes

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" J
The Pre-History

m Farly OSes were just libraries

Just some code as wrapper around tedious low-level
stuff that users just didn’t want to write

No real abstractions
No virtualization
No resource allocation
® One program ran at a time, controller by a human
operator
This was known as “batch mode”

A big challenge was that the machine shouldn’t be
Idling, due to high cost

Absolutely no interactivity

" JE
System Calls

® Beyond Libraries

People realized that user code should be
differentiated from kernel code, and that kernel code
should be “special”

In old OSes, any program could do anything to any
hardware resource

S0 a bug in your code could crash the computer/
devices, which reduced productivity and caused
anxiety :)

m Development of the concept of a system call

Programs now written as “please OS, do something
for me” as opposed to as “I'll do it myself”

"
Multiprogramming

® Multiprogramming led to the first “real OSes” (from
our modern perspective)

®m Came about to improve CPU utilization (while

program #1 is idling, program #2 should be able to
utilize the CPU)

®m Development of context-switching and memory
protection (which we’ll discuss at length)

® Beginning of concurrency
m Development of UNIX

m Make sure you read the “Importance of UNIX" box
in OSTEP 2.6 (page 15)

" A
The Modern Era: PCs

® The PC changed the world (IBM, Apple)
® The OSes on these machines were... lacking

® Many see them as a step backward when compared to UNIX
Worse memory protection (MS-DOS)
Worse concurrency (MacOS v9)
See the “Unfortunately, ...” paragraph in OSTEP 2.6 :)

m But eventually, the good features of older OSes crept back in
Mac OS X has UNIX as its core
Windows NT was radically better than its predecessors

® The OSes you use (and like?) today have more to do with those
from the 1970’s than those from the 1980’s

My Apple laptop and my Android phone basically run UNIX!

m Make sure you read the “And then came Linux” box in OSTEP
2.6 (page 16)

OS Genealogy

@ D B Windows 95 L?;D] to BE Windows10
. B \Wetows ° um
ﬂn 9 !fstﬁs% Wind I;ms; > Windows NT Windows 200
System @_ Mac Syitem Sog';wgre 1.0 @ _—
& Family Tree S ©debian ——

@ ubuntu e

g Mint
UNIX kernel fedora ‘ redhat- — A @r

. - &]
AM[GA OS Mach kernel t}/ \ Scientific Linux

@ / \ Gentoo ‘@& CentOS

QNX @ 1 .

/

2 QNIX BSD kernel @

. -—
d FreeBSD, Net?SD

4

Linux kernel +
GNU software

openSUSE

an>301d _ ‘
Aarchlmux Chrome O

» DarwinOS
%@SunOS i T OpenDarwin —

| \
LYy \ X PureDarwin
SOla rIS @pen.‘; :‘ 5 Dragon FlYBSD ?gf;g?;d by Ethan Gates

0SX/mac0S S

Unmodified from https://qgithub.com/EG-tech/digipres-posters

https://github.com/EG-tech/digipres-posters

"
OS Design Goals

m Abstraction: to make the use of the computer convenient
Building abstractions is of what Software Development is about
Designing good abstractions will be part of your careers

® Performance: Minimize OS overhead (time, space)

Often conflicts with the previous goal

m Protection: Programs must execute in isolation
Comes from virtualization

m Reliability: The OS must not fail

Thus OS software complexity is a concern (e.g., is it worth adding 2,000 lines of
complex kernel code to improve something by some epsilon?)
m Resource efficiency: The OS must make it possible to use hardware
resources as best as possible so that there is little waste

® There is no “best design” to achieve all the above, but many lessons
have been learned and we have converged to a common set of widely
accepted principles

" J
Mechanism / Policy

® One ubiquitous principle: separating mechanisms and policies
Policy: what should be done
Mechanism: how it should be done (e.g., API functions)

m Separation is important so that one can change policy without
changing the mechanisms

® Mechanisms should be low-level enough that many useful policies
can be built on top of them
e.g., Too high-level APIs may simply not allow you do do what you need
to do in your program
® Mechanisms should be high-level enough that implementing
useful policies on top of them is not too labor intensive

e.g., Too-low-level APIs may require you to write hundreds of lines of
code that you’d rather not have to write/debug
B Some OS designs take this separation principle to the extreme
(e.g., Solaris), and others not so much (e.g., Windows 7)

" JEE
Separating Mechanisms and Policies

B This idea of “separating of mechanisms and policies”
probably sounds pretty vague/abstract/useless to many of
you

As it did to me in college back when dinosaurs walked the earth

® Yet, you will be confronted to this issue in your future careers
And it's even on Wikipedia
® But until you've worked on a big system and/or worked on
designing APIs for others to use it’'s hard to really get it
Designing good APls is WAY harder than you think!

An OS course is full of fundamental/useful stuff that one realizes is
fundamental/useful often years after taking the course

I'll do my best to try to avoid this, but there are limits on how much
“this is important” jumping up and down | can do (convincingly)

https://en.wikipedia.org/wiki/Separation_of_mechanism_and_policy

"
Early OS Designs: Monolithic

m Early OSes (and MS-DOS)
® No precisely defined structure

m New “features” piled upon old
ones: snowball effect (usually
breaking, difficult maintenance, ...)

m MS-DOS was written to run in the
smallest amount of space
possible, leading to poor
modularity, separation of
functionality, and security

"~ e.g., user programs can directly
access some devices

"~ e.g., no difference in execution of
user code and kernel code (so000
insecure! we’ll see how this is done
today...)

" JA
The MS-DOS Memory Trick

® In MS-DOS, due to memory limitations, user programs used to wipe
out (non-critical) parts of the OS to get more RAM for themselves

Kernel Part of the command Kernel
interpreter is overwritten $‘ Reduced
/ by the process’ address Command
I
Full space” Interpreter
Command
Interpreter
The part that’s left is the
code to re-load the full Process
command-interpreter!
Available
I\/Iemory Available
Memory

m |t's hard for us to fathom the constraints developers worked with in that era...

"
OS Design: Layered

La

aCe) ® | ayer i only calls layer

-1
B “Looks” like a clean
design, but it's fraught
with difficulties
® Deciding what goes in
each layer is hard due
to circular dependencies
® Deciding on the best
number of layers is hard
Too many: high
overhead
Too few: bad modularity

" S
OS Design: Layered

®m The First UNIX has some layers
m But the kernel was still very large and difficult to maintain evolve

Kernel Interface to the Hardware

Hardware (Terminal, disks, tapes, memory)

"

OS Design: Microkernels

m Concept: 1967; Practice: 1980s
m Basic idea: Remove as much as App || App || App || App

possible from the kernel and put it
all in system programs

®m The Kernel only does essential
management (process and
memory), and basic IPC (Inter-
Process Communication)
m Everything is implemented in
client-server fashion
= Aclient is a user program

= A server is a running system
program, in user space, that
provides some service

© Communication is through the
microkernel communication
functionality
® This is very easy to extend since
the microkernel does not change

" J
OS Design: Microkernels

m 1980s: First LANs
m |_ed to a “Everything must be distributed” philosophy

Client-Server based architectures will solve all issues
So the kernel must have a client-server architecture as well

® Mach microkernel (Carnegie Mellon University): Research Project
Precursor of Windows NT, MacOS, Linux

®m Major issue: increased overhead because of IPC
Windows NT 4.0 had a micro-kernel (and was slower than Windows 95)
Oops... Microsoft put things back into the Kernel
Windows XP (and 10 apparently) is closer to monolithic than microkernel

m Experts were very opinionated about what should be in the kernel
and what should not

Development/research around microkernels stopped in the 2000s
But we know that a huge kernel is a problem!

" J
OS Design: Modules

® Take good things from all kernel design

® Most modern OSes implement modules
Use an “object-oriented” approach
Each code component is separate
They talk to each other over known APls
This is just good software engineering

m | oadable modules: Load at boot time or at runtime when needed
m | ike a layered interface, since each module has its own interface
m | ike a microkernel, since a module can talk to any other module
But communication does not use IPC, i.e., low overhead
m Bottom-line: advantages of microkernels without the poor performance

® Pioneer: Solaris (Sun Microsystems, then Oracle)

Small core kernel, 7 default modules loaded at boot, other modules loadable
on the fly whenever needed

Most agree it was a “nice” kernel / OS

" J
OS Design: General Principles

® No modern OS strictly adheres to one of these designs
(except for educational purposes)

® The accepted wisdom

Don’t stray too far from monolithic, so as to have good
performance

Modularize everything else to still be able to maintain the
code base

® |t's a complicated balancing act and every kernel does it
a little bit differently

And it's hard to compare metrics like LOC (lines of code)
because different OSs have different components “in the
kernel” or “outside the kernel”

" A
Conclusion

m OSes have a “long” history

m | essons from past failures and successes have given
us current OS designs

We're lucky that we're now after the “excitement” of
competing designs

m A key design principle is Separation of Mechanisms
and Policies

®m Reading Assignment: OSTEP 2.5-2.6

m \We'll have a quiz on this module next week

