Operating System

Interfaces

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

OS Interfaces

User Interfaces

API| and standard

Graphical Command-Line libraries

Kernel code

Graphical User Interfaces

m Early 1970s (Xerox PARC research)

® Popularized by Apple’s Macintosh
(1980s)

® Many UNIX users still use the
command-line heavily, while

Windows users usually prefer the
GUI

m Mac OS <10: no CLI, but Mac OS =
10 does: Terminal

m Question: Is the GUI part of the OS
or not?
Windows: YES
MacOS: YES
Linux: NO

"%

File Edit Uiew Special

Size Name
AAAAAAAA

dddddddd
dddddddd

sssssss

e s

B9®Ha 20 =098

"
Command-Line Interfaces (CLI)

® Also known as the Shell

® Provides many built-in commands
On my Mac: man builtin

® The Shell is often used to invoke low-level system programs

On UNIX-like systems, often brief one-word executables (1s, ps,
sed, grep, ...)

Not part of the OS, but almost always installed with it
m |t is often used to invoke user programs

B The distinction between system and user programs is vague at
best and really not useful because it's a matter of perspective

What about 1s? If you're a kernel developer, then it's a very high-

level application. If you’re a novice Linux user, then you probably
think of it as some “OS thing”...

" J
The System Call (Syscall) API

m System calls, or syscalls, provide the lowest-level interface to the OS

®m GUIs and CLIs (and in fact all programs!) are built on top of the
System Call API

m Often programs will use some library, that uses some library, that
uses some “standard” library, that uses the system call API

It all boils down to system calls (unless your program does nothing but
computation without anything else, which is never useful)

® You can think of your running program as doing one of two things:

Either fetch-decode-execute instructions that you wrote or that are in the
libraries that you use

Or fetch-decode-execute instructions that are in the kernel because your
program invoked a syscall

m \We will see uses of the syscall API (or low-level standard libraries
that use it)

® |nterestingly, you can spy on system call usage...

" JE
Spying on System Calls

® There are tools to “spy on processes” and
see what system calls they place as they
happen!
strace In Linux
dtruss in macOS

ProcMon in Windows

® \Why is this useful?

Find bugs, find performance bugs, detect
malware, reverse-engineer code, and learning :)

m |Let's look at strace in Linux...

" J—
strace Example Uses

-i option: shows the value of the Program Counter

strace -i sleep 1

-x option: shows non-ASCII characters in hex
strace -x touch /tmp/foo

-c option: obtain cumulative statistics

mkdir tmp; cd tmp
for a in 'seq 0 9 ; do
for b in 'seq 0 9 ; do
touch ab;
done
done
strace -¢c rm *

-p option: attach to a running process (may require sudo)

strace -p <pid of process> # Let’s demonstrate with sshd

" JE
strace in-class Demo (if time)

m One can do all kinds of things with strace

® Here is one that we could live-code right now

| have a machine on which I've many users with accounts, and |
am a superuser

| am a malicious person, and | want to steal my user’s passwords
on other machines!

My users all use ssh from my machine to connect to those other
machines

So | replace the ssh executable on my machine with a fake script
that uses strace to steal passwords while invoking ssh

m Off we go....

Reminders for me as sometimes forget these
= $@ : all the arguments passed to the original script
m paste -sd ””:. concatenates multiple lines into one

" J
Syscall Table

® There are many syscalls in a typical OS (~300-400 in Linux)

m Each system call is identified by a unique number, stored in an
internal table called the syscall table
m |_et’s look at the ChromiumOS syscall table

Linux kernel, open-source version of ChromeOS, developed by Google
(support stopped in 2022...ChromeBooks weren’t a commercial success)

®m On the henricasanova/ics332 Docker image, we can find the

syscall table in: /usr/src/linux-source-6.8.0/linux-
source-6.8.0/arch/x86/entry/syscalls

® There are syscalls for everything that you'd expect (to manage
processes, memory, files, devices, communication, permissions,
etc.)

m Syscalls are the only way to access hardware resources virtualized
by the OS

https://www.chromium.org/chromium-os/developer-library/reference/linux-constants/syscalls/

" J
Timing Programs and System Calls

B The UNIX time command can be used to see

what time a program spends running user code
and what time it spends running kernel code
(i.e., system calls)
Does not have a great resolution, so results can be
weird when timing lightning quick programs
m |t reports:

Real time: The time you experience (also called wall-
clock time, elapsed time, execution time, run time...)

User time: The time spent executing user code
System time: The time spent executing kernel code

"
Measuring System Time

m | ets use the time command for
Archiving/Compressing some directory
Running du on a large and deep directory

Running jekyll

"
Measuring System Time

m | ets use the time commend for
Archiving/Compressing some directory
Running du on a large and deep directory
Running jekyll
® \We observe: real time # user time + system time
® \What's the missing time?

" J
Measuring System Time

m | ets use the time commend for
Archiving/Compressing some directory
Running du on a large and deep directory
Running jekyll
® \We observe: real time # user time + system time
® \What's the missing time? I/O!

User System /O

T
real time

® |/O time could be waiting for the disk, network, keyboard, etc.
® real time = user time + system time + i/o time

" J
System Calls are Expensive

®m The OS tries to be fast
Kernel developers are good at writing lean/mean code
m Nevertheless, system calls can be expensive

Especially when they involve some hardware overhead (i.e., waiting for
the disk)

m As a programmer you should use system calls wisely (if you care
about speed at all)

® This can fly in the face of what you learn in the CS curriculum

m Well-known example
ICS111/211: Data structures are great, so use them
BUT, your code may end up calling malloc/free all the time!
So then you want to use arrays

But then everything’s ugly/cumbersome because an array is such a weak/
rigid data structure

® The life of the developer is about making difficult compromises

" JE
The System Call API

m System calls can be complicated to place

® Therefore, there is a system call interface, i.e., a set of useful
functions, often provided in standard libraries, that are “easier-
to-use wrappers” around the raw system calls e.g., the fork ()
“system call” is a simple interface to the clone () system call

e.g., When in C you open a file with fopen (), and fopen () calls
the more complicated open () system call on your behalf

m Often one says “| am placing a system call” even when calling
a higher-level library function

m |f the API is standard then the code can be portable!
Windows: Windows 16, Windows 32, Windows 64 API
UNIX: POSIX (Portable Operating Systems Interface IEEE-IX)
Java API: The JVM has OS-like functionalities on top of the OS

"
Standard APIs: Writing a file

m System Call in C (man 2 write)

Really a low-level library that directly invokes the
system call for you, since one doesn’t simply place a
system call from user code, as we’ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

m Java: OutputStream: :write (see JavaDoc)
public void write (byte[] b) throws IOException;
Most details are hidden thanks to OO approach

"
Standard APIs: Writing a file

Returns a possibly negative
number (-1 means “failure”)

m System Call in C (ma

Really a low-level |i

, since one doesn’t simply place a
rom user code, as we’ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size - items, FILE *stream);

m Java: Outpu m: :write (see JavaDoc)

public void write

Returns a >=0 number (< size |’
Most details are hidde{ means failure)

"
Standard APIs: Writing a file

m System Call in C (man Takes in a number of bytes

Really a low-level |i
system call for y Ince one doesn’t simply place a
system call fror'user code, as we’ll see

ssize t wpite(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

m Java: Outpwz :write (see J/ \vaDoc)
public void write ;

_ _ Takes in a number of elements
Most details are hidde| gnd an element size

"
Standard APIs: Writing a file

m System Call in C (ma Takes in a file descriptor
number

Really a low-level libr

system call for you, sin¢ ¢ one doesn’t simply place a
system call from user cd/de, as we’ll see

ssize t write(int fildes, const void *ptr,
size t nbyte);

m Higher level library in C (man fwrite)

size t fwrite(const void *ptr, size t size,
size t nitems, FILE *stream);

® Java: OutputStreim: :write (see JavaDoc)

~

public void write(1,405 in a higher-level FILE |’
Most details are hidde| «gpject”

" B
A Word on the JVM

m The JVM s just a
program

® |t interacts with the
OS using Syscalls,
like any other program

® |t knows how to
interpret byte code
that places calls to the
Java API

javac

java

JVM Program

Syscall API ® To implement some of
Kernel
the JVM places

Sl System Calls

E these Java API calls,

"
Main Takeaways

B OSes come with interactive interfaces

Shells, GUIs
®m All are based on the Syscall API

All (useful) programs use this API

Directly or indirectly via standard library calls
m The Linux strace tool

B [he UNIX time tool

" A
Conclusion

m All programs use syscalls at some level

® This makes it possible to analyze, understand,
reverse-engineering what programs actually do

m | et’s look at optional Homework #1...

