
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Operating System
Interfaces

OS Interfaces

Hardware

Kernel code

System Call Interface

User Interfaces

Process
Control I/O Memory

Management
File

System Accounting Security

Graphical Command-Line API and standard
libraries

Graphical User Interfaces
 Early 1970s (Xerox PARC research)

 Popularized by Apple’s Macintosh
(1980s)

 Many UNIX users still use the
command-line heavily, while
Windows users usually prefer the
GUI

 Mac OS < 10: no CLI, but Mac OS ≥
10 does: Terminal

 Question: Is the GUI part of the OS
or not?

 Windows: YES
 MacOS: YES
 Linux: NO

Command-Line Interfaces (CLI)
 Also known as the Shell
 Provides many built-in commands

 On my Mac: man builtin
 The Shell is often used to invoke low-level system programs

 On UNIX-like systems, often brief one-word executables (ls, ps,
sed, grep, …)

 Not part of the OS, but almost always installed with it
 It is often used to invoke user programs
 The distinction between system and user programs is vague at

best and really not useful because it’s a matter of perspective

 What about ls? If you’re a kernel developer, then it’s a very high-
level application. If you’re a novice Linux user, then you probably
think of it as some “OS thing”…

The System Call (Syscall) API
 System calls, or syscalls, provide the lowest-level interface to the OS
 GUIs and CLIs (and in fact all programs!) are built on top of the

System Call API
 Often programs will use some library, that uses some library, that

uses some “standard” library, that uses the system call API
 It all boils down to system calls (unless your program does nothing but

computation without anything else, which is never useful)
 You can think of your running program as doing one of two things:

 Either fetch-decode-execute instructions that you wrote or that are in the
libraries that you use

 Or fetch-decode-execute instructions that are in the kernel because your
program invoked a syscall

 We will see uses of the syscall API (or low-level standard libraries
that use it)

 Interestingly, you can spy on system call usage…

Spying on System Calls

 There are tools to “spy on processes” and
see what system calls they place as they
happen!

 strace in Linux
 dtruss in macOS
 ProcMon in Windows

 Why is this useful?
 Find bugs, find performance bugs, detect

malware, reverse-engineer code, and learning :)
 Let’s look at strace in Linux…

strace Example Uses
-i option: shows the value of the Program Counter
strace -i sleep 1

-x option: shows non-ASCII characters in hex
strace -x touch /tmp/foo

-c option: obtain cumulative statistics

mkdir tmp; cd tmp
for a in `seq 0 9`; do
 for b in `seq 0 9`; do
 touch ab;
 done
done
strace -c rm *

-p option: attach to a running process (may require sudo)
strace -p <pid of process> # Let’s demonstrate with sshd

strace in-class Demo (if time)
 One can do all kinds of things with strace
 Here is one that we could live-code right now

 I have a machine on which I’ve many users with accounts, and I
am a superuser

 I am a malicious person, and I want to steal my user’s passwords
on other machines!

 My users all use ssh from my machine to connect to those other
machines

 So I replace the ssh executable on my machine with a fake script
that uses strace to steal passwords while invoking ssh

 Off we go….
 Reminders for me as sometimes forget these

 $@ : all the arguments passed to the original script
 paste -sd ””: concatenates multiple lines into one

Syscall Table
 There are many syscalls in a typical OS (~300-400 in Linux)
 Each system call is identified by a unique number, stored in an

internal table called the syscall table
 Let’s look at the ChromiumOS syscall table

 Linux kernel, open-source version of ChromeOS, developed by Google
(support stopped in 2022…ChromeBooks weren’t a commercial success)

 On the henricasanova/ics332 Docker image, we can find the
syscall table in: /usr/src/linux-source-6.8.0/linux-
source-6.8.0/arch/x86/entry/syscalls

 There are syscalls for everything that you’d expect (to manage
processes, memory, files, devices, communication, permissions,
etc.)

 Syscalls are the only way to access hardware resources virtualized
by the OS

https://www.chromium.org/chromium-os/developer-library/reference/linux-constants/syscalls/

Timing Programs and System Calls

 The UNIX time command can be used to see
what time a program spends running user code
and what time it spends running kernel code
(i.e., system calls)

 Does not have a great resolution, so results can be
weird when timing lightning quick programs

 It reports:

 Real time: The time you experience (also called wall-
clock time, elapsed time, execution time, run time…)

 User time: The time spent executing user code
 System time: The time spent executing kernel code

Measuring System Time
 Lets use the time command for

 Archiving/Compressing some directory
 Running du on a large and deep directory
 Running jekyll

 We observe: real time ≠ user time + system time
 What’s the missing time?

Measuring System Time
 Lets use the time commend for

 Archiving/Compressing some directory
 Running du on a large and deep directory
 Running jekyll

 We observe: real time ≠ user time + system time
 What’s the missing time?

Measuring System Time
 Lets use the time commend for

 Archiving/Compressing some directory
 Running du on a large and deep directory
 Running jekyll

 We observe: real time ≠ user time + system time
 What’s the missing time? I/O!

User System I/O

real time

 I/O time could be waiting for the disk, network, keyboard, etc.
 real time = user time + system time + i/o time

System Calls are Expensive
 The OS tries to be fast

 Kernel developers are good at writing lean/mean code
 Nevertheless, system calls can be expensive

 Especially when they involve some hardware overhead (i.e., waiting for
the disk)

 As a programmer you should use system calls wisely (if you care
about speed at all)

 This can fly in the face of what you learn in the CS curriculum
 Well-known example

 ICS111/211: Data structures are great, so use them
 BUT, your code may end up calling malloc/free all the time!
 So then you want to use arrays
 But then everything’s ugly/cumbersome because an array is such a weak/

rigid data structure
 The life of the developer is about making difficult compromises

The System Call API
 System calls can be complicated to place

 Therefore, there is a system call interface, i.e., a set of useful
functions, often provided in standard libraries, that are “easier-
to-use wrappers” around the raw system calls e.g., the fork()
“system call” is a simple interface to the clone() system call

 e.g., When in C you open a file with fopen(), and fopen() calls
the more complicated open() system call on your behalf

 Often one says “I am placing a system call” even when calling
a higher-level library function

 If the API is standard then the code can be portable!

 Windows: Windows 16, Windows 32, Windows 64 API
 UNIX: POSIX (Portable Operating Systems Interface IEEE-IX)
 Java API: The JVM has OS-like functionalities on top of the OS

Standard APIs: Writing a file

 System Call in C (man 2 write)
 Really a low-level library that directly invokes the

system call for you, since one doesn’t simply place a
system call from user code, as we’ll see

 ssize_t write(int fildes, const void *ptr,
size_t nbyte);

 Higher level library in C (man fwrite)
 size_t fwrite(const void *ptr, size_t size,
size_t nitems, FILE *stream);

 Java: OutputStream::write (see JavaDoc)
 public void write(byte[] b) throws IOException;
 Most details are hidden thanks to OO approach

Standard APIs: Writing a file

 System Call in C (man 2 write)
 Really a low-level library that directly invokes the

system call for you, since one doesn’t simply place a
system call from user code, as we’ll see

 ssize_t write(int fildes, const void *ptr,
size_t nbyte);

 Higher level library in C (man fwrite)
 size_t fwrite(const void *ptr, size_t size,
size_t nitems, FILE *stream);

 Java: OutputStream::write (see JavaDoc)
 public void write(byte[] b) throws IOException;
 Most details are hidden thanks to OO approach

Returns a possibly negative
number (-1 means “failure”)

Returns a >=0 number (< size
means failure)

Standard APIs: Writing a file

 System Call in C (man 2 write)
 Really a low-level library that directly invokes the

system call for you, since one doesn’t simply place a
system call from user code, as we’ll see

 ssize_t write(int fildes, const void *ptr,
size_t nbyte);

 Higher level library in C (man fwrite)
 size_t fwrite(const void *ptr, size_t size,
size_t nitems, FILE *stream);

 Java: OutputStream::write (see JavaDoc)
 public void write(byte[] b) throws IOException;
 Most details are hidden thanks to OO approach

Takes in a number of bytes

Takes in a number of elements
and an element size

Standard APIs: Writing a file

 System Call in C (man 2 write)
 Really a low-level library that directly invokes the

system call for you, since one doesn’t simply place a
system call from user code, as we’ll see

 ssize_t write(int fildes, const void *ptr,
size_t nbyte);

 Higher level library in C (man fwrite)
 size_t fwrite(const void *ptr, size_t size,
size_t nitems, FILE *stream);

 Java: OutputStream::write (see JavaDoc)
 public void write(byte[] b) throws IOException;
 Most details are hidden thanks to OO approach

Takes in a file descriptor
number

Takes in a higher-level FILE
“object”

A Word on the JVM
 The JVM is just a

program

 It interacts with the
OS using Syscalls,
like any other program

 It knows how to
interpret byte code
that places calls to the
Java API

 To implement some of
these Java API calls,
the JVM places
System Calls

JVM Program

Syscall API

Kernel

Hardware

javac

java

Java Code

Java Byte Code

Main Takeaways
 OSes come with interactive interfaces

 Shells, GUIs
 All are based on the Syscall API

 All (useful) programs use this API

 Directly or indirectly via standard library calls
 The Linux strace tool

 The UNIX time tool

Conclusion
 All programs use syscalls at some level
 This makes it possible to analyze, understand,

reverse-engineering what programs actually do

 Let’s look at optional Homework #1…

