
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Kernel

What is the Kernel
 The OS is software, and it has many components:

 User interface (graphical, terminal)
 File system
 Device drivers (code that knows how to “speak” to all kinds of

external devices)
 System utilities to manage the system (think the “control

panel”)
 Libraries (to make software development easier)
 The Kernel

 There is some debate about what’s “in the OS” and what’s not
 But everybody agrees about the kernel
 The kernel is the core component of the OS in charge of resource

virtualization and allocation
 It does all the special/dangerous things that we don’t want user

programs to be able to do

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

The kernel is NOT a process
(i.e., a running program)

Also, it’s not “inside a chip” :)

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concerns

Better, but it’s not “looking” or doing
anything actively…

The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent
software developer who has tested the new Linux
code. The researchers who discovered the flaws
voiced similar concernsThe kernel is code and data that

always reside in RAM

 It is not a running program
 But its code can be invoked when various

events occur

Who Writes the Kernel?
 Kernel Developers :)
 Initially, kernels were written in assembly only (yikes!)

 Since 1960s: written in high-level languages (MS-DOS being an
exception)

 Usually with a language in the C-language family

 C-like languages are “close” to the hardware and make it easy for
developers to play “tricks” to make the code space- and time-efficient

 Compilers for these languages are really good at making fast executables
for our CPUs

 Windows, Linux, iOS, MacOS kernels have been written mostly in
C/C++

 With parts still in assembly (e.g., for calling specific CPU instructions)
 In late 2022, Rust has become an official language for Linux Kernel

development, in addition to C, and Rust kernel code is being
developed (e.g., device drivers)

Kernel Development
 OS kernels are among the most impressive/challenging software

development endeavors
 Good news: a lot of very smart people have already written the critical

parts of kernels

 As a kernel developer a constant concern is to not use too much
memory so as to reduce memory footprint

 Hence the need to write lean and mean code and data structures
 Hence the struggle about whether to add new features

 Another constant concern is speed
 You cannot use standard libraries

 Since you’re writing the kernel, which sits below the libraries
 Nobody is watching over you, and bugs lead to crashes
 Let’s look at some examples from the Linux kernel code...

 You’re not in ICS212 anymore!

Non-portable intrinsics

 In kernel code you often see things like the above
 The __builtin_expect keyword is a gcc directive where

you get to indicate whether the condition is typically true or false

 In the example above, the 0 second argument means “typically false”

 This is useful because then the compiler can generate faster
code (by 1 or 2 cycles)

 This has to do with pipelining and branch prediction (see a Computer
Architecture course)

Faster conditional with a gcc directive

if (__builtin_expect(n == 0, 0)) {
 return NULL;
}

Bitwise operations and macros

 Bitwise operations are super fast/useful, and used a lot in Kernel
code (due to having to encode information in as few bits as
possible)

Bitwise operations galore, often macroed

#define MODIFY_BITS(port, mask, dir) \
 if (mask) { \
 val = sa1111_readl(port); \
 val &= ~(mask); \
 val |= (dir) & (mask); \
 sa1111_writel(val, port); \
 }

MODIFY_BITS(gpio + SA1111_GPIO_PADDR, bits & 15, dir);
MODIFY_BITS(gpio + SA1111_GPIO_PBDDR, (bits >> 8) & 255, dir >> 8);
MODIFY_BITS(gpio + SA1111_GPIO_PCDDR, (bits >> 16) & 255, dir >> 16);

Macros, macros, …

 Due in part to C’s limitations, kernel developers typical define
many macros

Bitwise operations galore, often macroed

#define DIV_ROUND_CLOSEST(x, divisor)({ \
 typeof(x) __x = x; \
 typeof(divisor) __d = divisor; \
 (((typeof(x))-1) > 0 || \
 ((typeof(divisor))-1) > 0 || (__x) > 0) ? \
 (((__x) + ((__d) / 2)) / (__d)) : \
 (((__x) - ((__d) / 2)) / (__d)); })

#define container_of(ptr, type, member) ({ \
 void *__mptr = (void *)(ptr); \
 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
 !__same_type(*(ptr), void), \
 "pointer type mismatch in container_of()"); \
 ((type *)(__mptr - offsetof(type, member))); })

In-line Assembly

 At many points in the kernel code there is inline assembly
 These are lines of assembly code that are spliced into the C code

 For doing things that would be difficult / impossible in C

 The syntax above is x86 ATT syntax

Code fragment with in-line assembly
while (size >= 32) {
 asm("movq (%0), %%r8\n" "movq 8(%0), %%r9\n"
 "movq 16(%0), %%r10\n" "movq 24(%0), %%r11\n"
 "movnti %%r8, (%1)\n" "movnti %%r9, 8(%1)\n"
 "movnti %%r10, 16(%1)\n" "movnti %%r11, 24(%1)\n"
 :: "r" (source), "r" (dest)
 : "memory", "r8", "r9", "r10", "r11");
 dest += 32;
 source += 32;
 size -= 32;
 }

Kernel Development Stories
 There are many Linux Kernel development stories that highlight

the difficulty of kernel development
 Easy to know the stories because open-source

 Many stories involve:
 Many years of development
 Algorithms / data structures difficulties
 Unbelievable skillful debugging
 Horrible flame wars code reviews

 The most famous story for Linux: Real-time Linux
 Making the kernel able to give you certainty about response time, which

is needed for critical systems (being fast most of the time is just not
good enough)

 20 years of extremely involved development!
 Fully merged in 2024
 Many Youtube interviews/stories about the saga

Who puts the Kernel in RAM?
 This happens during boot

 Putting the kernel in RAM is the primary objective of booting
 When you turn on your computer, POST (Power-On Self-Tests) are

performed by the BIOS (Basic Input Output System)
 Checks that RAM, disks, keyboard, etc. are all ok
 Performs all kinds of initializations of registers and device controllers

 The BIOS is your computer’s firmware: stored in non-volatile
memory (doesn’t need to be powered on to hold data)

 It used to be stored in a ROM chip (Read Only Memory), which
means that a “firmware upgrade” would involved replacing the chip

 Nowadays it’s stored in EEPROM / flash memory, which can be
rewritten to do a firmware upgrade

 Which opens security issues, and the possibility of a bug in the BIOS,
which could turn your machine into the proverbial “brick”

 People still say “BIOS” but there have been some changes….

Basis Input Output System (BIOS)

Unified Extensible Firmware Interface (UEFI)

Basis Input Output System (BIOS)

Still says BIOS

• Can do a lot more than the
old BIOS

• Introduced in 2007
• Most computers today

ship with UEFI instead of
the old BIOS

Finding a Bootable Device
 Configured in the BIOS is an ordered list of storage

devices (disks, USB disks, CD-Rom, etc.)
 This list is configurable in the BIOS
 You may wonder how that works since the BIOS is stored in

ROM!
 The list is stored in a small battery-powered CMOS memory (i.e.,

RAM), so that it keeps data even when the computer is powered off
 And so the user can modify that list!

 The BIOS then goes through each device in order and
determine whether it is bootable

 It finds out whether the device contains a boot loader program
 This is a program that knows how to load the kernel!

 This is done in different ways (Master Boot Record, GUID
Partition Table) and tons of technical details are available online

Selecting a bootable device

The Boot Loader Program
 The BIOS loads the boot loader program into RAM and hands

over control to it (i.e., starts the fetch-execute-cycle from the boot
loader program’s first instruction)

 The boot loader program is the first program that runs on the
machine

 Linux: GRUB, LILO, etc.
 Windows: WINLOAD. EXE
 Mac: iBoot
 There are many subtle differences/variations in the above programs but

the general purpose is the same
 The boot loader program…

 Performs initializations to make sure the machine is ready for the kernel
 Locates the kernel (code) on the bootable device, loads it into RAM, and

sets up data structures that the kernel will use
 Hands off control to the bootstrap program…

The Bootstrap Program
 The Bootstrap program is a program in the Kernel

code that
 Does all “kernel initializations” (interrupt handles, timer,

memory unit, etc.)
 Configures and load all device drivers necessary for the

detected attached devices
 Starts system services (processes) that should be running

 For instance, on Linux, the “init" process
 Launches whatever application necessary for a user to

start interacting with the OS
 Often this is done in a chain of loading/executing

programs, each of them doing part of the work
because loading/executing the next one

The Booted OS

 The kernel code and data
reside in memory at a
specified address, as
loaded by the bootstrap
program(s)

 This picture is not to scale
 The kernel’s memory

footprint has to be small
 This is memory the user

cannot use

Kernel

Available
Memory

0xFFFFFFFF
4GB RAM

0x00000000

The Booted OS
 Each running program’s code

and data is then loaded into
RAM

 A running program is called a
process

 In RAM we thus have 2 kinds of
code/data:

 User code/data
 Kernel code/data

 A process can run kernel code
via system calls

 Show of hands: who has heard
that term before?

Kernel

Available
Memory

0xFFFFFFFF
4GB RAM

0x00000000

Process

The Booted OS
 This figure shows 3 processes,

occupying almost the full RAM

 Remember the OS illusion: each
process thinks its alone, and
processes never step on each other’s
toes in RAM (this is called memory
protection)

 This figure makes drastic
simplifications, and we’ll see that the
real picture is very different

 But we can keep this simple picture in
mind for a while

 If you want to know the list of
processes running in your UNIX-ish
machine: ps aux

Kernel

Available 0xFFFFFFFF
4GB RAM

0x00000000

Process1

Process 2

Process 3

The Kernel: An Event-Handler
 The Kernel is nothing but an event handler

 After boot nothing happens until an event occurs!
 Once the system is booted, all entries into the kernel

code occur as the result of an event
 The kernel defines a handler for each event type

 When an event occurs, the CPU stops what it was doing
(i.e., going through the fetch-decode-execute cycle of
some program), and instead starts running Kernel code

 “Just” set the Instruction Counter register to the address of
the first instruction in the appropriate event handler and fetch-
decode-execute that…

 There are two kinds of events…

Interrupts and Traps
 Interrupts: Asynchronous events

 Typically some device controller saying “something happened”
 e.g., “incoming data on keyboard”
 The kernel could then do: “great, I’ll write it somewhere in RAM and I’ll let

some running program know about it”

 ”Asynchronous” because generated in real time from the “outside
world”

 Traps: Synchronous events (also called exceptions or faults)
 Caused by an instruction executed by a running program

 e.g.,“the running program tried to divide by 0”
 The kernel could then do: “terminate the running program and print some

error message to the terminal”

 ”Synchronous" because generated as part of the fetch-decode-
execute cycle from the “inside world”

 The two terms are often confused, even in textbooks…

The Kernel’s (unrealistic) pseudo-code
Event handling code

class Kernel {
 method waitForEvent() {
 while (doNotShutdown) {
 event = sleepTillEventHappens();
 processEvent(event);
 }
 }
 method processEvent(Event event) {
 switch (event.type) {

 case MOUSE_CLICK:
Kernel.MouseManager.handleClick(event.mouse_position); break;

 case NETWORK_COMMUNICATION:
Kernel.NetworkManager.handleConnection(event.network_interface); break;

 case DIVISION_BY_ZERO:
Kernel.ProcessManager.terminateProcess(“Can’t divide by zero"); break;

 }
 return;
}

System Call: A Very Special Trap

 When a user program wants to do some “OS
stuff”, we’ve said it places a system call

 e.g., to open a file, to allocate some memory, to get
input from the keyboard, etc.

 Essentially, to do anything that’s not just “compute”
 A system call is really just a call to the kernel

code

 “Please kernel, run some of your code for me”
 We’ll see how they work later

 But for now we can just think of it as just
another case in our pseudo-code...

The Kernel’s (unrealistic) pseudo-code
Event handling code
class Kernel {
 method waitForEvent() {
 while (doNotShutdown) {
 event = sleepTillEventHappens();
 processEvent(event);
 }
 }
 method processEvent(Event event) {
 switch (event.type) {

 case MOUSE_CLICK:
Kernel.MouseManager.handleClick(event.mouse_position); break;

 case NETWORK_COMMUNICATION:
Kernel.NetworkManager.handleConnection(event.network_interface); break;

 case DIVISION_BY_ZERO:
Kernel.ProcessManager.terminateProcess(“Can’t divide by zero"); break;

 case SYSTEM_CALL:

Kernel.doSystemCall(event); break;
 }
 return;
}

Main Takeaways
 The kernel is code and data that always resides in

RAM
 Booting is the process by which the machine goes

from “turned on” to “the kernel has been loaded”
 The kernel is not a running program but really just an

event handler
 When some event occurs, some kernel code runs

 There are two kinds of events: asynchronous
interrupts and synchronous traps

 An important kind of trap are system calls, by which
user programs ask the kernel to do some work on
their behalf

Conclusion

 Now that we understand what the Kernel
really is, we can looks at how programs can
use it!

 Onward to Operating System interfaces…

