The Kernel

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
What is the Kernel

® The OS is software, and it has many components:
User interface (graphical, terminal)
File system

Device drivers (code that knows how to “speak” to all kinds of
external devices)

System utilities to manage the system (think the “control
panel”)

Libraries (to make software development easier)

The Kernel
® There is some debate about what's “in the OS” and what’s not
m But everybody agrees about the kernel

B The kernel is the core component of the OS in charge of resource
virtualization and allocation

m |t does all the special/dangerous things that we don’t want user
programs to be able to do

~ What's a kernel?
Ehe New ork imes PCWorld

The kernel inside a chip is basically an invisible process that facilitates the

way apps and functions work on your computer. It has complete control over
The software patches could slow the Yy app y p D

performance of affected machines by 20 to 30
percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

voiced similar concerns m e a/n e giSter®

your operating system. Your PC needs to switch between user mode and

Biting the hand that feeds IT

Via Skype

‘ - Think of the kernel as God sitting on a cloud, looking down on Earth. It's
- : there, and no normal being can see it, yet they can pray to it.

These KPTI patches move the kernel into a completely separate address
space, so it's not just invisible to a running process, it's not even there at
all. Really, this shouldn't be needed, but clearly there is a flaw in Intel's

silicon that allows kernel access protections to be bypassed in some way.

The exact bug is related to the way that

regular apps and programs can discover the FMW IS REMTE” "] KERNH
contents of protect kernel memory areas. MEM”RY AL'[,'ESS

Kernels in operating systems have complete

DEVELOPING STORY

EXPERTS: ALMOST ALL COMPUTER SYSTEMS AFFECTED K&\

Nikkei A 741.39

NEWS STREAM

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

control over the entire system, and connect applications to the processor, memory, and
other hardware inside a computer. There appears to be a flaw in Intel’s processors that lets
attackers bypass kernel access protections so that regular apps can read the contents of
kernel memory. To protect against this, Linux programmers have been separating the
kernel's memory away from user processes in what’s being called “Kernel Page Table

[solation.”

What's a kernel? [='@VVle

Che New ork Ti

‘ e t ﬂor (Imeg The kernel inside a chip is basically an invisible process that facilitates the
The software patches could slow the
performance of affected machines by 20 to 30
percent, said Andres Freund, an independent kernel mode thousands of times a day, ma
software developer who has tested the new Linux flow seamlessly and instantaneously. He
code. The researchers who discovered the flaws
voiced similar concerns

way apps and functions work on your computer/It has complete control over
h between user mode and

your operating system. Your PC needs to swi

g sure instructions and data
s how The Register puts it: “Think

The R Register

g on a cloud, looking down on Earth. It's
an see it, yet they can pray to it.

Via Skype

. - . Think of the kernel as God y
— there, and no normal bei

mpletely separate address
cess, it's not even there at

The kernel |S NOT a process / there is a flaw in Intel's

DEVELOPING STORY . runn . N r ram be bypassed in some way.
EXPERTS: ALMOST ALL COMPUTER SYSTEMS AFFE((I €. ! aru | g p Og a) GE

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

Also, it's not “inside a chip” :)

ELATED 10 KERNEL
JIL'L’ESS

control over the entire system, and connect applications to the processor, memory, and

-

other hardware inside a computer. There appears to be a flaw in Intel’s processors that lets
attackers bypass kernel access protections so that regular apps can read the contents of
kernel memory. To protect against this, Linux programmers have been separating the
kernel's memory away from user processes in what’s being called “Kernel Page Table

[solation.”

~ ~. What's akernel? [>/@V,Y/eYi/le!
Che New Hork Eimes

The kernel inside a chip is basically an invisible process that facilitates the

way apps and functions work on your computer. It has complete control over
The software patches could slow the y app y P D

performance of affected machines by 20 to 30 your operating system. Your PC needs to switch between user mode and
percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

voiced similar concerns m e a/n e giSter®

Bitina the hand that feeds IT
Think of the kernel as God sitting on a cloud, looking down on Earth. It's
there, and no normal being can see it, yet they can pray to it.

Via Skype

9:24 PM

These KPTI patches m
space, so it's not just i
all. Really, this should

pve the kernel into a completely separate address
isible to a running process, it's not even there at
't be needed, but clearly there is a flaw in Intel's

silicon that allows ke/ el access protections to be bypassed in some way.

DEVELOPING STORY

EXPERTS: ALMOST ALL COMPUTER SYSTEMS AFFECTED K&\

Nikkei A 741.39

NEWS STREAM

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

that

wcovere FLAW IS RELATED TO KERNEL

The exact bug is related to the

regular apps and programs ca

Better, but it's not “looking” or doing
anything actively...

br, memory, and
brocessors that lets

kernel memory. To protect against this, Linux programmers have been separating the
kernel's memory away from user processes in what’s being called “Kernel Page Table
Isolation.”

What's a kernel? [>l@VV/eTile

Ehe New Hork Times

The kernel inside a chip is basically an invisible process that facilitates the

The software patches could slow the

voiced

Via Skype

o 9:24 PM

EXPERT!

_

The kernel is code and data that
always reside in RAM

“ It is not a running program

' But its code can be invoked when various
events occur

Kernels In operating systems have complete

way apps and functions work on your computer. It has complete control over

your operating system. Your PC needs to switch between user mode and

ctions and data
puts it: “Think

wn on Earth. It's
to it.

beparate address
ot even there at
B flaw in Intel's

sed in some way.

18 | CHIPOCALYPSE NOW

control over the entire system, and connect applications to the processor, memory, and

other hardware inside a computer. There appears to be a flaw in Intel's processors that lets

attackers bypass kernel access protections so that regular apps can read the contents of

kernel memory. To protect against this, Linux programmers have been separating the

kernel's memory away from user processes in what’s being called “Kernel Page Table

Isolation.”

" A
Who Writes the Kernel?

m Kernel Developers :)
m |nitially, kernels were written in assembly only (yikes!)

m Since 1960s: written in high-level languages (MS-DOS being an
exception)
m Usually with a language in the C-language family

C-like languages are “close” to the hardware and make it easy for
developers to play “tricks” to make the code space- and time-efficient
Compilers for these languages are really good at making fast executables
for our CPUs

®m Windows, Linux, iOS, MacOS kernels have been written mostly in
C/C++

With parts still in assembly (e.g., for calling specific CPU instructions)

® |n late 2022, Rust has become an official language for Linux Kernel
development, in addition to C, and Rust kernel code is being
developed (e.g., device drivers)

" JE
Kernel Development

® OS kernels are among the most impressive/challenging software
development endeavors

Good news: a lot of very smart people have already written the critical
parts of kernels

B As a kernel developer a constant concern is to not use too much
memory so as to reduce memory footprint

Hence the need to write lean and mean code and data structures
Hence the struggle about whether to add new features

® Another constant concern is speed
® You cannot use standard libraries

Since you’re writing the kernel, which sits below the libraries
® Nobody is watching over you, and bugs lead to crashes

m | et’s look at some examples from the Linux kernel code...
You're not in ICS212 anymore!

" J
Non-portable intrinsics

Faster conditional with a gcc directive

if (_ builtin expect(n == 0, 0)) {
return NULL;

}

® |n kernel code you often see things like the above

" The builtin expect keyword is a gcc directive where
you get to indicate whether the condition is typically true or false
In the example above, the 0 second argument means “typically false”

® This is useful because then the compiler can generate faster
code (by 1 or 2 cycles)

This has to do with pipelining and branch prediction (see a Computer
Architecture course)

" J
Bitwise operations and macros

Bitwise operations galore, often macroed

#define MODIFY BITS (port, mask, dir) \
if (mask) { \

val = sallll readl(port); \

val &= ~ (mask); \

val |= (dir) & (mask); \

sallll writel(val, port); \

}

MODIFY BITS(gpio + SA111l1 GPIO PADDR, bits & 15, dir);
MODIFY BITS(gpio + SA111l GPIO PBDDR, (bits >> 8) & 255, dir >> 8);
MODIFY BITS(gpio + SA111l GPIO PCDDR, (bits >> 16) & 255, dir >> 16);

m Bitwise operations are super fast/useful, and used a lot in Kernel
code (due to having to encode information in as few bits as
possible)

Macros, macros, ...

Bitwise operations galore, often macroed

#define DIV_ROUND_ CLOSEST (x, divisor) ({
typeof (x) _ x = x;
typeof (divisor) _ d = divisor;
(((typeof(x))-1) > 0 ||
((typeof (divisor))-1) > 0 ||
(((__x) + ((_d) / 2)
(((_=x) - ((_4d) / 2)

(_x) >0) 2
/ (_4d)) :
/(_d): b

A

)
)

#define container of (ptr, type, member) ({
void * mptr = (void *) (ptr);
BUILD BUG_ON MSG(!_same type(*(ptr), ((type *)O0)->member) &&
! same type(*(ptr), void),
"pointer type mismatch in container of()");
((type *) (__mptr - offsetof(type, member))); })

7

® Due in part to C’s limitations, kernel developers typical define
many macros

In-line Assembly

Code fragment with in-line assembly

while (size >= 32) {

asm ("movqg ($0), %$%r8\n" "movqg 8(%0), %%r9\n"
"movg 16(%0), %%rl0\n" "movg 24(%0), %%rll\n"
"movnti $%%r8, ($1)\n" "movnti %%r9, 8(%1)\n"

"movnti %%rl0, 16(%1)\n" "movnti %%rll, 24(%1)\n"
:: "r" (source), "r" (dest)

: "memory" , "r8 1] , "r9" , "rlo" , llrllll) ;
dest += 32;

source += 32;
size -= 32;

® At many points in the kernel code there is inline assembly

® These are lines of assembly code that are spliced into the C code
® For doing things that would be difficult / impossible in C
The syntax above is x86 ATT syntax

" J—_—
Kernel Development Stories

® There are many Linux Kernel development stories that highlight
the difficulty of kernel development

Easy to know the stories because open-source

® Many stories involve:
Many years of development
Algorithms / data structures difficulties
Unbelievable skillful debugging
Horrible flame-wars code reviews

® The most famous story for Linux: Real-time Linux

Making the kernel able to give you certainty about response time, which
is needed for critical systems (being fast most of the time is just not
good enough)

20 years of extremely involved development!
Fully merged in 2024
Many Youtube interviews/stories about the saga

" J—_—
Who puts the Kernel in RAM?

® This happens during boot
Putting the kernel in RAM is the primary objective of booting
® \When you turn on your computer, POST (Power-On Self-Tests) are
performed by the BIOS (Basic Input Output System)
Checks that RAM, disks, keyboard, etc. are all ok
Performs all kinds of initializations of registers and device controllers
®m The BIOS is your computer’s firmware: stored in non-volatile
memory (doesn’t need to be powered on to hold data)

m |t used to be stored in a ROM chip (Read Only Memory), which
means that a “firmware upgrade” would involved replacing the chip

®m Nowadays it's stored in EEPROM / flash memory, which can be
rewritten to do a firmware upgrade

Which opens security issues, and the possibility of a bug in the BIOS,
which could turn your machine into the proverbial “brick”

m People still say “BIOS” but there have been some changes....

Basis Input Ot System (BIOS)

Bl ETUL 1Y

» ACPI Configuration

Basis Input Output System (BIOS)

BIOS SETUP UTILITY

Hain i PCIPnP Boot Security Chipset Exit
Advanced Settings Section for Advanced
ACPI Configuration.
WARNING: Setting wrong values in below sections St|” Says BlOS

may cause system to malfunction.

» CPU Configuration

» IDE Configuration

» Superl0 Configuration
*Vi

» Event Log Configuration Intel® Visual BIOS

» Hyper Transport Configuration

> Iml 2'8 Conflguratlon Main Devices Cooling Performance Security Power Boot

» HPS Configuration

» PCI Express Configuration

» AMD PowerMow Configuration Passwords Security Features
» Remote Access Configuration Supervisor Password : Not Installed Allow UEF| 3rd party driver loaded
» USB Conflguration sEy £k Nobinstalles Unattended BIOS Configuration

Set Supervisor Password

Set User Password
Hzation Technology

for Directed VO (VT-d)

Not installed

Not Installed Intel® Platform Trust Technology

Set Master Hard Disk Drive Password

" SetHard Disk Drive Password

)rive Password Prompt

« Can do a lot more than the
old BIOS

e Introduced in 2007

° Most ComputerS today \i/c.eneu:uandsupumor passwords, and adjust other security settings.
ship with UEFI instead of
the old BIOS

G /

Unified Extensible Firmware Interface (UEFI)

"
Finding a Bootable Device

® Configured in the BIOS is an ordered list of storage
devices (disks, USB disks, CD-Rom, etc.)

This list is configurable in the BIOS

You may wonder how that works since the BIOS is stored in
ROM!

® The list is stored in a small battery-powered CMOS memory (i.e.,
RAM), so that it keeps data even when the computer is powered off

® And so the user can modify that list!
® The BIOS then goes through each device in order and
determine whether it is bootable
It finds out whether the device contains a boot loader program
® This is a program that knows how to load the kernel!

This is done in different ways (Master Boot Record, GUID
Partition Table) and tons of technical details are available online

Selecting a bootable device

Please select boot device:

HDD : PO-Corsair CSSD-F120GBZ ety
HDD : P1-SAMSUNG HD753LJ Intel® Visual BIOS
USB:1T117204 USB

IDE :0CZ-VERTEK3

" ~About ,’ Classic Mode

Intel@ Desktop Board DZ77GA 70K

105 ‘ GAZ7711H.86A.0063.201.3.0129.1913
Proce intel{R) Core(TM) I7-2700K CPU @ 3.50GHz

| Boot Order

T and 1 to move selection Drag or +/- to sort boot priority. Double-
ENTER to select boot device ¢§f°"%f“bm"'mm""““
ESC to boot using defaults ——

AOSO ATAPI IHAS122 8

SATA : ADS1 INTEL SSDSAZC“IOBOGB

% EXT:Intel PXE_Server: PART O : Boot [l

EXT : FUJITSU MHW2160B) G2

EXT : WDC WD1600)D-00GBBO

LAN : IBA GE Slot 00C8 v1403

LAN : IBA GE Slot 3300 v1403

Advanced

"
The Boot Loader Program

® The BIOS loads the boot loader program into RAM and hands
over control to it (i.e., starts the fetch-execute-cycle from the boot
loader program’s first instruction)

® The boot loader program is the first program that runs on the
machine
Linux: GRUB, LILO, etc.
Windows: WINLOAD. EXE
Mac: iBoot

There are many subtle differences/variations in the above programs but
the general purpose is the same

® The boot loader program...

Performs initializations to make sure the machine is ready for the kernel

Locates the kernel (code) on the bootable device, loads it into RAM, and
sets up data structures that the kernel will use

Hands off control to the bootstrap program...

"
The Bootstrap Program

® The Bootstrap program is a program in the Kernel
code that

Does all “kernel initializations” (interrupt handles, timer,
memory unit, etc.)

Configures and load all device drivers necessary for the
detected attached devices

Starts system services (processes) that should be running
m For instance, on Linux, the “init" process

Launches whatever application necessary for a user to
start interacting with the OS

m Often this is done in a chain of loading/executing
programs, each of them doing part of the work
because loading/executing the next one

" A
The Booted OS

0x00000000 -

OXFFFFFFFF
4GB RAM

Avallable
Memory

m The kernel code and data
reside in memory at a
specified address, as
loaded by the bootstrap
program(s)

® This picture is not to scale

®m The kernel's memory
footprint has to be small

This is memory the user
cannot use

" A
The Booted OS

0x00000000

OXFFFFFFFF
4GB RAM

Kernel

Process

Available
Memory

® Each running program’s code
and data is then loaded into
RAM

® A running program is called a
process

® |n RAM we thus have 2 kinds of
code/data:

User code/data
Kernel code/data
m A process can run kernel code
via system calls

Show of hands: who has heard
that term before?

" A
The Booted OS

0x00000000

OXFFFFFFFF
4GB RAM

Kernel

Process1

Process 2

Process 3

® This figure shows 3 processes,
occupying almost the full RAM

B Remember the OS illusion: each
process thinks its alone, and
processes never step on each other’s
toes in RAM (this is called memory
protection)

® This figure makes drastic
simplifications, and we’ll see that the
real picture is very different
But we can keep this simple picture in
mind for a while
® |f you want to know the list of
processes running in your UNIX-ish
machine: ps aux

" A
The Kernel: An Event-Handler

®m The Kernel is nothing but an event handler
After boot nothing happens until an event occurs!

B Once the system is booted, all entries into the kernel
code occur as the result of an event

B The kernel defines a handler for each event type

® \When an event occurs, the CPU stops what it was doing
(i.e., going through the fetch-decode-execute cycle of
some program), and instead starts running Kernel code

“Just” set the Instruction Counter register to the address of
the first instruction in the appropriate event handler and fetch-
decode-execute that...

B There are two kinds of events...

" J
Interrupts and Traps

® |nterrupts: Asynchronous events

Typically some device controller saying “something happened”
® e.g., “incoming data on keyboard”

® The kernel could then do: “great, I'll write it somewhere in RAM and I'll let
some running program know about it”

"Asynchronous” because generated in real time from the “outside
world”

® Traps: Synchronous events (also called exceptions or faults)

Caused by an instruction executed by a running program
= e.g.,“the running program tried to divide by 0”

= The kernel could then do: “terminate the running program and print some
error message to the terminal”

"Synchronous" because generated as part of the fetch-decode-
execute cycle from the “inside world”

B The two terms are often confused, even in textbooks...

" J
The Kernel’s (unrealistic) pseudo-code

Event handling code

class Kernel {
method waitForEvent () {
while (doNotShutdown) {
event = sleepTillEventHappens() ;
processEvent (event) ;
}
}

method processEvent (Event event) ({
switch (event.type) {

case MOUSE CLICK:
Kernel .MouseManager.handleClick (event.mouse position); break;

case NETWORK COMMUNICATION:
Kernel .NetworkManager.handleConnection (event.network interface); break;

case DIVISION BY ZERO:
Kernel.ProcessManager. terminateProcess (“Can’t divide by zero"); break;

}

return;

" J——_
System Call: A Very Special Trap

® \When a user program wants to do some “OS
stuff”’, we've said it places a system call

e.g., to open a file, to allocate some memory, to get
input from the keyboard, etc.

Essentially, to do anything that’s not just “compute”

m A system call is really just a call to the kernel
code

“Please kernel, run some of your code for me”
m \We'll see how they work later

m But for now we can just think of it as just
another case in our pseudo-code...

" J
The Kernel’s (unrealistic) pseudo-code

Event handling code

class Kernel {
method waitForEvent () ({
while (doNotShutdown) {
event = sleepTillEventHappens() ;
processEvent (event) ;

}

}
method processEvent (Event event) ({
switch (event.type) ({

case MOUSE CLICK:
Kernel .MouseManager.handleClick (event.mouse_position); break;

case NETWORK COMMUNICATION:
Kernel .NetworkManager.handleConnection (event.network interface); break;

case DIVISION BY ZERO:
Kernel.ProcessManager. terminateProcess (“Can’t divide by zero"); break;

case SYSTEM_CALL:

Kernel .doSystemCall (event) ; break;
}

return;

"
Main Takeaways

B The kernel is code and data that always resides in
RAM

B Booting is the process by which the machine goes
from “turned on” to “the kernel has been loaded”

® The kernel is not a running program but really just an
event handler
When some event occurs, some kernel code runs

B There are two kinds of events: asynchronous
interrupts and synchronous traps

® An important kind of trap are system calls, by which
user programs ask the kernel to do some work on
their behalf

" A
Conclusion

B Now that we understand what the Kernel

really is, we can looks at how programs can
use it!

® Onward to Operating System interfaces...

