What is an 0S?

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

"
What is an Operating System?

® \What would you say to your non-CS-major friend asking
this? Anybody?

What is an Operating System?

What would you say to your non-CS-major friend asking this?
Anybody?

Typical “ok™ answer: It is the software layer between the
applications and the hardware because the hardware would be
too difficult for users to use

Typical “sort of ok” answer: It is “all the code that | don’t have to
write” when | develop software (not quite right since there are
tons of non-OS libraries whose code you don'’t write either)

Typical wrong “Big Brother / Eye of Sauron” answer: It is the one
program that runs at all times and watches everything

This is a pervasive but misled view: the OS is not a running
program

= Although it starts programs

Better answer: it's code that gets invoked time and again

And there is no need to “reserve” one CPU/core for it (something
you will hear once in a while)

"
What is an Operating System?

® This is not such a simple question

® An OS is a complete software system that manages
access to hardware and makes it possible to run
software applications on that hardware

m A core component of the OS is called the kernel,
which is code and data structures in charge of
managing hardware resources

And is not a running program

® The kernel acts as layer between application
software and the hardware, and it performs
virtualization...

" A
The OS Virtualizes

®m Conceptually, the main role of the OS is
virtualization

The first of the “three easy pieces” of our textbook

B The term “virtualization” is used in many
contexts
The Java Virtual Machine (JVM)
Virtual Machines that one would use in the cloud
® More on this much later in the semester

B |n the context of OSes we mean two things:

Resource abstraction

Resource allocation

" A
Virtualization: Abstraction

® The OS is a Resource Abstractor

m |t defines a set of logical resources that correspond to
hardware/physical resources

m |t defines operations on these logical resources
m Typical examples:

Physical Logical Operations
CPU Running start, terminate, pause,
Programs
Memory (SRAM, DRAM) Data allocate, free, read,
write, ...
Storage (SSD, HDD, Files create, delete, open,
Tapes,...) read, write, ...

Virtualization: Allocation

B The OS is a Resource Allocator

® |t decides who (i.e., which running program) gets
how much (e.g., CPU cycles, bytes of RAM, bytes
on disk) and when/where

Resource Example resource allocation decisions

CPU Should the currently running program keep
going? Which program should run next?

Memory Where in RAM should a running program’s data

be? Should a program be allowed to use more

Storage

Where on disk should pieces of files be stored?

Virtualization: Why and How?

® \Why virtualization?

Reason #1: To make the computer easier to program

® There was a time “before OSes” in which the programmer had to know a lot about the
insides of the computer

® Think how easy it is today to write code without understanding/knowing anything
about the hardware

Reason #2: To provide each program with the illusion that it is alone on the
computer, going through its fetch-decode-execute cycle

= \When you develop a program, you don’t think of what other programs will be running
when your program will run!

®= And yet many programs run at once

Reason #3: Make sure that bad things don’t happen
= A running program cannot corrupt another running program’s data
= A running program cannot crash the system

® How doe the OS do it? That's what a lot of ICS332 is about!

m | ooking at early OSes, we can see what happens when there is no or
not enough virtualization...

" J
No Memory Virtualization?

®m Example: Blue Screen of Death (BSOD) in Win 95/98

We've all seen it, and nowadays it means there is a bug in the
Windows kernel or in a device driver (i.e., NOT in your code)

But in the “old” days (Windows 95/98), any application could bring
about the BSOD

This is because memory was not (sufficiently) virtualized, and your
code could, due to a bug, write to pretty much any RAM address,
and thus overwrite/corrupt kernel data structures

= Due to the difficulty of building on top of DOS, of being backward
compatible

All of this changed with Windows NT (2001 for home users)

= \Which is a turning point when the Windows OS became more “respectable”
= Note that, at that time, UNIX systems had had strong memory protection for
years!
And this is why, thanks to virtualization, nowadays our Windows
computers don’t crash as much as they used to

" A
No CPU Virtualization?

®m Example: CPU hogging in Mac OS 9

Nowadays, we expect that our machines will never be frozen because
some application is running

But in older OSes, like Mac OS 9, there was no virtualization of the
CPU
The idea is that applications will be nice and would call some “yield
control back to the kernel” function every now and then

m Called “cooperative multi-tasking”
As a result, an application could hog the CPU indefinitely

= Either because it wasn'’t “nice”

= Or just because it had a bug
This led to the infamous “spinning beach ball” for the whole system
(not just for an application)
This was fixed in Mac OS X (2001), which was a turning point for Mac

OS
= And here again, UNIX had CPU virtualization for years at that point!

" A
No Device Virtualization?

®m Example: Game development for DOS (80’s 90’s)

Back then, if you had to write a game for DOS, you had to interact
directly with the graphics and sound hardware

As a game developer, you had to write different code for different
hardware components (so that many users could play the game)

This was a lot of work for everyone

® e.g., developers had to read and follow the hardware spec of many possible
graphics cards on the market

® e.g., users had to tweaks complicated config files

This was really bug-prone, meant that a game may not work on the
most recent hardware, meant that games could conflict with each
other, etc.

Device virtualization appeared in Win 95/98, which provided a device
API that games developers could use
= And again, UNIX had had that for decades at that point!

= \We'll look at reasons why older OSes (UNIX) were objectively better than
subsequent ones (DOS, MacOS9)

"
The Three Easy Pieces

m Our textbook is called OSTEP: Operating
Systems: Three Easy Pieces
®m The three pieces are:
Virtualization
Concurrency
Persistence

m | et’s talk briefly about concurrency and
persistence....

" J
Concurrency: Multi-Programming

m Concurrency: doing multiple things “at once”
®m Multi-programming is the name of the OS’s capability to execute
multiple programs concurrently
This is only feasible because the OS provides virtualization
m \We take multi-programming completely for granted
which is why many of you likely had never even heard of the term

m Computers used to be used in “single-user mode”, where a program
Is truly alone until completion, and then another program is started,
and soon ...

® This had several productivity drawbacks:

Your computer can do only one thing at a time

If the program is idle for a while (e.g., waiting for keyboard input, waiting
for any 1/O), then the CPU cycles are completely wasted

m OS advances made multi-programming possible, and we never
looked back!

" J
Concurrency Issues

® Due to multi-programming, a big issue has been

concurrency, since the OS has to juggle many things “at
the same time”

m |t leads to deep/difficult/interesting issues within the OS

® Furthermore, nowadays most programs are also
concurrent

e.g., for a single program to use multiple cores using multi-
threading (ICS 432 is all about that)

® Therefore, concurrency is everywhere and is a constant
theme in any OS course

Section 2.3 in our reading assignment talks about the main
concurrency problem

If you find it a bit confusing, don't fear, we'll come back to this...

" A
Persistence

B Persistence: the ability to store data that
survives a program termination / a computer
shutdown

® This is done by the file system

Typically considered part of the OS (which
provides “file stuff’ system calls)

Even though it is often developed independently
from the core OS code

" A
Conclusion

B Reading Assignment: 2.1-3. Section 2.4 starts with:

So now you have some idea of what an OS actually does: it takes phys-
ical resources, such as a CPU, memory, or disk, and virtualizes them. It
handles tough and tricky issues related to concurrency. And it stores files
persistently, thus making them safe over the long-term.

OSTEP

m Sections 2.1 and 2.2 show examples programs to
illustrate virtualization, which | didn’t discuss

We’'ll look at similar programs in future modules

m Section 2.3 is about concurrency and will likely be
confusing for most of you

That’s ok, we'll talk about concurrency in a future module
® Coming up next: the kernel

