
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

What is an OS?

What is an Operating System?
 What would you say to your non-CS-major friend asking

this? Anybody?
 Typical “ok” answer: It is the software layer between the

applications and the hardware because the hardware would
be too difficult for users to use

 Typical “sort of ok” answer: It is “all the code that I don’t
have to write” when I develop software (not quite right since
there are tons of non-OS libraries whose code you don’t
write either)

 Typical wrong “Big Brother / Eye of Sauron” answer: It is the
one program that runs at all times and watches everything
 This is a pervasive but very misled view: the OS is not

a running program
 And there is no need to “reserve” one CPU/core for it

(something you will hear once in a while)

What is an Operating System?
 What would you say to your non-CS-major friend asking this?

Anybody?
 Typical “ok” answer: It is the software layer between the

applications and the hardware because the hardware would be
too difficult for users to use

 Typical “sort of ok” answer: It is “all the code that I don’t have to
write” when I develop software (not quite right since there are
tons of non-OS libraries whose code you don’t write either)

 Typical wrong “Big Brother / Eye of Sauron” answer: It is the one
program that runs at all times and watches everything
 This is a pervasive but misled view: the OS is not a running

program
 Although it starts programs

 Better answer: it’s code that gets invoked time and again
 And there is no need to “reserve” one CPU/core for it (something

you will hear once in a while)

What is an Operating System?
 This is not such a simple question
 An OS is a complete software system that manages

access to hardware and makes it possible to run
software applications on that hardware

 A core component of the OS is called the kernel,
which is code and data structures in charge of
managing hardware resources
 And is not a running program

 The kernel acts as layer between application
software and the hardware, and it performs
virtualization…

The OS Virtualizes

 Conceptually, the main role of the OS is
virtualization

 The first of the “three easy pieces” of our textbook
 The term “virtualization” is used in many

contexts
 The Java Virtual Machine (JVM)
 Virtual Machines that one would use in the cloud

 More on this much later in the semester

 In the context of OSes we mean two things:
 Resource abstraction
 Resource allocation

Virtualization: Abstraction
 The OS is a Resource Abstractor
 It defines a set of logical resources that correspond to

hardware/physical resources
 It defines operations on these logical resources
 Typical examples:

Physical Logical Operations

CPU Running
Programs

start, terminate, pause,
…

Memory (SRAM, DRAM) Data allocate, free, read,
write, …

Storage (SSD, HDD,
Tapes,…)

Files create, delete, open,
read, write, …

Virtualization: Allocation
 The OS is a Resource Allocator
 It decides who (i.e., which running program) gets

how much (e.g., CPU cycles, bytes of RAM, bytes
on disk) and when/where

Resource Example resource allocation decisions

CPU Should the currently running program keep
going? Which program should run next?

Memory Where in RAM should a running program’s data
be? Should a program be allowed to use more
RAM?Storage Where on disk should pieces of files be stored?

Virtualization: Why and How?
 Why virtualization?

 Reason #1: To make the computer easier to program
 There was a time “before OSes” in which the programmer had to know a lot about the

insides of the computer
 Think how easy it is today to write code without understanding/knowing anything

about the hardware

 Reason #2: To provide each program with the illusion that it is alone on the
computer, going through its fetch-decode-execute cycle

 When you develop a program, you don’t think of what other programs will be running
when your program will run!

 And yet many programs run at once
 Reason #3: Make sure that bad things don’t happen

 A running program cannot corrupt another running program’s data
 A running program cannot crash the system

 How doe the OS do it? That’s what a lot of ICS332 is about!
 Looking at early OSes, we can see what happens when there is no or

not enough virtualization…

No Memory Virtualization?
 Example: Blue Screen of Death (BSOD) in Win 95/98

 We’ve all seen it, and nowadays it means there is a bug in the
Windows kernel or in a device driver (i.e., NOT in your code)

 But in the “old” days (Windows 95/98), any application could bring
about the BSOD

 This is because memory was not (sufficiently) virtualized, and your
code could, due to a bug, write to pretty much any RAM address,
and thus overwrite/corrupt kernel data structures

 Due to the difficulty of building on top of DOS, of being backward
compatible

 All of this changed with Windows NT (2001 for home users)
 Which is a turning point when the Windows OS became more “respectable”
 Note that, at that time, UNIX systems had had strong memory protection for

years!
 And this is why, thanks to virtualization, nowadays our Windows

computers don’t crash as much as they used to

No CPU Virtualization?
 Example: CPU hogging in Mac OS 9

 Nowadays, we expect that our machines will never be frozen because
some application is running

 But in older OSes, like Mac OS 9, there was no virtualization of the
CPU

 The idea is that applications will be nice and would call some “yield
control back to the kernel” function every now and then

 Called “cooperative multi-tasking”
 As a result, an application could hog the CPU indefinitely

 Either because it wasn’t “nice”
 Or just because it had a bug

 This led to the infamous “spinning beach ball” for the whole system
(not just for an application)

 This was fixed in Mac OS X (2001), which was a turning point for Mac
OS

 And here again, UNIX had CPU virtualization for years at that point!

No Device Virtualization?
 Example: Game development for DOS (80’s 90’s)

 Back then, if you had to write a game for DOS, you had to interact
directly with the graphics and sound hardware

 As a game developer, you had to write different code for different
hardware components (so that many users could play the game)

 This was a lot of work for everyone
 e.g., developers had to read and follow the hardware spec of many possible

graphics cards on the market
 e.g., users had to tweaks complicated config files

 This was really bug-prone, meant that a game may not work on the
most recent hardware, meant that games could conflict with each
other, etc.

 Device virtualization appeared in Win 95/98, which provided a device
API that games developers could use

 And again, UNIX had had that for decades at that point!
 We’ll look at reasons why older OSes (UNIX) were objectively better than

subsequent ones (DOS, MacOS9)

The Three Easy Pieces

 Our textbook is called OSTEP: Operating
Systems: Three Easy Pieces

 The three pieces are:
 Virtualization
 Concurrency
 Persistence

 Let’s talk briefly about concurrency and
persistence….

Concurrency: Multi-Programming
 Concurrency: doing multiple things “at once”
 Multi-programming is the name of the OS’s capability to execute

multiple programs concurrently
 This is only feasible because the OS provides virtualization

 We take multi-programming completely for granted
 which is why many of you likely had never even heard of the term

 Computers used to be used in “single-user mode”, where a program
is truly alone until completion, and then another program is started,
and so on …

 This had several productivity drawbacks:

 Your computer can do only one thing at a time
 If the program is idle for a while (e.g., waiting for keyboard input, waiting

for any I/O), then the CPU cycles are completely wasted
 OS advances made multi-programming possible, and we never

looked back!

Concurrency Issues
 Due to multi-programming, a big issue has been

concurrency, since the OS has to juggle many things “at
the same time”

 It leads to deep/difficult/interesting issues within the OS

 Furthermore, nowadays most programs are also
concurrent

 e.g., for a single program to use multiple cores using multi-
threading (ICS 432 is all about that)

 Therefore, concurrency is everywhere and is a constant
theme in any OS course

 Section 2.3 in our reading assignment talks about the main
concurrency problem

 If you find it a bit confusing, don’t fear, we’ll come back to this…

Persistence

 Persistence: the ability to store data that
survives a program termination / a computer
shutdown

 This is done by the file system
 Typically considered part of the OS (which

provides “file stuff” system calls)

 Even though it is often developed independently
from the core OS code

Conclusion
 Reading Assignment: 2.1-3. Section 2.4 starts with:

 Sections 2.1 and 2.2 show examples programs to
illustrate virtualization, which I didn’t discuss
 We’ll look at similar programs in future modules

 Section 2.3 is about concurrency and will likely be
confusing for most of you
 That’s ok, we’ll talk about concurrency in a future module

 Coming up next: the kernel

O
S

TE
P

