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Definition
 A process is a program in execution 

 Program: passive entity (bytes stored on disk as an executable file) 
 Becomes a process when it is loaded into memory, at which point 

the fetch-decode-execute cycle can begin  
 The process abstraction is defined by the OS to virtualize the CPU 

 Multiple processes can be associated to the same program  

 A user can start multiple instances of the same program (e.g., bash) 
 Typically many processes run on a system  

 System processes (started by the OS to do “system things”) 
 User processes (started by users) 
 The terms “process” and “jobs” are used interchangeably in OS 

textbooks 
 The set of locations that store bytes that a process can use/

reference is called the process’ address space…



Process Address Space
 The code (also called text) 

 Binary instructions, loaded into RAM by the OS from an executable file 
 The static data 

 The global variables and static local variables, which can be initialized (.data 
segment in x86 assembly) or not (.bss segment in x86 assembly) 

 The content of all registers 
 They represent the state of the CPU in the current fetch-decode-execute cycle 
 This includes the program counter (PC)  

 The heap 
 The zone of RAM in which new data can be be dynamically allocated (using 

malloc, new, etc.) 
 The runtime stack 

 The zone of RAM for all bookkeeping related to method/procedure/function calls 
(more in the next slides) 

 The page table 
 Let’s not talk about it now and leave it for later…



Process Address Space
 The OS can be configured to limit parts of a 

process’ address space 
 On UNIX-like systems you can find out what some 

limits are (all in KB): 
 ulimit -d      	 (data + heap) 
 ulimit -s  	 (stack size) 
 ulimit -m 	 (maximum Resident Set Size) 

 These limits can be changed system-wide using 
the ulimit command 

 They can also be changed by the process itself 
using the setrlimit() system call 

 Let’s see what limits are on my server… 
 When running a Java program you can specify 

some limits 
 java -Xmx512m -Xss1m … 
 512 MiB maximum heap size, 1MiB maximum 

stack size
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The Heap
 New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are 

allocated on the Heap (malloc() in C, new in Java/C++/C#, 
implicit in Python, etc.) 

 Can be handled by a memory manager (e.g., the JVM, a library, 
the Python interpreter) but ultimately it is the OS that provides 
dynamic memory allocation 

 There is a system call that says “please OS, give me XX more 
bytes” 

 At some point you will get an Out Of Memory error if you keep 
dynamically allocating memory 

 On my Linux box (not Docker), let’s write a simple C program 
that calls malloc() 10,000 times for 1 byte and look at the 
addresses returned…



The Heap: what we observed

 When calling malloc() for 1 byte, the space used is actually more 
than 1 byte! 

 In our case addresses were 32 bytes apart, so we “wasted" 31 
bytes for each malloc()!! 

 Calling malloc(), say,  10,000 times for 1 byte “wastes” memory 
when compared to calling malloc() 1 time for 10,000 bytes 

 This is due to the implementation of the OS’s “memory allocator” 
 It needs to store meta-data about the chunk of memory allocated 

so that later it knows what to do when free() is called 
 It will often allocate memory at addresses that are multiple of 

some small power of 2 
 Let’s now strace this program we just wrote and see what the 

“give me more memory!” system call is…



The brk syscall
 The “give me more memory!” system call is brk() 
 The man page for brk() shows that it is used to extent the heap up 

to some address that is beyond the current “end of the heap” address 
 brk(NULL)  “asks” where the data+heap ends 

 Weirdly, although our programs calls malloc() a lot, it calls brk() 
only a few times 

 This is an optimization: 
  A call to malloc()can get more memory than asked 
 Subsequent calls to malloc() just grab some of that extra 

memory without any syscall at all! (less overhead, more speed) 
 So when calling malloc(1), memory footprint can grow by a lot 

more than 1 byte! 
 Let’s figure out how much memory, in KiB, is allocated by a “first” call 

to malloc() 
 Anybody has some idea how we can do this?



The Heap: what we found out
 What we likely just did: 

 Count the number of malloc() calls between two 
calls to break() 

 Multiply that number of calls by 32 
 Divide by 1024 
 And that’s the number of KiB we get the “first time” we 

call malloc(1) 

 Of course are a little bit more complicated than that… 
isn’t everything in the OS?



The Runtime Stack
 Each process has in RAM a stack (a last-in-first-out data 

structure) where items can be pushed or popped 
 It is used to manage method/procedure/function calls and returns 
 On each call, an activation record is pushed onto the stack to do 

all the bookkeeping necessary for placing/returning from the call 
 It contains parameters, return address, local variables, saved register 

values 
 The code to manage the stack is generated by compilers/

interpreters 
 In ICS 312 we learn all the details 

 The stack size is limited 
 But configurable upon process creation 

 Going over that limit is called a Stack Overflow 
 Happens, for instance, with a deep (or infinite) recursion



The Kernel Stack
 The code in the kernel uses functions, and therefore it must 

have a stack to call these functions 
 But, to save space, the kernel’s stack is very small (16KiB!!) 
 Therefore, when writing functions in the kernel, these 

functions cannot allocate a lot on the stack 
 Not many parameters, not many local variables, no deep call 

sequences, and definitely no recursion 

 This is one of the differences between user-level development 
and kernel-level development 

 Recall others, like the fact that kernel code cannot use standard 
libraries, because standard libraries use system calls, which are 
implemented in the kernel (chicken and egg problem) 

 e.g., you can’t use printf when writing kernel code



Logical Address Space
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 Typical depiction of a process’ address space 
 The heap grows toward high addresses 
 The stack grows toward low addresses 
 If they collide you’ve run out of memory 

 This is the logical view of a process’ address 
space (i.e., virtualization of memory) 

 Let us easily experience this logical view by 
writing a C program that prints text, data, heap 
and stack addresses on Linux… 

 But this is not at all what things look like in 
physical memory 

 Because of “paging”, which we’ll talk 
about much later in the semester 

 And because that “free space” (in blue) 
would be a total waste if the program 
doesn’t need additional stack/heap space!



Two Processes / One Program Example
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Process Life Cycle

 Each process goes through a lifecycle 
 This term (in computer science) means that: 

 There is a finite number of possible states 
 There are allowed transitions between some states 
 These transitions happen when some event occurs 

 Before we look at the current process file 
cycle, let’s go back in time to so-called “single-
tasking OSes”…



Single-Tasking Ones
 OSes used to be single-tasking: only one process could be 

in memory at a time 
 MS-DOS is the (last commercial?) most well-known example  

 A command interpreter is loaded upon boot 
 When a program needs to execute, no new process is created 
 Instead the program’s code is loaded in memory by the command 

interpreter, which overwrites part of itself with it! 
 Done to cope with a very small RAM back in the days 

 The instruction pointer is set to the 1st instruction of the program 
 The small left-over portion of the interpreter resumes after the 

program terminates 
 This small portion reloads the full code of the interpreter from disk 

back into memory 
 The full interpreter is resumed



Single-Tasking with MS-DOS
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Single-Tasking Process Lifecycle
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Single-Tasking Process Lifecycle
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Single-Tasking Process Lifecycle
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Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New
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Problem: While a process 

is doing I/O, the CPU is 
idle, which is not only 
inconvenient but a waste 



Multi-Tasking (aka Multiprogramming)

 In modern OSes, multiple processes can be 
in RAM at the same time 

 Each with its own address space 
 While it’s running, a process thinks it’s alone on 

the machine (it doesn’t see anything outside of 
its address space) 

 There is a system call to create a new 
process that any process can place (to 
create a “child” process) 

 When a process terminates, its RAM space 
is reclaimed by the OS 

 Therefore, a process can be ready to run but 
not running because another process is 
currently running on the CPU 

 The lifecycle needs a new state!
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The Ready State 

 A process can be ready to run but not 
currently running: it’s in the ready state 

 It is the job of the OS to select one of the 
ready processes whenever the CPU 
becomes idle 
 This is part of what’s called “scheduling” 

 This is how the OS virtualizes the CPU, so 
that each process has the illusion it is the 
only one using the CPU 

 We have a more complicated lifecycle…



Process Lifecycle

New



Process Lifecycle

New
Accepted

Ready



Process Lifecycle

New

Running

Accepted

Ready

Scheduled



Process Lifecycle

New

Running

Accepted

Ready

Scheduled

Descheduled



Process Lifecycle

New

Running

Waiting

Accepted

I/O InitializedI/O Completed

Ready

Scheduled

Descheduled



Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled



Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

yes, when you do I/O, 
you lose your spot on 
the CPU!



Process Lifecycle
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It’s important that you have this 
diagram in mind 

The narrative is straightforward: just 
practice drawing this diagram by 
telling yourself the story, not by 
memorizing it!
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 It’s not rocket science, but it’s one of the many 
examples of developers gaining inspiration from 
Operating Systems (which have benefited from 
decades of development, evolution, learned 
lessons, etc.) 

 When designing a system it’s a good idea to 
ask oneself “How does the OS do it?” (because 
it probably does it pretty well….)



Process Control Block
 The OS uses a data structure to keep track of each process 
 This structure is called the Process Control Block (PCB) and contains:  

 Process state  

 Process ID (aka PID)  

 User ID  

 Saved Register Values (include PC)  

 CPU-scheduling information (see “Scheduling” Module)  
 Memory-management information (see “Main Memory” and “Virtual Memory” 

modules)  
 Accounting information (amount of hardware resources used so far) 
 I/O Status Info (e.g., for open files)  
 … and a lot of other useful things 

 Let’s look at Figure 4.5 in OSTEP (for the Educational xv6 kernel) 
 Let’s look at the task_struct data structure in /usr/src/linux-
headers-6.8.0-79/include/linux/sched.h (on our Docker 
image)



The Process Table
 The OS has in memory (in the Kernel space) one PCB per process 

 A new PCB is created each time a new process is created 
 A PCB is destroyed each time a process terminates 

 The OS keeps a “list” of PCBs: the Process Table 
 Because Kernel size (i.e., its memory footprint) is bounded, so is the 

Process Table  

 Therefore, the Process Table can fill up!  

 If you (or your program) keeps creating new processes, at some point, 
the process creation will fail 

 One of the many ways in which a system can become unusable 
 Because at that point you can’t even start a new Shell, since the Shell is a 

process!  

 Anybody has heard of the “fork bomb” term?  
 Let’s find out the max number of possible processes on our Docker 

container…  

 cat /proc/sys/kernel/threads-max



Main Takeways

 Processes are running programs 
 Multiple processes co-exist in RAM  

 The old single-tasking MSDOS case 
 The concept of a process address space 

 Code/text, heap, data, stack 

 The Process Control Block 
 The Process Table 
 The Process lifecycle 

 Onward to the Process API.... 



Conclusion

 We have all necessary concepts for 
processes here 

 But how do programs actually create/manage 
processes?  

 Onward to the Process API.... 


