
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Process
Abstraction

Definition
 A process is a program in execution

 Program: passive entity (bytes stored on disk as an executable file)
 Becomes a process when it is loaded into memory, at which point

the fetch-decode-execute cycle can begin
 The process abstraction is defined by the OS to virtualize the CPU

 Multiple processes can be associated to the same program

 A user can start multiple instances of the same program (e.g., bash)
 Typically many processes run on a system

 System processes (started by the OS to do “system things”)
 User processes (started by users)
 The terms “process” and “jobs” are used interchangeably in OS

textbooks
 The set of locations that store bytes that a process can use/

reference is called the process’ address space…

Process Address Space
 The code (also called text)

 Binary instructions, loaded into RAM by the OS from an executable file
 The static data

 The global variables and static local variables, which can be initialized (.data
segment in x86 assembly) or not (.bss segment in x86 assembly)

 The content of all registers
 They represent the state of the CPU in the current fetch-decode-execute cycle
 This includes the program counter (PC)

 The heap
 The zone of RAM in which new data can be be dynamically allocated (using

malloc, new, etc.)
 The runtime stack

 The zone of RAM for all bookkeeping related to method/procedure/function calls
(more in the next slides)

 The page table
 Let’s not talk about it now and leave it for later…

Process Address Space
 The OS can be configured to limit parts of a

process’ address space
 On UNIX-like systems you can find out what some

limits are (all in KB):
 ulimit -d 	 (data + heap)
 ulimit -s 	 (stack size)
 ulimit -m 	 (maximum Resident Set Size)

 These limits can be changed system-wide using
the ulimit command

 They can also be changed by the process itself
using the setrlimit() system call

 Let’s see what limits are on my server…
 When running a Java program you can specify

some limits
 java -Xmx512m -Xss1m …
 512 MiB maximum heap size, 1MiB maximum

stack size

Kernel

Text

Data

Heap

Stack

RAM

pr
oc

es
s

ad
dr

es
s

sp
ac

e

Free space

Free space

The Heap
 New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are

allocated on the Heap (malloc() in C, new in Java/C++/C#,
implicit in Python, etc.)

 Can be handled by a memory manager (e.g., the JVM, a library,
the Python interpreter) but ultimately it is the OS that provides
dynamic memory allocation

 There is a system call that says “please OS, give me XX more
bytes”

 At some point you will get an Out Of Memory error if you keep
dynamically allocating memory

 On my Linux box (not Docker), let’s write a simple C program
that calls malloc() 10,000 times for 1 byte and look at the
addresses returned…

The Heap: what we observed

 When calling malloc() for 1 byte, the space used is actually more
than 1 byte!

 In our case addresses were 32 bytes apart, so we “wasted" 31
bytes for each malloc()!!

 Calling malloc(), say, 10,000 times for 1 byte “wastes” memory
when compared to calling malloc() 1 time for 10,000 bytes

 This is due to the implementation of the OS’s “memory allocator”
 It needs to store meta-data about the chunk of memory allocated

so that later it knows what to do when free() is called
 It will often allocate memory at addresses that are multiple of

some small power of 2
 Let’s now strace this program we just wrote and see what the

“give me more memory!” system call is…

The brk syscall
 The “give me more memory!” system call is brk()
 The man page for brk() shows that it is used to extent the heap up

to some address that is beyond the current “end of the heap” address
 brk(NULL) “asks” where the data+heap ends

 Weirdly, although our programs calls malloc() a lot, it calls brk()
only a few times

 This is an optimization:
 A call to malloc()can get more memory than asked
 Subsequent calls to malloc() just grab some of that extra

memory without any syscall at all! (less overhead, more speed)
 So when calling malloc(1), memory footprint can grow by a lot

more than 1 byte!
 Let’s figure out how much memory, in KiB, is allocated by a “first” call

to malloc()
 Anybody has some idea how we can do this?

The Heap: what we found out
 What we likely just did:

 Count the number of malloc() calls between two
calls to break()

 Multiply that number of calls by 32
 Divide by 1024
 And that’s the number of KiB we get the “first time” we

call malloc(1)

 Of course are a little bit more complicated than that…
isn’t everything in the OS?

The Runtime Stack
 Each process has in RAM a stack (a last-in-first-out data

structure) where items can be pushed or popped
 It is used to manage method/procedure/function calls and returns
 On each call, an activation record is pushed onto the stack to do

all the bookkeeping necessary for placing/returning from the call
 It contains parameters, return address, local variables, saved register

values
 The code to manage the stack is generated by compilers/

interpreters
 In ICS 312 we learn all the details

 The stack size is limited
 But configurable upon process creation

 Going over that limit is called a Stack Overflow
 Happens, for instance, with a deep (or infinite) recursion

The Kernel Stack
 The code in the kernel uses functions, and therefore it must

have a stack to call these functions
 But, to save space, the kernel’s stack is very small (16KiB!!)
 Therefore, when writing functions in the kernel, these

functions cannot allocate a lot on the stack
 Not many parameters, not many local variables, no deep call

sequences, and definitely no recursion

 This is one of the differences between user-level development
and kernel-level development

 Recall others, like the fact that kernel code cannot use standard
libraries, because standard libraries use system calls, which are
implemented in the kernel (chicken and egg problem)

 e.g., you can’t use printf when writing kernel code

Logical Address Space

Text

Data

Heap

Stack

pr
oc

es
s

ad
dr

es
s

sp
ac

e

Free Space

growth

growth

 Typical depiction of a process’ address space
 The heap grows toward high addresses
 The stack grows toward low addresses
 If they collide you’ve run out of memory

 This is the logical view of a process’ address
space (i.e., virtualization of memory)

 Let us easily experience this logical view by
writing a C program that prints text, data, heap
and stack addresses on Linux…

 But this is not at all what things look like in
physical memory

 Because of “paging”, which we’ll talk
about much later in the semester

 And because that “free space” (in blue)
would be a total waste if the program
doesn’t need additional stack/heap space!

Two Processes / One Program Example

Text

Data

Heap

Stack

Text

Data

Heap

Stack

pr
oc

es
s

#1
 a

dd
re

ss
 s

pa
ce

process #2 address space

same size
same content

same size
different content

different size
different content

different size different content

Process Life Cycle

 Each process goes through a lifecycle
 This term (in computer science) means that:

 There is a finite number of possible states
 There are allowed transitions between some states
 These transitions happen when some event occurs

 Before we look at the current process file
cycle, let’s go back in time to so-called “single-
tasking OSes”…

Single-Tasking Ones
 OSes used to be single-tasking: only one process could be

in memory at a time
 MS-DOS is the (last commercial?) most well-known example

 A command interpreter is loaded upon boot
 When a program needs to execute, no new process is created
 Instead the program’s code is loaded in memory by the command

interpreter, which overwrites part of itself with it!
 Done to cope with a very small RAM back in the days

 The instruction pointer is set to the 1st instruction of the program
 The small left-over portion of the interpreter resumes after the

program terminates
 This small portion reloads the full code of the interpreter from disk

back into memory
 The full interpreter is resumed

Single-Tasking with MS-DOS

Kernel

Command
Interpreter

Idle
Full command interpreter

Free space

Single-Tasking with MS-DOS

Kernel

Command
Interpreter

Idle
Full command interpreter

Free space

Kernel

Command Interpreter
re-launch code

Running a program
Reduced command interpreter

Free space

User
Process

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Running

Accepted

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Running

Waiting

Accepted

I/O Initialized

Often named
“Blocked”

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Running

Waiting

Accepted

I/O Initialized I/O Completed

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Running

Waiting

TerminatedAccepted

I/O Initialized I/O Completed

Exit

Single-Tasking Process Lifecycle

 The process lifecycle was very simple:

New

Running

Waiting

TerminatedAccepted

I/O Initialized I/O Completed

Exit
Problem: While a process

is doing I/O, the CPU is
idle, which is not only
inconvenient but a waste

Multi-Tasking (aka Multiprogramming)

 In modern OSes, multiple processes can be
in RAM at the same time

 Each with its own address space
 While it’s running, a process thinks it’s alone on

the machine (it doesn’t see anything outside of
its address space)

 There is a system call to create a new
process that any process can place (to
create a “child” process)

 When a process terminates, its RAM space
is reclaimed by the OS

 Therefore, a process can be ready to run but
not running because another process is
currently running on the CPU

 The lifecycle needs a new state!

Kernel

Process #1

Free space

Process #2

Process #3

The Ready State

 A process can be ready to run but not
currently running: it’s in the ready state

 It is the job of the OS to select one of the
ready processes whenever the CPU
becomes idle
 This is part of what’s called “scheduling”

 This is how the OS virtualizes the CPU, so
that each process has the illusion it is the
only one using the CPU

 We have a more complicated lifecycle…

Process Lifecycle

New

Process Lifecycle

New
Accepted

Ready

Process Lifecycle

New

Running

Accepted

Ready

Scheduled

Process Lifecycle

New

Running

Accepted

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Accepted

I/O InitializedI/O Completed

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

yes, when you do I/O,
you lose your spot on
the CPU!

Process Lifecycle

New

Running

Waiting

Terminated

Accepted

I/O InitializedI/O Completed

Exit

Ready

Scheduled

Descheduled

It’s important that you have this
diagram in mind

The narrative is straightforward: just
practice drawing this diagram by
telling yourself the story, not by
memorizing it!

Android activity lifecycle

Other Lifecycles

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

6/28/23, 1:46 AM lifecycle-of-a-label

file:///Users/henric/Desktop/lifecycle-of-a-label.svg 1/1

Google Drive label lifecycle

Android activity lifecycle

Other Lifecycles

AWS instance lifecycle
iOS app lifecycle

6/28/23, 1:46 AM lifecycle-of-a-label

file:///Users/henric/Desktop/lifecycle-of-a-label.svg 1/1

Google Drive label lifecycle

 It’s not rocket science, but it’s one of the many
examples of developers gaining inspiration from
Operating Systems (which have benefited from
decades of development, evolution, learned
lessons, etc.)

 When designing a system it’s a good idea to
ask oneself “How does the OS do it?” (because
it probably does it pretty well….)

Process Control Block
 The OS uses a data structure to keep track of each process
 This structure is called the Process Control Block (PCB) and contains:

 Process state

 Process ID (aka PID)

 User ID

 Saved Register Values (include PC)

 CPU-scheduling information (see “Scheduling” Module)
 Memory-management information (see “Main Memory” and “Virtual Memory”

modules)
 Accounting information (amount of hardware resources used so far)
 I/O Status Info (e.g., for open files)
 … and a lot of other useful things

 Let’s look at Figure 4.5 in OSTEP (for the Educational xv6 kernel)
 Let’s look at the task_struct data structure in /usr/src/linux-
headers-6.8.0-79/include/linux/sched.h (on our Docker
image)

The Process Table
 The OS has in memory (in the Kernel space) one PCB per process

 A new PCB is created each time a new process is created
 A PCB is destroyed each time a process terminates

 The OS keeps a “list” of PCBs: the Process Table
 Because Kernel size (i.e., its memory footprint) is bounded, so is the

Process Table

 Therefore, the Process Table can fill up!

 If you (or your program) keeps creating new processes, at some point,
the process creation will fail

 One of the many ways in which a system can become unusable
 Because at that point you can’t even start a new Shell, since the Shell is a

process!

 Anybody has heard of the “fork bomb” term?
 Let’s find out the max number of possible processes on our Docker

container…

 cat /proc/sys/kernel/threads-max

Main Takeways

 Processes are running programs
 Multiple processes co-exist in RAM

 The old single-tasking MSDOS case
 The concept of a process address space

 Code/text, heap, data, stack

 The Process Control Block
 The Process Table
 The Process lifecycle

 Onward to the Process API....

Conclusion

 We have all necessary concepts for
processes here

 But how do programs actually create/manage
processes?

 Onward to the Process API....

