The Process

Abstraction

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
Definition

B A process is a program in execution
Program: passive entity (bytes stored on disk as an executable file)

Becomes a process when it is loaded into memory, at which point
the fetch-decode-execute cycle can begin

The process abstraction is defined by the OS to virtualize the CPU

®m Multiple processes can be associated to the same program
A user can start multiple instances of the same program (e.g., bash)

® Typically many processes run on a system
System processes (started by the OS to do “system things”)
User processes (started by users)

The terms “process” and “jobs” are used interchangeably in OS
textbooks

B The set of locations that store bytes that a process can use/
reference is called the process’ address space...

" A
Process Address Space

B The code (also called text)
Binary instructions, loaded into RAM by the OS from an executable file

®m The static data

The global variables and static local variables, which can be initialized (.data
segment in x86 assembly) or not (.bss segment in x86 assembly)

® The content of all registers
They represent the state of the CPU in the current fetch-decode-execute cycle
This includes the program counter (PC)

® The heap

The zone of RAM in which new data can be be dynamically allocated (using
malloc, new, etc.)

® The runtime stack

The zone of RAM for all bookkeeping related to method/procedure/function calls
(more in the next slides)

process address space

Process Address Space

Kernel

Free space

Text

Data

Heap

Stack

Free space

RAM

® The OS can be configured to limit parts of a
process’ address space

On UNIX-like systems you can find out what some
limits are (all in KB):

m ulimit -d (data + heap)
m ulimit -s (stack size)
m ulimit -m (maximum Resident Set Size)

These limits can be changed system-wide using
the ulimit command

They can also be changed by the process itself
using the setrlimit () system call

Let’'s see what limits are on my server...
® \When running a Java program you can specify
some limits
java -Xmx512m -Xsslm ..

512 MiB maximum heap size, 1MiB maximum
stack size

The Heap

New (i.e., dynamically allocated) bytes (objects, arrays, etc.) are
allocated on the Heap (malloc () in C, new in Java/C++/C#,

implicit in Python, etc.)
Can be handled by a memory manager (e.g., the JVM, a library,

the Python interpreter) but ultimately it is the OS that provides
dynamic memory allocation

There is a system call that says “please OS, give me XX more
bytes”

At some point you will get an Out Of Memory error if you keep
dynamically allocating memory

On my Linux box (not Docker), let’'s write a simple C program
that calls malloc () 10,000 times for 1 byte and look at the

addresses returned...

The Heap: what we observed

m \When calling malloc () for 1 byte, the space used is actually more
than 1 byte!

In our case addresses were 32 bytes apart, so we “wasted" 31
bytes for each malloc () !

m Callingmalloc (), say, 10,000 times for 1 byte “wastes” memory
when compared to callingmalloc () 1 time for 10,000 bytes
®m This is due to the implementation of the OS’s “memory allocator”

It needs to store meta-data about the chunk of memory allocated
so that later it knows what to do when f£ree () is called

It will often allocate memory at addresses that are multiple of
some small power of 2

m Let's now strace this program we just wrote and see what the
“give me more memory!” system call is...

The brk syscall

The “give me more memory!” system call is brk ()

The man page for brk () shows that it is used to extent the heap up
to some address that is beyond the current “end of the heap” address

brk (NULL) “asks” where the data+heap ends

Weirdly, although our programs calls malloc () alot, it calls brk ()
only a few times

This is an optimization:
A call tomalloc () can get more memory than asked

Subsequent calls tomalloc () just grab some of that extra
memory without any syscall at all! (less overhead, more speed)

So when callingmalloc (1), memory footprint can grow by a lot
more than 1 byte!

Let’s figure out how much memory, in KiB, is allocated by a “first” call
tomalloc ()

Anybody has some idea how we can do this?

" JE
The Heap: what we found out

®m \What we likely just did:

Count the number of malloc () calls between two
calls to break ()

Multiply that number of calls by 32
Divide by 1024

And that’s the number of KiB we get the “first time” we
callmalloc (1)

m Of course are a little bit more complicated than that...
Isn’'t everything in the OS?

" A
The Runtime Stack

® Each process has in RAM a stack (a last-in-first-out data
structure) where items can be pushed or popped

® |t is used to manage method/procedure/function calls and returns

® On each call, an activation record is pushed onto the stack to do
all the bookkeeping necessary for placing/returning from the call

It contains parameters, return address, local variables, saved register
values

® The code to manage the stack is generated by compilers/
Interpreters

In ICS 312 we learn all the details

® The stack size is limited
But configurable upon process creation

® Going over that limit is called a Stack Overflow
Happens, for instance, with a deep (or infinite) recursion

" A
The Kernel Stack

® The code in the kernel uses functions, and therefore it must
have a stack to call these functions

m But, to save space, the kernel's stack is very small (16KiB!!)

® Therefore, when writing functions in the kernel, these
functions cannot allocate a lot on the stack

Not many parameters, not many local variables, no deep call
sequences, and definitely no recursion

® This is one of the differences between user-level development
and kernel-level development

Recall others, like the fact that kernel code cannot use standard
libraries, because standard libraries use system calls, which are
implemented in the kernel (chicken and egg problem)

e.g., you can’'t use printf when writing kernel code

"
Logical Address Space

process address space

/

Text

Data

Heap

* growth

Free Space

? growth

Stack

m Typical depiction of a process’ address space
The heap grows toward high addresses
The stack grows toward low addresses
If they collide you’ve run out of memory

® This is the logical view of a process’ address
space (i.e., virtualization of memory)

m | et us easily experience this logical view by
writing a C program that prints text, data, heap
and stack addresses on Linux...

m But this is not at all what things look like in
physical memory

Because of “paging”, which we’ll talk
about much later in the semester

And because that “free space” (in blue)
would be a total waste if the program
doesn’t need additional stack/heap space!

" J
Two Processes /| One Program Example

/ same size Text
Text same content .
S
80 8
S same size Data i
3 Data different content 3
w m
GJ Q_
g adif, Q
® Hea o, g
\(—U p . | d/ﬁ:erent Ct S/Ze Heap g
:H: Ontenl(%
()] . :
< A Q
s el S
e []
o

.dlfferen;‘ St ?
\ Stack diffaren; . 28 . /

" JE
Process Life Cycle

®m Each process goes through a lifecycle

B This term (in computer science) means that:
There is a finite number of possible states

There are allowed transitions between some states
These transitions happen when some event occurs

m Before we look at the current process file

cycle, let’'s go back in time to so-called “single-
tasking OSes’...

"
Single-Tasking Ones

m OSes used to be single-tasking: only one process could be
In memory at a time

® MS-DOS is the (last commercial?) most well-known example
A command interpreter is loaded upon boot
When a program needs to execute, no new process is created

Instead the program’s code is loaded in memory by the command
interpreter, which overwrites part of itself with it!

= Done to cope with a very small RAM back in the days
The instruction pointer is set to the 1st instruction of the program

The small left-over portion of the interpreter resumes after the
program terminates

This small portion reloads the full code of the interpreter from disk
back into memory

The full interpreter is resumed

"
Single-Tasking with MS-DOS

Kernel

Command
Interpreter

Free space

|dle

Full command interpreter

"
Single-Tasking with MS-DOS

Kernel Kernel

Command Interpreter
re-launch code

Command
Interpreter User
Process
Free space Free space
Idle Running a program

Full command interpreter Reduced command interpreter

"
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

"
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

o Accepted

" J
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

Accepted

I/0O Initialized

Often named
“Blocked”

" J
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

Accepted

l/O Initialized /O Completed

" J
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

Accepted

l/O Initialized /O Completed

"
Single-Tasking Process Lifecycle

® The process lifecycle was very simple:

Problem While a process]

Accepted ! s doing /O, the CPU is
tidle, which is not only

. iInconvenient but a waste

P
2

l/O Initialized /O Completed

Multi-Tasking (aka Multiprogramming)

Kernel

Process #1

Process #2

Process #3

Free space

® In modern OSes, multiple processes can be
in RAM at the same time

Each with its own address space

While it's running, a process thinks it's alone on
the machine (it doesn’t see anything outside of
its address space)
® There is a system call to create a new
process that any process can place (to
create a “child” process)

® \When a process terminates, its RAM space
is reclaimed by the OS

m Therefore, a process can be ready to run but
not running because another process is
currently running on the CPU

® The lifecycle needs a new state!

" J
The Ready State

m A process can be ready to run but not
currently running: it's in the ready state

m |t is the job of the OS to select one of the
ready processes whenever the CPU
becomes idle

This is part of what's called “scheduling”

® This is how the OS virtualizes the CPU, so
that each process has the illusion it is the
only one using the CPU

® \We have a more complicated lifecycle...

"
Process Lifecycle

" JEE
Process Lifecycle

o Accepted

" JEE
Process Lifecycle

o Accepted

Scheduled

s>

" JE
Process Lifecycle

o Accepted

Scheduled

COECS

Descheduled

Process Lifecycle

m Accepted

Scheduled

Descheduled

/0 Completed /O Initialized

" J
Process Lifecycle

(=
Accepted

Scheduled

Descheduled

/0 Completed /O Initialized

"
Process Lifecycle

(=
Accepted

Exit
Scheduled

CHIERCD

Descheduled

/O Completed) /O Initialized

,, yes, when you do 1/O, |
! you lose your spot on }
{ the CPU!

Process Lifecycle

[It's important that you have this
idiagram in mind |
The narrative is straightforward: Just
i practice drawing this diagram by

'telling yourself the story, not by
‘memorizing it!

Other Lifecycles

User navigates
to the activity

['4|>‘\
| Appprocess

\ killed /

Apps with higher priority

need memory

[Activity |
 launched
\a y/

——

onCreate()

y

onStart() onRestart()

¢ A

+—

Android activity lifecycle

onResume()

‘n\ running
—

Another activity comes
into the foreground

User returns
+ to the activity

)

onPause()

|
The activity is
no longer visible

User navigates
+ to the activity
)

onStop()
I

The activity is finishing or
being destroyed by the system

v

onDestroy()

Other Lifecycles

Activity *‘
launched

v

onCreate()

y

onStart() -

v

User navigates
9 onResume() -

to the activity

d N\

{'V App process ."" (Activity \

killed . running

\. / \. y
——

Another activity comes
nto the foreground

v

onPause()

The activity is
no longer visible

v

onStop()
I

The activity is finishing or
being destroyed by the syste

v

onDestroy()

Apps with higher priority
need memory

AWS instance lifecycle aWS

0D
(L1

EBS-backed instances only

Terminate

Terminate

. Stop:

! ¥
—ESto

Terminate
!
<

Launch
pending
\ J
' l Y
running
- I J
Terminate
v
shutting-down
\ J
s l R
terminated
\ J

D—>[stopping]—»[stopped J

:

| Activity)
\ shut down)
e

" S
Other Lifecycles

08 app lifecycle [OS e lifecycle QW'S

Launch Screen Ul App Ul
FBS-backed instances only
User navigaj ® ® @ :
to the activ i
. —» |/ Unattached | | Foreground |—---- » || Foreground :
P Inactive Active '
| App proceq Start :
\ killed i

;() — ——— Y
stopping]—)[stopped J

Apps with higher|

need memq
(. —°) =\ =\ i
[ferminate Terminate :
® 184 ® ;
Suspended || <« — - — — » || Background |«————> | Foreground !
Inactive |
———) —

Y —_—— e e — —

Other Lifecycles

-

08 app lifecycle [OS e lifecycle QW'S

— V —m————— g\

An

VR
deltaUpdateLabel()
PUBLISHED

+ unpublished changes

o

publishLabel()

deltaUpdateLabel() deltaUpdateLabel()

0— createLabel()

UNPUBLISHED DRAFT —e—publishLabel() PUBLISHED o))~ disableLabel()

»)

v/ - enableLabel()

O

deletelLabel()

G Google Drive label lifecycle

" S
Other Lifecycles

An

l ® [t's not rocket science, but it's one of the many

0
® \When designing a system it's a good idea to

L 5

examples of developers gaining inspiration from
Operating Systems (which have benefited from |
decades of development, evolution, learned '
lessons, etc.)

ask oneself “How does the OS do it?” (because | 0
it probably does it pretty well....) 3

" A
Process Control Block

®m The OS uses a data structure to keep track of each process

® This structure is called the Process Control Block (PCB) and contains:
Process state
Process ID (aka PID)
User ID
Saved Register Values (include PC)
CPU-scheduling information (see “Scheduling” Module)

Memory-management information (see “Main Memory” and “Virtual Memory”
modules)

Accounting information (amount of hardware resources used so far)
I/O Status Info (e.g., for open files)
... and a lot of other useful things

m | et's look at Figure 4.5 in OSTEP (for the Educational xv6 kernel)

m Let’s look at the task struct data structure in /usr/src/linux-
headers-6.8.0-79/include/linux/sched.h (on our Docker
image)

" A
The Process Table

® The OS has in memory (in the Kernel space) one PCB per process
A new PCB is created each time a new process is created
A PCB is destroyed each time a process terminates

®m The OS keeps a “list” of PCBs: the Process Table

m Because Kernel size (i.e., its memory footprint) is bounded, so is the
Process Table

m Therefore, the Process Table can fill up!
m |f you (or your program) keeps creating new processes, at some point,
the process creation will fail

One of the many ways in which a system can become unusable

Because at that point you can’t even start a new Shell, since the Shell is a
process!

® Anybody has heard of the “fork bomb” term?

m |_et’s find out the max number of possible processes on our Docker
container...

cat /proc/sys/kernel/threads-max

Main Takeways

m Processes are running programs

m Multiple processes co-exist in RAM
The old single-tasking MSDQOS case

m The concept of a process address space
Codeltext, heap, data, stack

® The
m The
m The

Process Control Block
Process Table

Process lifecycle

B Onward to the Process API....

" A
Conclusion

® \We have all necessary concepts for
processes here

® But how do programs actually create/manage
processes?

B Onward to the Process API....

