The Process API

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" A
Disclaimer

m Most of the content of this set of lecture notes
IS for UNIX-like OSes

| won't have “in UNIX-like OSes” on very slide

® There will be a bit of content about Windows
though

" A
Process Creation

® Processes can create pProcesses

m |f process A creates process B, we say that “A is the parent of B”
and “B is a child of A”

A process can have at most one parent and can have many children
®m Each process has a PID (Process ID)
An integer picked by the OS, always increasing

If | just created a process and its PID is 456, then the next process that
will be created (by any one) will have PID 457

Therefore, if | just created a process and it's PID is 1000, | know that 1000
processes have been created since booting the machine (most of which
have died since, and assuming that the first one had PID 1)

®m The PID of the parent of a process is called the PPID (Parent
Process ID)

m Two useful system calls: getpid () and getppid()
m Bottom line: Processes form a genealogy tree!

Looking at the Process Tree

0 n Mac OSX: ps axlw

UID §PID

[...17F
50 2660

501 2667
501 2668
501 2733
501 2734
501 2736
501 2743
501 2836

PPID

[eNeNeNoNoNeNoNeo]

CPU PRI NI vsz
31 0 2458784
31 0 2467676
31 0 2439512
31 0 2452676
31 0 2479128
63 0 2654600
31 0 2450592
31 0 2550224

RSS

536
676
1064
836
2704
46768
532
7108

WCHAN

72}
S
H

TT

??
??
??
??
??
??
??
??

0

U)(J‘J(IJU)UDU)U)UJ

®m On Linux: ps --forest -eaf

UID
[...]
daemon
root
syslog
root
root
ubuntu
ubuntu
ubuntu
root
root

[...]

PID

1061
1063
1069
1074
25393
25453
25454
25509
1081
1118

PPID

RRR

1
1074
25393
25453
25454
1

1

Cc

STIME TTY

Aug04
Aug04
Aug04
Aug04
01:31
01:31 »

01:31 pts/0
01:35 pts/0
Aug04 ?

Aug04 ?

LIV IEE BV RV V]

TIME

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
01
00

CMD

TIME

[eNeoNeNoNoNeNoNeo]

/usr/sbin/atd -f£
/usr/bin/lxcfs /var/lib/lxcfs/
/usr/sbin/rsyslogd -n
/usr/sbin/sshd -D

_ sshd: ubuntu [priv]

:00.
:00.
:00.
:00.
:00.
:06.
:00.
:00.

19
00
01
00
01
31
19
07

COMMAND

gpg-agent --daemon
/opt/X11l/libexec/launchd _startx /opt/X1l/bin/
/bin/sh /opt/X1ll/bin/startx -- /opt/X1l/bin/X
/opt/X11/bin/xinit /opt/X11/1ib/X11/xinit/xin
/opt/X11/bin/Xquartz :0 -nolisten tcp -iglx -
/Applications/Utilities/XQuartz.app/Contents/
gpg-agent --daemon

/opt/X11l/bin/quartz-wm

_ sshd: ubuntu@pts/0
_ -bash
_ ps --forest -eaf

/usr/lib/snapd/snapd

/sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --daemoni

"
The pstree program

m On ubuntu, the psmisc package comes with
a cool program called pstree

m | et's go to my Linux box and play with it
m For instance: pstree -c¢ -C age -G -T

" A
Process Creation

® After creating a child the parent continues executing

® But at any point, event right away, it can wait for the child’s
completion
® The child can be:

either a complete clone of the parent (i.e., have an exact copy of the
parent’s address space)

or be an entirely new program

® The above is true across most modern OSes, more or less, but
comes with important variations

B | et's look at process creation in the POSIX standard

UNIX (mostly Linux these days)
Darwin (MacOS + iOS + tvOS + watchOS)

m | et’'s begin with the strange and powerful fork()

"
The fork() System Call

m fork () is a system call that creates a new process
It's really a thin wrapper over the clone () system call
But fork () is kept as a system call for backward compatibility
reasons

® The child is an almost exact copy of the parent except for
Its PID (two processed cannot have the same PID)
Its PPID (its parent cannot also be its grand-parent)
Its resource utilization (set to zero since it's just started)

m After the call to fork () the parent continues executing and the
child begins executing

® The confusing part: fork () returns an integer value
It returns 0 to the child

If returns the child’s PID to the parent
(In case of error, e.g., the Process Table is full, it returns -1)

"
fork(): Basic Example

returnedValue = fork() ;
if (returnedValue < 0) {
// Manage the error
printf ("Error: Can’t fork!'\n”);
} else if (returnedValue == 0) {
// Child code
printf ("I am the child and my pid is %1d\n”, getpid());
while (1==1); // I just don’t want to terminate
} else {
// Parent code

print ("I am the parent and the pid of my child is %1d\n”, returnedvValue) ;
while (1==1); // I just don’t want to terminate either

m Simplified version of fork_examplel.c

m Note: Errors cases should always be handled... but perhaps doing so for printf is
overkill ;)

m Let'srunit...

fork(): Second Example

Second example of fork()

a = 12; // Global wvariable
pid t pid = fork();
if (pid) {
// The PARENT
sleep(5); // Ask the 0OS to put me in the WAITING state for 5s
printf (”a = %$d4”, a); // Display the value of a
while (1); // Loop forever
} else {
// The CHILD
a += 3;
while (1); // Loop forever

}

® \What does this code print? 12 or 157

"
fork(): Second Example

Second example of fork()

a = 12; // Global variable
pid t pid = fork();
if (pid) {
// The PARENT
sleep(5); // Ask the 0OS to put me in the WAITING state for 5s

printf(”“a = %d”, a); // Display the value of a
while (1); // Loop forever
} else {
// The CHILD
a += 3;
while (1); // Loop forever
}

® \What does this code print? 12 or 15?
m |t prints 12 fork _example 2.c
m | et's look at this in full detalil...

fork(): Second Example

PID: 1000
Text
Data
a=12;
pid_t pid = fork();
if (pid) { S,
sleep(5) ;
printf(”“a = %d”, a); Heap
while (1) ;
} else {
a += 3;
} while (1); pid: undefined
Stack

"
fork(): Second Example

PID: 1000 _ _ PID: 1001
identical
Text < > Text
Data Data
a =12; identical
pid t pid = fork(); < >
if (pld) { a. 12 a. 12
sleep(5) ; . .
identical
printf(”“a = %d”, a); Heap < > Heap
while (1) ;
} else {
a += 3;
while (1); identical
) pid: undefined < P pid: undefined
Stack Stack

Right after fork () and before the assignment to pid

"
fork(): Second Example

PID: 1000 _ _ PID: 1001
identical
Text < > Text
Data Data
a =12; identical
pid t pid = fork(); < >
if (pid) { a. 12 a. 12
1 5); . .
° ?ep() B identical
printf(”“a = %d”, a); Heap < > Heap
while (1) ;
} else {
a += 3;
} while (1); oid: 1001 < different »| pid: 0
Stack Stack

After the assignment to pid

fork(): Second Example

PARENT

PID: 1000

Text

identical

CHILD

PID: 1001

a=12;
pid_t pid = fork():;
if (pid) {

sleep (5) ;

while (1) ;
} else {

a += 3;

while (1) ;

Data

a: 12

ldentical

Text

printf(“a = %d”, a);

Heap

identical

Data

sleep() act. record

pid: 1001

Stack

different

Heap

pid: 0

Stack

The parent calls sleep (),

goes to the waiting state,
which will let the child run

fork(): Second Example

PARENT

PID: 1000

Text

identical

CHILD

PID: 1001

a=12;
pid_t pid = fork():;
if (pid) {
sleep(5) ;
printf (”“a = %d”, a);
while (1) ;
} else {
a += 3;
while (1) ;

Data

a: 12

different

Text

Heap

identical

Data

sleep() act. record

The child runs, and updates its values of a to 15

pid: 1001

Stack

different

Heap

pid: 0

Stack

fork(): Second Example

PARENT

PID: 1000

Text

identical

CHILD

PID: 1001

a=12;
pid_t pid = fork():;
if (pid) {

sleep(5) ;

while (1) ;
} else {

a += 3;

while (1) ;

Data

a: 12

different

Text

printf(“a = %d”, a);

Heap

identical

Data

sleep() act. record

pid: 1001

Stack

different

Heap

pid: 0

Stack

The child does an infinite loop, and at some point

will be interrupted so that another process gets to run

fork(): Second Example

a=12;

pid_t pid = fork():;

if (pid) {
sleep(5) ;

while (1) ;
} else {

a += 3;

while (1) ;

printf(“a = %d”, a);

PID: 1000 _ _ PID: 1001
identical
Text < Text
Data Data
different
<
a: 12 a 15
identical
Heap < Heap
printf() act. record diff
ifferent
pid: 1001 < pid: 0
Stack Stack

The parent calls print£f () and prints 12

(its value of a)

"
fork(): Second Example

PID: 1000 S PID: 1001
identical
Text < > Text
Data Data
a =12; different
pid_t pid = fork() < P>
sleep(5); identical
printf(“a = %d”, a); Heap < > Heap
while (1) ;
} else {
a += 3;
- . different
} while (1); pid: 1001 < »| pid: 0
Stack Stack

printf () returns and the parent
goes into its own infinite loop

" J—_—
Second Example’s Lesson

m Both processes coexist independently

The code is executed independently in the Parent and in the
Child

The data segment of the Parent has nothing to do with the
data segment of the Child

The stack of the Parent has nothing to do with the data
segment of the Child

The heap of the Parent has nothing to do with the data
segment of the Child

This is by design, because the OS ensures that each process
has its own address space!

m | et’s look at a small variation of the example and see if
we can figure it out...

fork(): Second Example, Tweaked

Second example of fork(), tweaked

int a = 12;
retvVal = fork() ;
if (retval) {
// The PARENT (or error)

sleep(5); // Ask the 0OS to put me in the WAITING state for 5s
} else {

// The CHILD
a += 3;
}

printf (”%d\n”, a); // Display the value of a

® \What does this code print?

fork(): Second Example, Tweaked

Second example of fork(), tweaked

int a = 12;
retvVal = fork() ;
if (retval) {
// The PARENT (or error)

sleep(5); // Ask the 0OS to put me in the WAITING state for 5s
} else {

// The CHILD
a += 3;
}

printf (“%d\n”, a); // Display the value of a

® \What does this code print?
® |t prints 15\n12\n fork_example3.c

" J
fork() is sometimes confusing

fork() and printing “Hello”

fork() ;
printf (“Hello”) ;
fork() ;
print (“Hello”) ;

® How many times does this program print Hello? (Show of
hands)

" J
fork() is sometimes confusing

fork() and printing “Hello”

fork() ;
printf (“Hello”) ;
fork() ;
print (“Hello”) ;

® How many times does this program print Hello? (Show of
hands)

B Answer: 6 times fork _example4.cx

= One process calls fork()

= Two processes print “Hello”
= Two processes call fork()

= Four processes print “Hello"

fork(): A crazy example

fork() gone crazy

fork () ;
if (fork()) {
fork () ;

}
fork () ;

® How many processes does this C program create?

Note the typical C coding style for condition in the
conditional (true if fork() returns non-zero)

m | et's go through this together in the next slides...
Clearly the above program is not useful

But if you can figure it out, that means you understand
fork() 100%

"
fork(): A crazy example

Initial process

fork () ;
if (fork()) {
fork () ;

}
fork () ;

"
fork(): A crazy example

fork () ; fork () ;
if (fork()) { if (fork()) {
fork () ; fork()

} }
fork () ; fork () ;

fork(): A crazy example

Child

Initial process

fork () ;

}
fork () ;

if (fork()) {
fork () ;

N\

Child

fork () ;
if (fork()) {
fork () ;

}
fork () ;

fork() ;

}
fork() ;

if (fork()) {
fork () ;

N\

Grand-child

fork () ;
if (fork()) {
fork () ;

}
fork () ;

"
fork(): A crazy example

fork () ; fork () ;

if (fork()) { if (fork()) {
fork() ; fork() ;

} }

fork() ; fork() ;

Child Grand-child

fork () ; fork()
if (fork()) { if (fork()) {
fork () ; fork()
¢ } // else ¢ } // else
fork () ; fork ()’

fork () ;
if (fork()) {
fork () ;

}
fork () ;

fork () ;
if (fork()) {
fork () ;

}
fork () ;

fork(): A crazy example

Initial process

fork () ;
if (fork()) {

}
fork () ;

fork () ;

Child ® \We now have 6 processes

® Each calls fork()

m \We end up with 12
processes in total (11
were created)

v

Child

fork () ;

fork () ;

}
fork () ;

if (fork()) {

Child

fork () ;
if (fork()) {
fork () ;

}
fork () ;

fork () ;
if (fork()) {
fork () ;

}
fork () ;

fork () ;
if (fork()) {
fork () ;

}

fork () ;
fork () ;
if (fork()) {

fork () ;
¢ }

fork () ;

fork_exampleb.c

"
Filling up the Process Table

A fork bomb!

for (;;) |
fork () ;

® The above program will fill up the process table

® This is often called a “fork bomb”, and is typically a bug (I've seen it
happen more than once!)

®m The result is that the system becomes unusable and has to be hard-
rebooted

m Typically the OS will bound the number of processes a user can create
m One can change that limit: ulimit -u <count>
And one can check on what that limit is: ulimit -u

m But as a user, if you reach that limit, although you won’t take down the
system, you won’t be able to use it at all...

" J
fork() clones more than you think

fork() and buffered I/O

printf (“BUF”) ; // “BUF” is not flushed to the terminal
// but stored in a buffer (no newline character!)
fork () ; // Will clone that buffer!

printf (“FER\n”); // BOTH processes print “BUFFER” to the terminal!

® Terminal output is always bufferized: nothing gets printed to the terminal unless:
A newline character is output
The program explicitly calls £1ush ()
The program terminates

® Most language implementations do this to boost performance:
Copying data to a buffer is very fast
Displaying data on the terminal involves a system call, which has much higher overhead
® This is also done for writing to the disk (hard drive, SSD) since that has huge
overhead compared to just copying data to a buffer

This is why, if you're in the middle of writing data to disk and the machine abruptly
crashes some data is likely lost

It was in a buffer and was waiting to be “flushed” to the disk!

"
The exec* Syscall Family

Eman 3 exec: execl, execlp, execle, execv,
execvp, execvpe

B These are all variations of the “exec” syscall: replaces
the process image (i.e., the process’ address space) by
that of a specific program (stored on disk as an
executable)

® You give exec:

A path to an executable
A list of command-line arguments for that executable
A set of environment variables

® The call to exec never returns unless there is an error,

and your running program is now another running
program

" JE
Exec: Basic Example

Basic exec example

int main(int argc, char *argv[]) ({
char* const args[] = {"1s", "-1", "/tmp", NULL};
execv ("/bin/ls", args):;
printf ("This never gets executed...\n");

}

® The above program immediately “becomes”
the 1s program invoked with arguments

-1 /tmp
B exec_examplel.c

"
Exec: Combined with fork()

The quintessential fork-exec example

if (fork() == 0) {
// Child
char* const args[] = {"1ls", "-1", “/tmp", NULL};
execv ("bin/ls", args);
} else {
// Parent
for (;;);
}

® This is exactly how the Shell is able to run
commands!

B exec_example2.c

"
The Living Dead???

® | et’'s run the program on the previous slide on
Linux and look at the running processes...

PID TTY STAT TIME COMMAND
1 pts/0 Ssl 0:00 /bin/bash
29 pts/0 Rl 0:05 ./exec example4

32 pts/0 Z 0:00 _ [1ls] <defunct>

"
The Living Dead???

® | et’'s run the program on the previous slide on
Linux and look at the running processes...

PID TTY STAT TIME COMMAND
1 pts/0 Ssl 0:00 /bin/bash
29 pts/0 Rl 0:05 ./exec example4
32 pts/0 Z 0:00 _ [1ls] <defunct>

m Defunct (from the Latin defunctus) means dead
B The “Z" stands for Zombie

" A
Zombie Processes

® \When a child process dies, it remains as a zombie in the Terminated state

Recall that in the Process Lifecycle diagram, we had a Terminated state, which
some of you might have thought a bit useless?

m \Why??? The parent process may want to know about the status of a
child that has died in the past to see what happened to it
We’'ll see how to do that in a bit
®m The OS keeps zombies around for this purpose:
Zombies do not use hardware resources, but a slot in the Process Table!
The Process Table may fill up due to Zombies (and cause fork () to fail)
m A zombie lingers until
Its parent has acknowledged its death, or
Its parent dies
® The zombie is then “reaped” by the OS

m |t is very frowned upon to leave zombies around unnecessarily

®m And yes, this is all very dark/macabre...

" A
Process Termination

® To understand how to get rid of zombies, we need to
learn a bit more about process termination

m A process terminates itself with the exit () system
call, which takes as argument an integer called the
process exit|return|error value|code

® All resources of the process are then deallocated by
the OS (memory, open files, I/O buffers, ...)

But the PCB main remain in the Process Table as a zombie

® A process can also cause the termination of another
process

m This is done using signals and the kill () system
call...

"
Signals

m Signals are software interrupts, i.e., a signal is an asynchronous event
that a program must act upon in some way

® The OS defines a number of signals, each with a name and a number,
and some “default” meaning

See man 7 signal

® Signals happen for various reasons:

AC on the command-line sends a SIGINT ("Interrupt from keyboard”) signal to
the running program in the Shell

Invalid access to valid memory sends a SIGSEGV signal to the running
process (e.g., trying to write to read-only memory)

Tying to access an invalid address sends a SIGBUS signal to the running
process (e.g., trying to de-reference and non-allocated pointer)

A process can send a SIGKILL signal to another process to kill it

® Signals can be used for process synchronization (“hey! do

something!”), but we’ll see other more powerful/flexible synchronization
mechanisms

" J
Signal Handlers

m Each signal causes a default behavior in the process
e.g., the SIGINT signal causes the process to terminate

m The signal () syscall allows a process to specify what
to do when a signal is received
signal (SIGINT, SIG IGN) ; // Ignore SIGINT
signal (SIGINT, SIG DFL); // Default behavior
signal (SIGINT, my handler);// Custom behavior

m Let's look at signal example.c

B Some signals cannot be reprogrammed by the user:
SIGKILL, SIGSTOP, etc.

" JEE
Back to Zombies: wait () and waitpid()

m A parent can wait for a child’s completion
®m The wait () syscall — See wait_example1.c
Blocks until any child completes
Returns the pid of the completed child and the child’s exit code
®m The waitpid () syscall
Blocks until a specific child completes — See wait_example2.c
Can be made non-blocking — See wait_example3.c
m One way to avoid zombies: always call wait () or waitpid ()

® This seems easy enough, but sometimes really inconvenient

e.g., | am a Web server, and each time | get a request for some content |
spawn a process to handle it

The Web server really doesn’t need to “wait” for children processes to
terminate; it wants to “fork and forget”

The only goal of waiting would be to avoid zombies... how annoying!
® S0 how do we do this?

" J
The SIGCHLD signal

® \When a child exits, a SIGCHLD signal is sent to the parent
This is implemented by the kernel

® The typical convenient way to avoid zombies altogether:
The parent associates a handler to SIGCHLD
The handler calls wait ()

This way all children terminations are acknowledged

m See wait_exampled.c

® \Ne can now write zombie-free code:

If you need to wait for a child process to terminate, then great, call
wait ()

And create a handler that will asynchronously call wait () for those
children you don’t want to explicitly wait on
This way, wait () is called for all children

" JE
Orphans

® \What happens when a parent dies before its child?
® The child becomes an orphan

® | et’'s run orphan_example1.c

We see that the child keeps running even after its parent has
terminated!

® \Who becomes responsible for the orphan?
® | et’'s run orphan_example2.c in which the child prints its PPID

® The orphan has been adopted by the process with PID 1

On Linux this used to be the famous /sbin/init program (on
recent Linux, the adopteris /1ib/systemd/systemd)

On MacOS this is the /sbin/launchd process

® Having orphan processes could be a bug or a feature of your
code

"
Giving Up Parental Responsibilities

®m To create a child process that is completely separate from the parent: create
a grandchild and kill its parent (I know, it's horrible)

Bad grandpa

if ('fork()) { // Child
if ('fork()) { //Grandchild

exit(0); //Will be orphaned and then reaped by init
}
exit(0) //Will be reaped by bad grandpa

} else {

// Grandpa
wait (NULL); // Wait for the child to exit, so that it’s not zombified

}

// At this point, I am the Grandpa and I have no responsibilities,
// because my grandchild has been adopted by PID 1

® The process with PID 1 has adopted the grandchild
m |t is responsible and calls wait () is a handler, so the grandchild will not become a zombie

m Useful to start a process and logout
» The screen command does this and is a life-saver for the command-line user!

" A
Is all of this useful?

® |t's hard to see it is, until it saves your (developer) life

® | am currently working on an open-source project, in which
we’ve used fork/exec in various ways

m Use #1: We use the Google Test framework
Google Test does not perform each test in its own process

So if one test totally crashes, then the tests abort
® Yes, a test shouldn’t crash, but reality bites

Solution: simple, create a child process using fork ()
m Use #2: We need to start a daemon as a separate process,
and we need it to die if our main process dies

We use fork-exec to start the process
We do clever fork/exec/pipe magic to have that process die if we die

Let’s look at the code...

" A
What about Windows?

® The Windows documentation is clear: “One of the largest areas
of difference [in porting UNIX applications to Windows] is in the
process model. UNIX has fork; Win32 does not.”

® In Windows, the CreateProcess () call combines fork () and
exec ()

Separation of fork and exec allows many clever “tricks” in UNIX, which
are not possible in Windows

From The Evolution of the Unix Time-sharing System: “In PDP-7 fork()
required precisely 27 lines of assembly code” ... “a combined fork-exec
['a la Windows] would have been considerably more complicated”

® There is an equivalent to wait () : WaitForSingleObject ()
® There is an equivalentto kill () : TerminateProcess ()

® So, overall, Windows allows for the same capabilities as UNIX
(which shouldn’t be surprising), but with a different flavor

https://www.bell-labs.com/usr/dmr/www/hist.html

"
Main Takeaways

m The fork () system call

m The exec* () system call(s)

B The wait () and waitpid () system calls

® Orphans and Zombies

m Signals and how the SIGCHLD signal can be
used to avoid zombies

® \Windows having a fused fork-exec, which is
very unlike Linux

" A
Conclusion

® Processes are running programs

m OSes provide a rich set of syscalls to deal with
processes

B Make sure you understand all the examples

Better if you experiment yourself by compiling/
playing with them

m Fork-exec in UNIX / CreateProcess in Windows

B | et's look at Sample Homework Assignment #2
B Onward to Inter-Process-Communication...

