
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

The Process API

Disclaimer

 Most of the content of this set of lecture notes
is for UNIX-like OSes
 I won’t have “in UNIX-like OSes” on very slide

 There will be a bit of content about Windows
though

Process Creation
 Processes can create processes
 If process A creates process B, we say that “A is the parent of B”

and “B is a child of A”
 A process can have at most one parent and can have many children

 Each process has a PID (Process ID)
 An integer picked by the OS, always increasing
 If I just created a process and its PID is 456, then the next process that

will be created (by any one) will have PID 457
 Therefore, if I just created a process and it’s PID is 1000, I know that 1000

processes have been created since booting the machine (most of which
have died since, and assuming that the first one had PID 1)

 The PID of the parent of a process is called the PPID (Parent
Process ID)

 Two useful system calls: getpid() and getppid()
 Bottom line: Processes form a genealogy tree!

Looking at the Process Tree
 On Mac OSX: ps axlw

UID PID PPID CPU PRI NI VSZ RSS WCHAN STAT TT TIME COMMAND
[...]
501 2660 1 0 31 0 2458784 536 - Ss ?? 0:00.19 gpg-agent --daemon
501 2667 1 0 31 0 2467676 676 - S ?? 0:00.00 /opt/X11/libexec/launchd_startx /opt/X11/bin/startx -- /opt/X11/bin/Xquartz
501 2668 2667 0 31 0 2439512 1064 - S ?? 0:00.01 /bin/sh /opt/X11/bin/startx -- /opt/X11/bin/Xquartz
501 2733 2668 0 31 0 2452676 836 - S ?? 0:00.00 /opt/X11/bin/xinit /opt/X11/lib/X11/xinit/xinitrc -- /opt/X11/bin/Xquartz :
501 2734 2733 0 31 0 2479128 2704 - S ?? 0:00.01 /opt/X11/bin/Xquartz :0 -nolisten tcp -iglx -auth /Users/casanova/.serverau
501 2736 2734 0 63 0 2654600 46768 - S ?? 0:06.31 /Applications/Utilities/XQuartz.app/Contents/MacOS/X11.bin --listenonly
501 2743 1 0 31 0 2450592 532 - Ss ?? 0:00.19 gpg-agent --daemon
501 2836 2733 0 31 0 2550224 7108 - S ?? 0:00.07 /opt/X11/bin/quartz-wm
[...]

 On Linux: ps --forest -eaf
UID PID PPID C STIME TTY TIME CMD
[...]
daemon 1061 1 0 Aug04 ? 00:00:00 /usr/sbin/atd -f
root 1063 1 0 Aug04 ? 00:00:00 /usr/bin/lxcfs /var/lib/lxcfs/
syslog 1069 1 0 Aug04 ? 00:00:00 /usr/sbin/rsyslogd -n
root 1074 1 0 Aug04 ? 00:00:00 /usr/sbin/sshd -D
root 25393 1074 0 01:31 ? 00:00:00 _ sshd: ubuntu [priv]
ubuntu 25453 25393 0 01:31 ? 00:00:00 _ sshd: ubuntu@pts/0
ubuntu 25454 25453 0 01:31 pts/0 00:00:00 _ -bash
ubuntu 25509 25454 0 01:35 pts/0 00:00:00 _ ps --forest -eaf
root 1081 1 0 Aug04 ? 00:00:01 /usr/lib/snapd/snapd
root 1118 1 0 Aug04 ? 00:00:00 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --daemoni
[...]

The pstree program

 On ubuntu, the psmisc package comes with
a cool program called pstree

 Let’s go to my Linux box and play with it
 For instance: pstree -c -C age -G -T

Process Creation
 After creating a child the parent continues executing

 But at any point, event right away, it can wait for the child’s
completion

 The child can be:

 either a complete clone of the parent (i.e., have an exact copy of the
parent’s address space)

 or be an entirely new program
 The above is true across most modern OSes, more or less, but

comes with important variations
 Let’s look at process creation in the POSIX standard

 UNIX (mostly Linux these days)
 Darwin (MacOS + iOS + tvOS + watchOS)

 Let’s begin with the strange and powerful fork()

The fork() System Call
 fork() is a system call that creates a new process

 It’s really a thin wrapper over the clone() system call
 But fork() is kept as a system call for backward compatibility

reasons
 The child is an almost exact copy of the parent except for

 Its PID (two processed cannot have the same PID)
 Its PPID (its parent cannot also be its grand-parent)
 Its resource utilization (set to zero since it’s just started)

 After the call to fork() the parent continues executing and the
child begins executing

 The confusing part: fork() returns an integer value
 It returns 0 to the child
 If returns the child’s PID to the parent
 (In case of error, e.g., the Process Table is full, it returns -1)

fork(): Basic Example

 Simplified version of fork_example1.c
 Note: Errors cases should always be handled… but perhaps doing so for printf is

overkill :)
 Let’s run it…

The basic use of fork()
returnedValue = fork();
if (returnedValue < 0) {

// Manage the error
 printf("Error: Can’t fork!\n”);
} else if (returnedValue == 0) {

// Child code
 printf("I am the child and my pid is %ld\n”, getpid());
 while (1==1); // I just don’t want to terminate

} else {
 // Parent code
 print("I am the parent and the pid of my child is %ld\n”, returnedValue);
 while (1==1); // I just don’t want to terminate either
}

fork(): Second Example

 What does this code print? 12 or 15?

Second example of fork()
a = 12; // Global variable
pid_t pid = fork();
if (pid) {
 // The PARENT
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
 printf(”a = %d”, a); // Display the value of a
 while (1); // Loop forever
} else {
 // The CHILD
 a += 3;
 while (1); // Loop forever
}

fork(): Second Example

 What does this code print? 12 or 15?
 It prints 12 fork_example_2.c
 Let’s look at this in full detail…

Second example of fork()
a = 12; // Global variable
pid_t pid = fork();
if (pid) {
 // The PARENT
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
 printf(”a = %d”, a); // Display the value of a
 while (1); // Loop forever
} else {
 // The CHILD
 a += 3;
 while (1); // Loop forever
}

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: undefined

Stack

PID: 1001

Right after fork() and before the assignment to pid

identical

identical

identical

identical

PARENT CHILD

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

pid: 1001

Stack

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001

After the assignment to pid

identical

identical

identical

different

PARENT CHILD

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 12

Heap

pid: 0

Stack

PID: 1001
identical

Identical

identical

different

The parent calls sleep(),
goes to the waiting state,
which will let the child run

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

The child runs, and updates its values of a to 15

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

The child does an infinite loop, and at some point
will be interrupted so that another process gets to run

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

sleep() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

The parent calls printf() and prints 12
(its value of a)

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

printf() act. record

fork(): Second Example

a = 12;
pid_t pid = fork();
if (pid) {
 sleep(5);
 printf(”a = %d”, a);
 while (1);
} else {
 a += 3;
 while (1);
}

printf() returns and the parent
goes into its own infinite loop

Text

Data

a: 12

Heap

PID: 1000

Text

Data

a: 15

Heap

pid: 0

Stack

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001

Stack

Second Example’s Lesson
 Both processes coexist independently

 The code is executed independently in the Parent and in the
Child

 The data segment of the Parent has nothing to do with the
data segment of the Child

 The stack of the Parent has nothing to do with the data
segment of the Child

 The heap of the Parent has nothing to do with the data
segment of the Child

 This is by design, because the OS ensures that each process
has its own address space!

 Let’s look at a small variation of the example and see if
we can figure it out…

fork(): Second Example, Tweaked

 What does this code print?

Second example of fork(), tweaked

int a = 12;
retVal = fork();
if (retVal) {
 // The PARENT (or error)
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
} else {
 // The CHILD
 a += 3;
}

printf(”%d\n”, a); // Display the value of a

fork(): Second Example, Tweaked

 What does this code print?
 It prints 15\n12\n fork_example3.c

Second example of fork(), tweaked

int a = 12;
retVal = fork();
if (retVal) {
 // The PARENT (or error)
 sleep(5); // Ask the OS to put me in the WAITING state for 5s
} else {
 // The CHILD
 a += 3;
}

printf(“%d\n”, a); // Display the value of a

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

fork() and printing “Hello”
fork();
printf(“Hello”);
fork();
print(“Hello”);

fork() is sometimes confusing

 How many times does this program print Hello? (Show of
hands)

 Answer: 6 times fork_example4.cx

fork() and printing “Hello”
fork();
printf(“Hello”);
fork();
print(“Hello”);

 One process calls fork()
 Two processes print “Hello”
 Two processes call fork()
 Four processes print “Hello"

fork(): A crazy example

 How many processes does this C program create?
 Note the typical C coding style for condition in the

conditional (true if fork() returns non-zero)
 Let’s go through this together in the next slides…

 Clearly the above program is not useful
 But if you can figure it out, that means you understand

fork() 100%

fork() gone crazy
fork();
if (fork()) {
 fork();
}
fork();

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
} // else
fork();

Child
fork();
if (fork()) {
 fork();
} // else
fork();

Grand-child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-Child

fork(): A crazy example

fork();
if (fork()) {
 fork();
}
fork();

Initial process
fork();
if (fork()) {
 fork();
}
fork();

Child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-child

fork();
if (fork()) {
 fork();
}
fork();

Child
fork();
if (fork()) {
 fork();
}
fork();

Grand-Child

 We now have 6 processes
 Each calls fork()
 We end up with 12

processes in total (11
were created)

fork_example5.c

Filling up the Process Table

 The above program will fill up the process table
 This is often called a “fork bomb”, and is typically a bug (I’ve seen it

happen more than once!)
 The result is that the system becomes unusable and has to be hard-

rebooted
 Typically the OS will bound the number of processes a user can create
 One can change that limit: ulimit -u <count>

 And one can check on what that limit is: ulimit -u
 But as a user, if you reach that limit, although you won’t take down the

system, you won’t be able to use it at all…

A fork bomb!

for (;;) {
 fork();
}

fork() clones more than you think

 Terminal output is always bufferized: nothing gets printed to the terminal unless:
 A newline character is output
 The program explicitly calls flush()
 The program terminates

 Most language implementations do this to boost performance:
 Copying data to a buffer is very fast
 Displaying data on the terminal involves a system call, which has much higher overhead

 This is also done for writing to the disk (hard drive, SSD) since that has huge
overhead compared to just copying data to a buffer

 This is why, if you’re in the middle of writing data to disk and the machine abruptly
crashes some data is likely lost

 It was in a buffer and was waiting to be “flushed” to the disk!

fork() and buffered I/O

printf(“BUF”); // “BUF” is not flushed to the terminal
 // but stored in a buffer (no newline character!)
fork(); // Will clone that buffer!
printf(“FER\n”); // BOTH processes print “BUFFER” to the terminal!

The exec* Syscall Family
 man 3 exec: execl, execlp, execle, execv,
execvp, execvpe

 These are all variations of the “exec” syscall: replaces
the process image (i.e., the process’ address space) by
that of a specific program (stored on disk as an
executable)

 You give exec:
 A path to an executable
 A list of command-line arguments for that executable
 A set of environment variables

 The call to exec never returns unless there is an error,
and your running program is now another running
program

Exec: Basic Example

 The above program immediately “becomes”
the ls program invoked with arguments
-l /tmp

 exec_example1.c

Basic exec example

int main(int argc, char *argv[]) {
 char* const args[] = {"ls", "-l", "/tmp", NULL};
 execv("/bin/ls", args);
 printf("This never gets executed...\n");
}

Exec: Combined with fork()

 This is exactly how the Shell is able to run
commands!

 exec_example2.c

The quintessential fork-exec example

if (fork() == 0) {
// Child

 char* const args[] = {"ls", "-l", “/tmp", NULL};
 execv("bin/ls", args);
} else {
 // Parent
 for (;;);
}

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND
 1 pts/0 Ssl 0:00 /bin/bash
 29 pts/0 Rl 0:05 ./exec_example4
 32 pts/0 Z 0:00 _ [ls] <defunct>

The Living Dead???
 Let’s run the program on the previous slide on

Linux and look at the running processes…

 PID TTY STAT TIME COMMAND
 1 pts/0 Ssl 0:00 /bin/bash
 29 pts/0 Rl 0:05 ./exec_example4
 32 pts/0 Z 0:00 _ [ls] <defunct>

 Defunct (from the Latin defunctus) means dead
 The “Z” stands for Zombie

Zombie Processes
 When a child process dies, it remains as a zombie in the Terminated state

 Recall that in the Process Lifecycle diagram, we had a Terminated state, which
some of you might have thought a bit useless?

 Why??? The parent process may want to know about the status of a
child that has died in the past to see what happened to it

 We’ll see how to do that in a bit
 The OS keeps zombies around for this purpose:

 Zombies do not use hardware resources, but a slot in the Process Table!
 The Process Table may fill up due to Zombies (and cause fork() to fail)

 A zombie lingers until

 Its parent has acknowledged its death, or
 Its parent dies

 The zombie is then “reaped” by the OS
 It is very frowned upon to leave zombies around unnecessarily

 And yes, this is all very dark/macabre…

Process Termination
 To understand how to get rid of zombies, we need to

learn a bit more about process termination
 A process terminates itself with the exit() system

call, which takes as argument an integer called the
process exit|return|error value|code

 All resources of the process are then deallocated by
the OS (memory, open files, I/O buffers, …)

 But the PCB main remain in the Process Table as a zombie

 A process can also cause the termination of another
process

 This is done using signals and the kill() system
call...

Signals
 Signals are software interrupts, i.e., a signal is an asynchronous event

that a program must act upon in some way

 The OS defines a number of signals, each with a name and a number,
and some “default” meaning

 See man 7 signal
 Signals happen for various reasons:

 ^C on the command-line sends a SIGINT (”Interrupt from keyboard”) signal to
the running program in the Shell

 Invalid access to valid memory sends a SIGSEGV signal to the running
process (e.g., trying to write to read-only memory)

 Tying to access an invalid address sends a SIGBUS signal to the running
process (e.g., trying to de-reference and non-allocated pointer)

 A process can send a SIGKILL signal to another process to kill it
 Signals can be used for process synchronization (“hey! do

something!”), but we’ll see other more powerful/flexible synchronization
mechanisms

Signal Handlers
 Each signal causes a default behavior in the process

 e.g., the SIGINT signal causes the process to terminate
 The signal() syscall allows a process to specify what

to do when a signal is received
 signal(SIGINT, SIG_IGN); // Ignore SIGINT
 signal(SIGINT, SIG_DFL); // Default behavior
 signal(SIGINT, my_handler);// Custom behavior

 Let’s look at signal_example.c

 Some signals cannot be reprogrammed by the user:
SIGKILL, SIGSTOP, etc.

Back to Zombies: wait() and waitpid()

 A parent can wait for a child’s completion
 The wait() syscall – See wait_example1.c

 Blocks until any child completes
 Returns the pid of the completed child and the child’s exit code

 The waitpid() syscall
 Blocks until a specific child completes — See wait_example2.c
 Can be made non-blocking — See wait_example3.c

 One way to avoid zombies: always call wait() or waitpid()
 This seems easy enough, but sometimes really inconvenient

 e.g., I am a Web server, and each time I get a request for some content I
spawn a process to handle it

 The Web server really doesn’t need to “wait” for children processes to
terminate; it wants to “fork and forget”

 The only goal of waiting would be to avoid zombies... how annoying!
 So how do we do this?

The SIGCHLD signal

 When a child exits, a SIGCHLD signal is sent to the parent
 This is implemented by the kernel

 The typical convenient way to avoid zombies altogether:

 The parent associates a handler to SIGCHLD
 The handler calls wait()
 This way all children terminations are acknowledged

 See wait_example4.c

 We can now write zombie-free code:

 If you need to wait for a child process to terminate, then great, call
wait()

 And create a handler that will asynchronously call wait() for those
children you don’t want to explicitly wait on

 This way, wait() is called for all children

Orphans
 What happens when a parent dies before its child?
 The child becomes an orphan
 Let’s run orphan_example1.c

 We see that the child keeps running even after its parent has
terminated!

 Who becomes responsible for the orphan?
 Let’s run orphan_example2.c in which the child prints its PPID
 The orphan has been adopted by the process with PID 1

 On Linux this used to be the famous /sbin/init program (on
recent Linux, the adopter is /lib/systemd/systemd)

 On MacOS this is the /sbin/launchd process
 Having orphan processes could be a bug or a feature of your

code

Giving Up Parental Responsibilities
 To create a child process that is completely separate from the parent: create

a grandchild and kill its parent (I know, it’s horrible)

Bad grandpa
if (!fork()) { // Child
 if (!fork()) { //Grandchild
 ...
 exit(0); //Will be orphaned and then reaped by init
 }
 exit(0) //Will be reaped by bad grandpa
} else {
 // Grandpa
 wait(NULL); // Wait for the child to exit, so that it’s not zombified
}
// At this point, I am the Grandpa and I have no responsibilities,
// because my grandchild has been adopted by PID 1

 The process with PID 1 has adopted the grandchild
 It is responsible and calls wait() is a handler, so the grandchild will not become a zombie
 Useful to start a process and logout

 The screen command does this and is a life-saver for the command-line user!

Is all of this useful?
 It’s hard to see it is, until it saves your (developer) life
 I am currently working on an open-source project, in which

we’ve used fork/exec in various ways
 Use #1: We use the Google Test framework

 Google Test does not perform each test in its own process
 So if one test totally crashes, then the tests abort

 Yes, a test shouldn’t crash, but reality bites

 Solution: simple, create a child process using fork()
 Use #2: We need to start a daemon as a separate process,

and we need it to die if our main process dies

 We use fork-exec to start the process
 We do clever fork/exec/pipe magic to have that process die if we die
 Let’s look at the code…

What about Windows?
 The Windows documentation is clear: “One of the largest areas

of difference [in porting UNIX applications to Windows] is in the
process model. UNIX has fork; Win32 does not.”

 In Windows, the CreateProcess() call combines fork() and
exec()

 Separation of fork and exec allows many clever “tricks” in UNIX, which
are not possible in Windows

 From The Evolution of the Unix Time-sharing System: “In PDP-7 fork()
required precisely 27 lines of assembly code” ... “a combined fork-exec
[`a la Windows] would have been considerably more complicated”

 There is an equivalent to wait(): WaitForSingleObject()
 There is an equivalent to kill(): TerminateProcess()

 So, overall, Windows allows for the same capabilities as UNIX
(which shouldn’t be surprising), but with a different flavor

https://www.bell-labs.com/usr/dmr/www/hist.html

Main Takeaways

 The fork() system call
 The exec*() system call(s)
 The wait() and waitpid() system calls
 Orphans and Zombies
 Signals and how the SIGCHLD signal can be

used to avoid zombies
 Windows having a fused fork-exec, which is

very unlike Linux

Conclusion

 Processes are running programs
 OSes provide a rich set of syscalls to deal with

processes

 Make sure you understand all the examples
 Better if you experiment yourself by compiling/

playing with them
 Fork-exec in UNIX / CreateProcess in Windows

 Let’s look at Sample Homework Assignment #2
 Onward to Inter-Process-Communication…

