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Disclaimer

 Most of the content of this set of lecture notes 
is for UNIX-like OSes 
 I won’t have “in UNIX-like OSes” on very slide 

 There will be a bit of content about Windows 
though



Process Creation
 Processes can create processes 
 If process A creates process B, we say that “A is the parent of B” 

and “B is a child of A” 
 A process can have at most one parent and can have many children 

 Each process has a PID (Process ID) 
 An integer picked by the OS, always increasing 
 If I just created a process and its PID is 456, then the next process that 

will be created (by any one) will have PID 457 
 Therefore, if I just created a process and it’s PID is 1000, I know that 1000 

processes have been created since booting the machine (most of which 
have died since, and assuming that the first one had PID 1) 

 The PID of the parent of a process is called the PPID (Parent 
Process ID) 

 Two useful system calls: getpid() and getppid() 
 Bottom line: Processes form a genealogy tree!



Looking at the Process Tree
 On Mac OSX: ps axlw

UID   PID  PPID CPU PRI NI      VSZ    RSS WCHAN  STAT   TT       TIME COMMAND 
[...] 
501  2660     1   0  31  0  2458784    536 -      Ss     ??    0:00.19 gpg-agent --daemon 
501  2667     1   0  31  0  2467676    676 -      S      ??    0:00.00 /opt/X11/libexec/launchd_startx /opt/X11/bin/startx -- /opt/X11/bin/Xquartz 
501  2668  2667   0  31  0  2439512   1064 -      S      ??    0:00.01 /bin/sh /opt/X11/bin/startx -- /opt/X11/bin/Xquartz 
501  2733  2668   0  31  0  2452676    836 -      S      ??    0:00.00 /opt/X11/bin/xinit /opt/X11/lib/X11/xinit/xinitrc -- /opt/X11/bin/Xquartz : 
501  2734  2733   0  31  0  2479128   2704 -      S      ??    0:00.01 /opt/X11/bin/Xquartz :0 -nolisten tcp -iglx -auth /Users/casanova/.serverau 
501  2736  2734   0  63  0  2654600  46768 -      S      ??    0:06.31 /Applications/Utilities/XQuartz.app/Contents/MacOS/X11.bin --listenonly 
501  2743     1   0  31  0  2450592    532 -      Ss     ??    0:00.19 gpg-agent --daemon 
501  2836  2733   0  31  0  2550224   7108 -      S      ??    0:00.07 /opt/X11/bin/quartz-wm 
[...] 

 On Linux: ps --forest -eaf
UID        PID  PPID  C STIME TTY      TIME      CMD 
[...] 
daemon    1061     1  0 Aug04 ?        00:00:00 /usr/sbin/atd -f 
root      1063     1  0 Aug04 ?        00:00:00 /usr/bin/lxcfs /var/lib/lxcfs/ 
syslog    1069     1  0 Aug04 ?        00:00:00 /usr/sbin/rsyslogd -n 
root      1074     1  0 Aug04 ?        00:00:00 /usr/sbin/sshd -D 
root     25393  1074  0 01:31 ?        00:00:00  \_ sshd: ubuntu [priv] 
ubuntu   25453 25393  0 01:31 ?        00:00:00      \_ sshd: ubuntu@pts/0 
ubuntu   25454 25453  0 01:31 pts/0    00:00:00          \_ -bash 
ubuntu   25509 25454  0 01:35 pts/0    00:00:00              \_ ps --forest -eaf 
root      1081     1  0 Aug04 ?        00:00:01 /usr/lib/snapd/snapd 
root      1118     1  0 Aug04 ?        00:00:00 /sbin/mdadm --monitor --pid-file /run/mdadm/monitor.pid --daemoni 
[...] 



The pstree program

 On ubuntu, the psmisc package comes with 
a cool program called pstree 

 Let’s go to my Linux box and play with it 
 For instance: pstree -c -C age -G -T



Process Creation
 After creating a child the parent continues executing  

 But at any point, event right away, it can wait for the child’s 
completion 

 The child can be:  

 either a complete clone of the parent (i.e., have an exact copy of the 
parent’s address space) 

 or be an entirely new program  
 The above is true across most modern OSes, more or less, but 

comes with important variations 
 Let’s look at process creation in the POSIX standard  

 UNIX (mostly Linux these days) 
 Darwin (MacOS + iOS + tvOS + watchOS)  

 Let’s begin with the strange and powerful fork() 



The fork() System Call
 fork() is a system call that creates a new process 

 It’s really a thin wrapper over the clone() system call  
 But fork() is kept as a system call for backward compatibility 

reasons 
 The child is an almost exact copy of the parent except for 

 Its PID (two processed cannot have the same PID) 
 Its PPID (its parent cannot also be its grand-parent) 
 Its resource utilization (set to zero since it’s just started) 

 After the call to fork() the parent continues executing and the 
child begins executing 

 The confusing part: fork() returns an integer value 
 It returns 0 to the child 
 If returns the child’s PID to the parent 
 (In case of error, e.g., the Process Table is full, it returns -1)



fork(): Basic Example

 Simplified version of fork_example1.c 
 Note: Errors cases should always be handled… but perhaps doing so for printf is 

overkill :) 
 Let’s run it…

The basic use of fork()
returnedValue = fork();  
if (returnedValue < 0) {  

// Manage the error  
   printf("Error: Can’t fork!\n”); 
} else if (returnedValue == 0) { 

// Child code 
 printf("I am the child and my pid is %ld\n”, getpid());  
 while (1==1); // I just don’t want to terminate  

} else {  
  // Parent code  
  print("I am the parent and the pid of my child is %ld\n”, returnedValue);  
  while (1==1); // I just don’t want to terminate either  
}



fork(): Second Example

 What does this code print?    12   or 15?

Second example of fork()
a = 12; // Global variable 
pid_t pid = fork();  
if (pid) {  
   // The PARENT 
   sleep(5); // Ask the OS to put me in the WAITING state for 5s 
   printf(”a = %d”, a); // Display the value of a 
   while (1); // Loop forever  
} else { 
   // The CHILD 
   a += 3; 
   while (1); // Loop forever  
}



fork(): Second Example

 What does this code print?    12   or 15? 
 It prints 12     fork_example_2.c 
 Let’s look at this in full detail… 

Second example of fork()
a = 12; // Global variable 
pid_t pid = fork();  
if (pid) {  
   // The PARENT 
   sleep(5); // Ask the OS to put me in the WAITING state for 5s 
   printf(”a = %d”, a); // Display the value of a 
   while (1); // Loop forever  
} else { 
   // The CHILD 
   a += 3; 
   while (1); // Loop forever  
}  



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

Text 

Data 

a:         12 

Heap 

pid: undefined 

Stack 

PID: 1000



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

Text 

Data 

a:         12 

Heap 

pid: undefined 

Stack 

PID: 1000

Text 

Data 

a:         12 

Heap 

pid: undefined 

Stack 

PID: 1001

Right after fork() and before the assignment to pid

identical

identical

identical

identical

PARENT CHILD



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

Text 

Data 

a:         12 

Heap 

pid: 1001 

Stack 

PID: 1000

Text 

Data 

a:         12 

Heap 

pid: 0 

Stack 

PID: 1001

After the assignment to pid

identical

identical

identical

different

PARENT CHILD



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

Text 

Data 

a:         12 

Heap 

PID: 1000

Text 

Data 

a:         12 

Heap 

pid: 0 

Stack

PID: 1001
identical

Identical

identical

different

The parent calls sleep(),  
goes to the waiting state,  
which will let the child run

PARENT CHILD

pid: 1001 

Stack

sleep() act. record 



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

Text 

Data 

a:         12 

Heap 

PID: 1000

Text 

Data 

a:         15 

Heap 

pid: 0 

Stack 

PID: 1001
identical

different

identical

different

Parent

The child runs, and updates its values of a to 15

PARENT CHILD

pid: 1001 

Stack

sleep() act. record 



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

The child does an infinite loop, and at some point 
will be interrupted so that another process gets to run

Text 

Data 

a:         12 

Heap 

PID: 1000

Text 

Data 

a:         15 

Heap 

pid: 0 

Stack 

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001 

Stack

sleep() act. record 



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

The parent calls printf() and prints 12 
(its value of a)

Text 

Data 

a:         12 

Heap 

PID: 1000

Text 

Data 

a:         15 

Heap 

pid: 0 

Stack 

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001 

Stack

printf() act. record 



fork(): Second Example

a = 12;  
pid_t pid = fork();  
if (pid) {  
   sleep(5); 
   printf(”a = %d”, a); 
   while (1); 
} else { 
   a += 3; 
   while (1); 
}  

printf() returns and the parent  
goes into its own infinite loop

Text 

Data 

a:         12 

Heap 

PID: 1000

Text 

Data 

a:         15 

Heap 

pid: 0 

Stack 

PID: 1001
identical

different

identical

different

Parent

PARENT CHILD

pid: 1001 

Stack



Second Example’s Lesson
 Both processes coexist independently 

 The code is executed independently in the Parent and in the 
Child 

 The data segment of the Parent has nothing to do with the 
data segment of the Child 

 The stack of the Parent has nothing to do with the data 
segment of the Child 

 The heap of the Parent has nothing to do with the data 
segment of the Child 

 This is by design, because the OS ensures that each process 
has its own address space! 

 Let’s look at a small variation of the example and see if 
we can figure it out…



fork(): Second Example, Tweaked

 What does this code print?

Second example of fork(), tweaked

int a = 12;  
retVal = fork();  
if (retVal) {  
   // The PARENT (or error) 
   sleep(5); // Ask the OS to put me in the WAITING state for 5s 
} else { 
   // The CHILD 
   a += 3; 
}  

printf(”%d\n”, a); // Display the value of a 



fork(): Second Example, Tweaked

 What does this code print? 
 It prints 15\n12\n         fork_example3.c

Second example of fork(), tweaked

int a = 12;  
retVal = fork();  
if (retVal) {  
   // The PARENT (or error) 
   sleep(5); // Ask the OS to put me in the WAITING state for 5s 
} else { 
   // The CHILD 
   a += 3; 
}  

printf(“%d\n”, a); // Display the value of a 



fork() is sometimes confusing

 How many times does this program print Hello? (Show of 
hands)

fork() and printing “Hello”
fork(); 
printf(“Hello”); 
fork(); 
print(“Hello”);



fork() is sometimes confusing

 How many times does this program print Hello? (Show of 
hands) 

 Answer: 6 times    fork_example4.cx

fork() and printing “Hello”
fork(); 
printf(“Hello”); 
fork(); 
print(“Hello”);

 One process calls fork() 
 Two processes print “Hello” 
 Two processes call fork() 
 Four processes print “Hello"



fork(): A crazy example

 How many processes does this C program create? 
 Note the typical C coding style for condition in the 

conditional (true if fork() returns non-zero) 
 Let’s go through this together in the next slides… 

 Clearly the above program is not useful 
 But if you can figure it out, that means you understand 

fork() 100%

fork() gone crazy
fork(); 
if (fork()) { 
  fork(); 
} 
fork();



fork(): A crazy example

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Initial process



fork(): A crazy example

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Initial process
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child



fork(): A crazy example

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Initial process
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Grand-child



fork(): A crazy example

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Initial process
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child

fork(); 
if (fork()) { 
  fork(); 
} // else 
fork();

Child
fork(); 
if (fork()) { 
  fork(); 
} // else 
fork();

Grand-child

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Grand-Child



fork(): A crazy example

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Initial process
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Grand-child

fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Child
fork(); 
if (fork()) { 
  fork(); 
} 
fork();

Grand-Child

 We now have 6 processes 
 Each calls fork() 
 We end up with 12 

processes in total (11 
were created)

fork_example5.c



Filling up the Process Table

 The above program will fill up the process table 
 This is often called a “fork bomb”, and is typically a bug (I’ve seen it 

happen more than once!) 
 The result is that the system becomes unusable and has to be hard-

rebooted 
 Typically the OS will bound the number of processes a user can create 
 One can change that limit: ulimit -u <count> 

 And one can check on what that limit is: ulimit -u 
 But as a user, if you reach that limit, although you won’t take down the 

system, you won’t be able to use it at all…

A fork bomb!

for (;;) { 
  fork(); 
}



fork() clones more than you think

 Terminal output is always bufferized: nothing gets printed to the terminal unless:  
 A newline character is output 
 The program explicitly calls flush() 
 The program terminates 

 Most language implementations do this to boost performance: 
 Copying data to a buffer is very fast 
 Displaying data on the terminal involves a system call, which has much higher overhead 

 This is also done for writing to the disk (hard drive, SSD) since that has huge 
overhead compared to just copying data to a buffer 

 This is why, if you’re in the middle of writing data to disk and the machine abruptly 
crashes some data is likely lost 

 It was in a buffer and was waiting to be “flushed” to the disk!

fork() and buffered I/O

printf(“BUF”);    // “BUF” is not flushed to the terminal  
                  // but stored in a buffer (no newline character!) 
fork();           // Will clone that buffer! 
printf(“FER\n”);  // BOTH processes print “BUFFER” to the terminal!



The exec* Syscall Family
 man 3 exec: execl, execlp, execle, execv, 
execvp, execvpe 

 These are all variations of the “exec” syscall: replaces 
the process image (i.e., the process’ address space) by 
that of a specific program (stored on disk as an 
executable) 

 You give exec: 
 A path to an executable 
 A list of command-line arguments for that executable 
 A set of environment variables 

 The call to exec never returns unless there is an error, 
and your running program is now another running 
program



Exec: Basic Example

 The above program immediately “becomes” 
the ls program invoked with arguments 
-l /tmp 

 exec_example1.c

Basic exec example

int main(int argc, char *argv[]) { 
  char* const args[] = {"ls", "-l", "/tmp", NULL}; 
  execv("/bin/ls", args); 
  printf("This never gets executed...\n"); 
}  



Exec: Combined with fork()

 This is exactly how the Shell is able to run 
commands! 

 exec_example2.c

The quintessential fork-exec example

if (fork() == 0) { 
// Child  

   char* const args[] = {"ls", "-l", “/tmp", NULL}; 
   execv("bin/ls", args); 
} else { 
   // Parent  
   for (;;);  
}  



The Living Dead???
 Let’s run the program on the previous slide on 

Linux  and look at the running processes…

  PID TTY      STAT   TIME COMMAND 
    1 pts/0    Ssl    0:00 /bin/bash 
   29 pts/0    Rl     0:05 ./exec_example4 
   32 pts/0    Z      0:00  \_ [ls] <defunct>



The Living Dead???
 Let’s run the program on the previous slide on 

Linux  and look at the running processes…

  PID TTY      STAT   TIME COMMAND 
    1 pts/0    Ssl    0:00 /bin/bash 
   29 pts/0    Rl     0:05 ./exec_example4 
   32 pts/0    Z      0:00  \_ [ls] <defunct>

 Defunct (from the Latin defunctus) means dead 
 The “Z” stands for Zombie



Zombie Processes
 When a child process dies, it remains as a zombie in the Terminated state  

 Recall that in the Process Lifecycle diagram, we had a Terminated state, which 
some of you might have thought a bit useless?  

 Why???  The parent process may want to know about the status of a 
child that has died in the past to see what happened to it 

 We’ll see how to do that in a bit  
 The OS keeps zombies around for this purpose:  

 Zombies do not use hardware resources, but a slot in the Process Table! 
 The Process Table may fill up due to Zombies (and cause fork() to fail)  

 A zombie lingers until  

 Its parent has acknowledged its death, or 
 Its parent dies  

 The zombie is then “reaped” by the OS 
 It is very frowned upon to leave zombies around unnecessarily 

 And yes, this is all very dark/macabre… 



Process Termination
 To understand how to get rid of zombies, we need to 

learn a bit more about process termination 
 A process terminates itself with the exit() system 

call, which takes as argument an integer called the 
process exit|return|error  value|code  

 All resources of the process are then deallocated by 
the OS (memory, open files, I/O buffers, …) 

 But the PCB main remain in the Process Table as a zombie 

 A process can also cause the termination of another 
process 

 This is done using signals and the kill() system 
call... 



Signals
 Signals are software interrupts, i.e., a signal is an asynchronous event 

that a program must act upon in some way  

 The OS defines a number of signals, each with a name and a number, 
and some “default” meaning 

 See man 7 signal 
 Signals happen for various reasons: 

  ^C on the command-line sends a SIGINT (”Interrupt from keyboard”) signal to 
the running program in the Shell 

 Invalid access to valid memory sends a SIGSEGV signal to the running 
process (e.g., trying to write to read-only memory) 

 Tying to access an invalid address sends a SIGBUS signal to the running 
process (e.g., trying to de-reference and non-allocated pointer) 

 A process can send a SIGKILL signal to another process to kill it  
 Signals can be used for process synchronization (“hey! do 

something!”), but we’ll see other more powerful/flexible synchronization 
mechanisms



Signal Handlers
 Each signal causes a default behavior in the process 

 e.g., the SIGINT signal causes the process to terminate 
 The signal() syscall allows a process to specify what 

to do when a signal is received 
 signal(SIGINT, SIG_IGN);   // Ignore SIGINT 
 signal(SIGINT, SIG_DFL);   // Default behavior 
 signal(SIGINT, my_handler);// Custom behavior 

 Let’s look at signal_example.c 

 Some signals cannot be reprogrammed by the user: 
SIGKILL, SIGSTOP, etc.



Back to Zombies: wait() and waitpid()

 A parent can wait for a child’s completion 
 The wait() syscall – See wait_example1.c  

 Blocks until any child completes 
 Returns the pid of the completed child and the child’s exit code 

 The waitpid() syscall 
 Blocks until a specific child completes — See wait_example2.c 
 Can be made non-blocking — See wait_example3.c 

 One way to avoid zombies: always call wait() or waitpid() 
 This seems easy enough, but sometimes really inconvenient  

 e.g., I am a Web server, and each time I get a request for some content I 
spawn a process to handle it 

 The Web server really doesn’t need to “wait” for children processes to 
terminate; it wants to “fork and forget” 

 The only goal of waiting would be to avoid zombies... how annoying! 
 So how do we do this? 



The SIGCHLD signal

 When a child exits, a SIGCHLD signal is sent to the parent 
 This is implemented by the kernel 

 The typical convenient way to avoid zombies altogether:  

 The parent associates a handler to SIGCHLD 
 The handler calls wait() 
 This way all children terminations are acknowledged  

 See wait_example4.c  

 We can now write zombie-free code:  

 If you need to wait for a child process to terminate, then great, call  
wait() 

 And create a handler that will asynchronously call wait() for those 
children you don’t want to explicitly wait on 

 This way, wait() is called for all children 



Orphans
 What happens when a parent dies before its child? 
 The child becomes an orphan 
 Let’s run orphan_example1.c  

 We see that the child keeps running even after its parent has 
terminated!  

 Who becomes responsible for the orphan? 
 Let’s run orphan_example2.c in which the child prints its PPID 
 The orphan has been adopted by the process with PID 1 

 On Linux this used to be the famous /sbin/init program (on 
recent Linux, the adopter is /lib/systemd/systemd) 

 On MacOS this is the /sbin/launchd  process 
 Having orphan processes could be a bug or a feature of your 

code



Giving Up Parental Responsibilities
 To create a child process that is completely separate from the parent: create 

a grandchild and kill its parent (I know, it’s horrible)

Bad grandpa
if (!fork()) { // Child  
  if (!fork()) { //Grandchild  
    ...  
    exit(0); //Will be orphaned and then reaped by init  
  }  
  exit(0) //Will be reaped by bad grandpa  
} else {  
  // Grandpa  
  wait(NULL); // Wait for the child to exit, so that it’s not zombified 
}  
// At this point, I am the Grandpa and I have no responsibilities,  
// because my grandchild has been adopted by PID 1 

 The process with PID 1 has adopted the grandchild 
 It is responsible and calls wait() is a handler, so the grandchild will not become a zombie  
 Useful to start a process and logout 

 The screen command does this and is a life-saver for the command-line user!



Is all of this useful?
 It’s hard to see it is, until it saves your (developer) life 
 I am currently working on an open-source project, in which 

we’ve used fork/exec in various ways 
 Use #1: We use the Google Test framework  

 Google Test does not perform each test in its own process 
 So if one test totally crashes, then the tests abort  

 Yes, a test shouldn’t crash, but reality bites  

 Solution: simple, create a child process using fork()  
 Use #2: We need to start a daemon as a separate process, 

and we need it to die if our main process dies  

 We use fork-exec to start the process 
 We do clever fork/exec/pipe magic to have that process die if we die  
 Let’s look at the code…



What about Windows?
 The Windows documentation is clear: “One of the largest areas 

of difference [in porting UNIX applications to Windows] is in the 
process model. UNIX has fork; Win32 does not.” 

 In Windows, the CreateProcess() call combines fork() and 
exec()  

 Separation of fork and exec allows many clever “tricks” in UNIX, which 
are not possible in Windows 

 From The Evolution of the Unix Time-sharing System: “In PDP-7 fork() 
required precisely 27 lines of assembly code” ... “a combined fork-exec 
[`a la Windows] would have been considerably more complicated”  

 There is an equivalent to wait(): WaitForSingleObject()  
 There is an equivalent to kill(): TerminateProcess()  

 So, overall, Windows allows for the same capabilities as UNIX 
(which shouldn’t be surprising), but with a different flavor

https://www.bell-labs.com/usr/dmr/www/hist.html


Main Takeaways

 The fork() system call 
 The exec*() system call(s) 
 The wait() and waitpid() system calls 
 Orphans and Zombies 
 Signals and how the SIGCHLD signal can be 

used to avoid zombies 
 Windows having a fused fork-exec, which is 

very unlike Linux



Conclusion

 Processes are running programs 
 OSes provide a rich set of syscalls to deal with 

processes  

 Make sure you understand all the examples 
 Better if you experiment yourself by compiling/

playing with them  
 Fork-exec in UNIX / CreateProcess in Windows 

 Let’s look at Sample Homework Assignment #2 
 Onward to Inter-Process-Communication…


