
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Inter-Process 
Communications 
(IPC)



Communicating Processes?
 So far we have seen independent processes  

 Each process runs code independently 
 Parents are aware of their children, and children are aware of their 

parents, but they do not interact  
 Besides the ability to wait for a child to terminate and to kill another process 

 But often we need processes to cooperate 
 To share information (e.g., access to common data)  
 To speed up computation (e.g., to use multiple cores concurrently) 
 Because it’s convenient (e.g., some applications are naturally 

implemented as sets of interacting processes)  
 But, processes cannot see each other’s address spaces! 
 In general, the means of communication between cooperating 

processes is called Inter-Process Communication (IPC) 



Communication Models
 Process A needs to communicate with Process B
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Message Passing
 Option #1: Message Passing
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Message Passing
 Option #2: Shared Memory
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Pros and Cons
 Message Passing 

 😀  Simple to implement in the 
kernel 

 😡  Limited by kernel size: 
small messages 

 😡  One syscall per operation 
(send / receive): high 
overhead 

 😡  Cumbersome for users as 
code can be hard to read with 
sends/receives everywhere

 Shared memory 
 😡  Not as easy to implement in 

the kernel (stay tuned…) 
 😀  Large messages allowed 
 😀  Low overhead: a few 

syscalls to set it up, and then no 
kernel involvement thereafter 

 😀  Convenient for users (after 
setup, just normal memory 
reads/writes) 

 😡  Violates the principle of 
memory protection between 
processes, which can lead to 
horrible bugs



Message Passing 
 All OSes provide several IPC abstractions and API 

 And so do many user-level libraries 
 In your careers you will have to define abstraction and APIs for all kinds 

of purposes 
 Abstraction and API design choices often seem innocuous but can have 

huge impact 
 Good choices can lead to awesome success, bad choices can lead to abject 

failures/rewrites 
 Making good Abstraction/API choices is hard: 

 Sufficiently expressive (can users do anything they might want to do with it?) 
 Sufficiently convenient (can users do what they want easily?) 
 Not too hard for you to implement/maintain/evolve 

 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking  

 You wouldn’t believe the number of hours spent daily on minuscule API details in 
the software industry 

 Because you haven’t yet experienced the above “snowball effect” of your poorly 
designed Abstractions/API  





POSIX Message Queue
 A standard message passing scheme supported by 

UNIX-like systems are POSIX Message Queues 
 There is a message queue “object” that has a name, a 

maximum message size, and a maximum number of messages 
in the queue 

 Both processes create their own queue object using the same 
name (meaning they both have a reference to the same queue) 

 The queue object supports send/receive operations 
 This Abstraction/API makes several design choices 

 One option called “direct communication” would have been “I 
am process A and I send a message to process B”,  which 
requires that process B is created/known when A does the send 

 Instead, this API uses “indirect communication” by using a 
message queue object, which is more flexible 

 Just for kicks let’s look at a hello world example…



POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c  
 Conceptually this is just like network communication, but within a machine 
 There are MANY abstractions/implementations of message passing for all kinds of 

scenarios/purposes, each with slight differences

pid_t pid = fork(); 

if (pid) { // parent 

  mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL); 
  char msg[MSG_SIZE] = “Hello!"; 
  mq_send(queue, msg, MSG_SIZE, 1); 
  waitpid(pid, NULL, 0); 
  mq_close(queue); 
  mq_unlink(MQ_NAME); 

} else { // child 

  mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL); 
  char msg[MSG_SIZE]; 
  mq_receive(queue, msg, MSG_SIZE, NULL); 
  mq_close(queue); 
  mq_unlink(MQ_NAME); 

}



POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared 

Memory) API 
 The abstraction is that of a “shared memory segment” with a 

simple API 
 One process can create a shared memory segment 
 Multiple processes can then attach it to their address spaces 

 Bye bye memory protection 
 It’s the processes’ (i.e., the developer’s) responsibility to make sure 

that processes are not stepping on each other’s toes 
 Once the setup is done, the OS is not involved 

 What happens in shared memory stays in shared memory 
 At some point, the shared memory segment is freed by the 

requester 
 Let’s look at a Hello World example…



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W); 

pid = fork(); 
if (pid) { // parent 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  sprintf(shared_memory, "hello"); 
  waitpid(pid, NULL, 0); 
  shmdt(shared_memory); 
  shmctl(segment_id, IPC_RMID, NULL); 
   
} else { // child 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory); 
  shmdt(shared_memory); 

}



POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c 

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W); 

pid = fork(); 
if (pid) { // parent 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  sprintf(shared_memory, "hello"); 
  waitpid(pid, NULL, 0); 
  shmdt(shared_memory); 
  shmctl(segment_id, IPC_RMID, NULL); 
   
} else { // child 
     
  char *shared_memory = (char *)shmat(segment_id, NULL, 0); 
  fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory); 
  shmdt(shared_memory); 

}

Note that the child needs the segment_id.  In this 
case, we’re ok because shmget() is called before 
fork(). But if the child was a different program (e.g., 
after an exec()), then the segment_id would need 
to be communicated to the child (e.g., via message 
passing!!)



The IPC Zoo
 There are many IPC abstractions that fall into the message passing or 

the shared memory category, or blur the lines 
 Signals, sockets, message queues, pipes, shared memory segments, files, … 

 Several abstractions share common characteristics but have a few key 
differences (e.g., a message queue and a socket) 

 There is a distinction between the abstraction that’s exposed by the API 
and the implementation of this API 

 In fact, many abstractions can be implemented on top of others 
 message queues on top of shared memory segments 
 message queues on top of files 
 message queues on top of sockets 
 shared memory segments on top of message passing 
 … 

 Some implementations are only for IPCs within a machine, some 
implementations are also  for across machines over a network 

 Let’s now talk about a very, very commonplace abstraction: pipes



Pipes

 One of the most ancient, yet simple, useful, 
and powerful IPC mechanism provided by 
OSes is typically called pipes  

 Before we get into pipes, we need to take a 
little detour about UNIX file descriptors and 
output redirection... 



stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files” 

 Not real files, but in UNIX “everything looks like a file” by design 
 These files, or streams, are: 

 stdin: the standard input stream  
 stdout: the standard output stream 
 stderr: the standard error stream  

 You’ve encountered these when developing code in all languages (C/C++, 
Java, Python, etc.)  

 e.g., printf() writes to stdout 
 Each file in UNIX is associated to an integer file descriptor  

 An index into some “this process’ open files” table  
 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):  

 stdin: STDIN_FILENO = 0 
 stdout: STDOUT_FILENO = 1 
 stderr: STDERR_FILENO = 2 



Re-directing output
 Perhaps some of you have wondered how come something like ls > 
file.txt can work? 

 After all, ls has code that looks like:  
        fprintf(stdout, "%s", filename); 
 So how can this code magically knows to write to a file instead of to 

stdout when I put a “>” on the command line??? 
 This is one of the famous UNIX “tricks” 
 In UNIX, when I open a new file, this file gets the first available file 

descriptor number  
 So, if I close stdout, and open a file right after, this file will have file 

descriptor 1 
 Therefore, printf() will write to it as if it were stdout  

 Because fprintf(stdout, …) really is just  fprintf(1, ...) 
 And I don’t need to change the code of ls at all!!!  

 Let’s see an example program…



Output Redirect Example

 This program will run ls -la  and write its output to file /tmp/stuff 
 Let’s look at output_redirect_example1.c

Example program fragment
... 
pid_t pid = fork();  
if (!pid) { // child  
  // close stdout 
  close(1); 
  // open a new file, which gets file descriptor 1 

  FILE ∗file = fopen(”/tmp/stuff”, ”w”); 
  // exec the ”ls −la” program 
  char* const arguments[] = {"ls", "-la", NULL}; 
  execv("ls", arguments);  
}  
...  



What if I opened the file before calling fork()?

 In the previous example, the sequence of operation is:  
 Close stdout  
 Open a new file, which then gets file descriptor 1 

 What if I have already opened the file and it has some other file 
descriptor? 

 This is why the dup() syscall is there: file descriptor duplication!  
 Essentially, dup() allows you to say “Create another file descriptor for an 

existing opened file”, and it will always pick to lowest unused descriptor 
number 

 The fileno() library call returns the descriptor of an open file  
 So the sequence is:  

 FILE *some file = fopen(....);  
 close(1); 
 dup(fileno(some file));  

 After this sequence, writing to file descriptor 1 writes to the file instead! 
 Let’s see a simple example again... 



Another Output Redirect Example

 This program will run ls -la  and write its output to file /tmp/stuff 
 Let’s look at output_redirect_example2.c

Example program fragment
...  
FILE ∗file = fopen(”/tmp/stuff”, ”w”); 
 
pid_t pid = fork();  
if (!pid) { // child  
  // close stdout 
  close(1); 
  // duplicate the file’s file descriptor 
  dup(fileno(file)); 
  // exec the ”ls −la” program 
  char* const arguments[] = {"ls", "-la", NULL}; 
  execv("ls", arguments);  
}  
...  



UNIX Pipes
 A pipe is a simple IPC mechanism between two processes 
 One can create a pipe so that process A can write to it and 

process B reads from it 
 Available in the shell with the | symbol: the output of a process 

becomes the input of other(s) 
 Just like a file indirection, but to another process’ input stream 

 Example: Count the files whose names contain foo but not bar in 
the /tmp directory  

 List all files in /tmp: find /tmp -type f 
 Keep those with foo: grep foo 
 Remove those with bar: grep -v bar 
 Count the lines that remain: wc -l  

Putting everything together:  find /tmp -type f | grep foo 
| grep -v bar | wc -l  



popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose() 
 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that  
 popen() does: 

 Creates a (bi-directional) pipe, and we have to specify whether we’re going to 
read (“r”) or write (“w”) to it  

 Forks and execs a child process (e.g., ”ls -a”) 
 Returns the pipe, which is in fact a file (FILE *) 
 Both the parent and the child can “talk” through the pipe!  

 pclose() does: 
 Waits for the child process to complete 
 Closes the pipe  

 These are implemented with several system calls: fork, waitpid, 
pipe (which creates a pipe), close, open, dup  

 Re-implementing popen/pclose would be a bit too much here, but 
let’s just see an example program that uses it... 



popen() / pclose() Example

 This program prints all the output produced by ls -la 
 Almost all languages provide something like this: Python’s subprocess module, Java’s 

ProcessBuilder class, etc. 
 Let’s look at and run popen_example1.c 
 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from  
FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”);  

// Get lines of output from the pipe, which is just a FILE ∗, 
// until EOF is reached  
char buffer[2048]; 
while (fgets(buffer, 2048, pipe)) {  
  fprintf(stderr,"LINE: %s", buffer);  
} 

// Wait for the child process to terminate  
pclose(pipe); 



Higher-Level IPC?

 What we’ve seen so far are IPC abstractions for 
processes to exchange raw bytes 

 With that one can do everything, since the bytes 
can be encoded/interpreted in arbitrary ways 

 Often IPC is used to ask another process to do 
something for us and send us back the result 

 This is conceptually like calling a method/
function on the other process 

 A powerful abstraction has been proposed to do 
this more easily than with just byte messages: 
Remote Procedure Call (RPC)



RPC
 RPC provides a procedure invocation abstraction across 

processes (and actually across machines) 
 A client invokes a procedure in another process (almost) as 

it would invoke it directly itself 
 RPC has a lot of usages, of course for client-server 

applications (and microkernels!) 
 The “magic” is performed through a client stub (one stub for 

each RPC):  
 Marshal the parameters (converts structured data to bytes) 
 Send the data over to the server 
 Wait for the server’s answer 
 Unmarshal the returned values (convert bytes to structured data)  

 A lot of different implementations exist... including in Java 



 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation (RMI) 
 A process in a JVM can invoke a method of an 

object living in another JVM 
 Marshalling/Unmarshalling of data is 

performed by the JVM  
 Each object must be from a class that implements 

the java.io.Serializable interface 
 RMI hides all the gory details of RPC/IPC 
 See this Java RMI Tutorial for more info  
 We’ll come back to RMI later…

https://docs.oracle.com/javase/tutorial/rmi/


Main Takeaways
 Two kinds of mechanisms for processes to 

communicate:  
 Message Passing: Within the kernel Space 
 Shared Memory: Outside the kernel Space  

 Both kinds of mechanisms are implemented in all 
mainstream OS and many variants and abstractions 
exist 
 Message Queues, Shared Memory Segments, Files, 

Signals, Sockets, Pipes, RPC 
 UNIX Pipes and various output redirections 

mechanisms (to files, to the parent process) 
 Concept of RPC



Conclusion

 The line between message passing and shared 
memory is often blurred by abstractions, and 
abstractions of one kind can be implemented 
on top of abstractions of the other kind 
 For instance, it would be easy to implement a 

“message passing” pipe abstraction using a “shared 
memory” implementation 

 Let’s look at Optional Homework Assignment 
#3


