Inter-Process

Communications
(IPC)

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" J
Communicating Processes?

m So far we have seen independent processes
Each process runs code independently

Parents are aware of their children, and children are aware of their
parents, but they do not interact

= Besides the ability to wait for a child to terminate and to kill another process
m But often we need processes to cooperate
To share information (e.g., access to common data)
To speed up computation (e.g., to use multiple cores concurrently)

Because it's convenient (e.g., some applications are naturally
implemented as sets of interacting processes)

m But, processes cannot see each other’s address spaces!

® |n general, the means of communication between cooperating
processes is called Inter-Process Communication (IPC)

" A
Communication Models

B Process A needs to communicate with Process B

Kernel

Process A

Process B

Available
Memory

"
Message Passing

m Option #1: Message Passing

Kernel

Process A

Msg

Process B

Available
Memory

"
Message Passing

m Option #1: Message Passing

Kernel
Msg

Process A Data copy to a kernel buffer
Msg

Process B

Available
Memory

"
Message Passing

m Option #1: Message Passing

Kernel
Msg

Process A

Msg

Data copy from a kernel buffer

Process B

Msg

Available
Memory

Message Passing

m Option #1: Message Passing

Kernel

Process A

Msg

Process B

Msg

Available
Memory

Process B now has the
message in its address
space

"
Message Passing

®m Option #2: Shared Memory

Kernel

Process A

Process B
A zone of memory that
“belongs” to both processes’s

Available address space, so that each

Memory | — can read/write“ at V\’/,il_l it it and
Shared Memory the other can “see” it all

Pros and Cons

® Message Passing ®m Shared memory
& Simple to implement in the @ Not as easy to implement in
kernel the kernel (stay tuned...)
@ Limited by kernel size: & Large messages allowed
small messages @ Low overhead: a few
@ One syscall per operation syscalls to set it up, and then no
(send / receive): high kernel involvement thereafter
overhead & Convenient for users (after
@ Cumbersome for users as setup, just normal memory
code can be hard to read with reads/writes)
sends/receives everywhere @ Violates the principle of

memory protection between
processes, which can lead to
horrible bugs

"
Message Passing

m All OSes provide several IPC abstractions and API
And so do many user-level libraries

® |n your careers you will have to define abstraction and APIs for all kinds
of purposes
m Abstraction and API design choices often seem innocuous but can have
huge impact
Good choices can lead to awesome success, bad choices can lead to abject
failures/rewrites

® Making good Abstraction/API choices is hard:
Sufficiently expressive (can users do anything they might want to do with it?)
Sufficiently convenient (can users do what they want easily?)
Not too hard for you to implement/maintain/evolve

®m Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking

You wouldn’t believe the number of hours spent daily on minuscule API details in
the software industry

Because you haven't yet experienced the above “snowball effect” of your poorly
designed Abstractions/API

" I
POSIX Message Queue

m A standard message passing scheme supported by
UNIX-like systems are POSIX Message Queues

There is a message queue “object” that has a name, a

maximum message size, and a maximum number of messages
in the queue

Both processes create their own queue object using the same
name (meaning they both have a reference to the same queue)

The queue object supports send/receive operations

® This Abstraction/AP| makes several design choices

One option called “direct communication” would have been “I
am process A and | send a message to process B”, which
requires that process B is created/known when A does the send

Instead, this API uses “indirect communication” by using a
message queue object, which is more flexible

m Just for kicks let’s look at a hello world example...

" A
POSIX MQ Hello Worlid

pid _t pid = fork();

if (pid) { // parent

}

mgd t queue = mg open(“mg”, O _CREAT | O WRONLY, 0664, NULL);
char msg[MSG_SIZE] = “Hello!";

mg_send (queue, msg, MSG_SIZE, 1);

waitpid(pid, NULL, O);

mg_close (queue) ;

mg_unlink (MQ NAME) ;

else { // child

mgd t queue = mg open(“mg”, O _CREAT | O RDONLY, 0664, NULL);
char msg[MSG_SIZE];

mg_receive (queue, msg, MSG_SIZE, NULL);

mg close (queue) ;

mg unlink (MQ NAME) ;

m | et’s look at and run the real/full code in posix_mq_example.c
®m Conceptually this is just like network communication, but within a machine

®m There are MANY abstractions/implementations of message passing for all kinds of
scenarios/purposes, each with slight differences

" J
POSIX Shared Memory Segments

m | ike there is a POSIX MQ API, there is a POSIX SHM (Shared
Memory) API

® The abstraction is that of a “shared memory segment” with a
simple API

® One process can create a shared memory segment
® Multiple processes can then attach it to their address spaces

Bye bye memory protection

It's the processes’ (i.e., the developer’s) responsibility to make sure
that processes are not stepping on each other’s toes

® Once the setup is done, the OS is not involved
What happens in shared memory stays in shared memory

® At some point, the shared memory segment is freed by the
requester

m | et's look at a Hello World example...

"
POSIX SHM Hello Worlid

int segment id = shmget (IPC_PRIVATE, 10*sizeof(char), SHM R | SHM W)

pid = fork() ;
if (pid) { // parent

char *shared memory = (char *)shmat(segment id, NULL, O0);
sprintf (shared memory, "hello");

waitpid(pid, NULL, O0);

shmdt (shared memory) ;

shmctl (segment id, IPC_RMID, NULL) ;

} else { // child
char *shared memory = (char *)shmat(segment id, NULL, O0);

fprintf (stdout,"Child: read '%s' in SHM\n", shared memory) ;
shmdt (shared memory) ;

m | et’s look at and run the real/full code in posix_shm_example.c

"
POSIX SHM Hello Worlid

int segment id = shmget (IPC_PRIVATE, 10*sizeof(char), SHM R | SHM W)

pid = fork({mwisﬁ o rv.. o o - .:'
if (pid) { 4 Note that the child needs the segment_id. In this
{ case, we're ok because shmget () is called before

char *shaz

sprints (st} £ork () . But if the child was a different program (e.g.,

waitpid (p§ after an exec ()), then the segment id would need

shmdt (shas . . .
shmetl (sed to be communicated to the child (e.g., via message

{ passing!!)
} €1Se { // b

char *shared memory = (char *)shmat(segment_id,%NULL, 0);
fprintf (stdout,"Child: read '%s' in SHM\n", shared memory) ;

shmdt (shared memory) ;

m | et’s look at and run the real/full code in posix_shm_example.c

" A
The IPC Zoo

® There are many IPC abstractions that fall into the message passing or
the shared memory category, or blur the lines

Signals, sockets, message queues, pipes, shared memory segments, files, ...
m Several abstractions share common characteristics but have a few key
differences (e.g., a message queue and a socket)

® There is a distinction between the abstraction that's exposed by the API
and the implementation of this API

® |n fact, many abstractions can be implemented on top of others
message queues on top of shared memory segments
message queues on top of files
message queues on top of sockets
shared memory segments on top of message passing

B Some implementations are only for IPCs within a machine, some
implementations are also for across machines over a network

m | et's now talk about a very, very commonplace abstraction: pipes

" J
Pipes

® One of the most ancient, yet simple, useful,
and powerful IPC mechanism provided by
OSes is typically called pipes

m Before we get into pipes, we need to take a
little detour about UNIX file descriptors and
output redirection...

" J
stdin, stdout, stderr

® |In UNIX, every process comes with 3 already opened “files”
Not real files, but in UNIX “everything looks like a file” by design
® These files, or streams, are:
stdin: the standard input stream
stdout: the standard output stream
stderr: the standard error stream
® You've encountered these when developing code in all languages (C/C++,
Java, Python, etc.)
e.g., printf() writes to stdout
m Each file in UNIX is associated to an integer file descriptor
An index into some “this process’ open files” table
m By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):
stdin: STDIN_FILENO =0
stdout: STDOUT_FILENO =1
stderr: STDERR_FILENO = 2

"
Re-directing output

m Perhaps some of you have wondered how come something like 1s >
file. txt can work?

m After all, 1s has code that looks like:
fprintf (stdout, "%s", filename) ;
®m S0 how can this code magically knows to write to a file instead of to
stdout when | put a “>” on the command line???
® This is one of the famous UNIX “tricks”

® In UNIX, when | open a new file, this file gets the first available file
descriptor number

m S0, if | close stdout, and open a file right after, this file will have file
descriptor 1

m Therefore, print£ () will write to it as if it were stdout
Because fprintf (stdout, ..) reallyisjust fprintf(1, ...)
And | don’t need to change the code of 1s at all!!!

m | et's see an example program...

" J
Output Redirect Example

pid t pid = fork();
if ('pid) { // child
// close stdout
close (1) ;
// open a new file, which gets file descriptor 1
FILE xfile = fopen(”/tmp/stuff”, "w”);
// exec the ”1ls -la” program
char* const arguments[] = {"1ls", "-la", NULL};
execv("1ls", arguments) ;

® This program will run 1s -1a and write its output to file /tmp/stuff
m | et’s look at output redirect_examplel.c

" J
What if |1 opened the file before calling fork()?

® |n the previous example, the sequence of operation is:
Close stdout
Open a new file, which then gets file descriptor 1

m \What if | have already opened the file and it has some other file
descriptor?

m This is why the dup () syscall is there: file descriptor duplication!

Essentially, dup () allows you to say “Create another file descriptor for an

existing opened file”, and it will always pick to lowest unused descriptor
number

The £ileno () library call returns the descriptor of an open file
® So the sequence is:

FILE *some file = fopen(....);

close (1) ;

dup (fileno (some file)) ;
m After this sequence, writing to file descriptor 1 writes to the file instead!
m | et’'s see a simple example again...

" J—
Another Output Redirect Example

FILE xfile = fopen(”/tmp/stuff”, "w”);

pid t pid = fork():;
if ('pid) { // child
// close stdout
close (1) ;
// duplicate the file’s file descriptor
dup (fileno(file)) ;
// exec the ”1s -la” program
char* const arguments[] = {"1ls", "-1la", NULL};
execv ("1ls", arguments);

® This program will run 1s -1a and write its output to file /tmp/stuff
m | et’s look at output redirect_example2.c

" JE
UNIX Pipes

m A pipe is a simple IPC mechanism between two processes

® One can create a pipe so that process A can write to it and
process B reads from it

® Available in the shell with the | symbol: the output of a process
becomes the input of other(s)
Just like a file indirection, but to another process’ input stream

m Example: Count the files whose names contain foo but not bar in
the /tmp directory

List all files in /tmp: £ind /tmp -type £

Keep those with foo: grep foo

Remove those with bar: grep -v bar

Count the lines that remain: we -1
Putting everything together: £find /tmp -type £ | grep foo
| grep -v bar | wc -1

"
popen(): fork() with a pipe!

® Very convenient library functions are popen () and pclose ()

® Sounds like “pipe open” and “pipe close”, but it's MUCH more than that
® popen () does:
Creates a (bi-directional) pipe, and we have to specify whether we’re going to
read (“r’) or write (“w”) to it
Forks and execs a child process (e.g., "Is -a”)
Returns the pipe, which is in fact a file (FILE *)
Both the parent and the child can “talk” through the pipe!
® pclose () does:
Waits for the child process to complete
Closes the pipe
®m These are implemented with several system calls: fork, waitpid,
pipe (which creates a pipe), close, open, dup
® Re-implementing popen/pclose would be a bit too much here, but
let’s just see an example program that uses it...

" J
popen() / pclose() Example

Example program fragment

// fork/exec a child process and get a pipe to READ from

FILE xpipe = popen(”/usr/bin/ls -la”, ”"r”);

// Get lines of output from the pipe, which is just a FILE x,
// until EOF is reached
char buffer[2048];
while (fgets(buffer, 2048, pipe)) {
fprintf (stderr,"LINE: %s", buffer);
}

// Wait for the child process to terminate
pclose (pipe) ;

m This program prints all the output produced by 1s -1a

m Almost all languages provide something like this: Python’s subprocess module, Java's
ProcessBuilder class, etc.

m |et’s look at and run popen_example1.c

m And then let’s look at and run popen_example2.c, which opens a pipe to write to

"
Higher-Level IPC?

® \What we’ve seen so far are IPC abstractions for
processes to exchange raw bytes

m \With that one can do everything, since the bytes
can be encoded/interpreted in arbitrary ways

m Often IPC is used to ask another process to do
something for us and send us back the result

B This is conceptually like calling a method/
function on the other process

m A powerful abstraction has been proposed to do
this more easily than with just byte messages:
Remote Procedure Call (RPC)

"
RPC

®m RPC provides a procedure invocation abstraction across
processes (and actually across machines)

® A client invokes a procedure in another process (almost) as
it would invoke it directly itself

® RPC has a lot of usages, of course for client-server
applications (and microkernels!)

® The “magic” is performed through a client stub (one stub for
each RPC):
Marshal the parameters (converts structured data to bytes)
Send the data over to the server
Wait for the server’s answer
Unmarshal the returned values (convert bytes to structured data)

m A |ot of different implementations exist... including in Java

Java Remote Method Invocation (RMI)

m RPC in Java: Remote Method Invocation (RMI)

m A process in a JVM can invoke a method of an
object living in another JVM

® Marshalling/Unmarshalling of data is
performed by the JVM

Each object must be from a class that implements
the java.io.Serializable interface

® RMI hides all the gory details of RPC/IPC
m See this Java RMI Tutorial for more info
m \We'll come back to RMI later...

https://docs.oracle.com/javase/tutorial/rmi/

"
Main Takeaways

® Two kinds of mechanisms for processes to
communicate:

Message Passing: Within the kernel Space
Shared Memory: Outside the kernel Space

® Both kinds of mechanisms are implemented in all

mainstream OS and many variants and abstractions
exist

Message Queues, Shared Memory Segments, Files,
Signals, Sockets, Pipes, RPC

® UNIX Pipes and various output redirections
mechanisms (to files, to the parent process)

®m Concept of RPC

Conclusion

B The line between message passing and shared
memory is often blurred by abstractions, and
abstractions of one kind can be implemented
on top of abstractions of the other kind

For instance, it would be easy to implement a

“message passing” pipe abstraction using a “shared
memory” implementation

m | et's look at Optional Homework Assignment
#3

