
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Inter-Process
Communications
(IPC)

Communicating Processes?
 So far we have seen independent processes

 Each process runs code independently
 Parents are aware of their children, and children are aware of their

parents, but they do not interact
 Besides the ability to wait for a child to terminate and to kill another process

 But often we need processes to cooperate
 To share information (e.g., access to common data)
 To speed up computation (e.g., to use multiple cores concurrently)
 Because it’s convenient (e.g., some applications are naturally

implemented as sets of interacting processes)
 But, processes cannot see each other’s address spaces!
 In general, the means of communication between cooperating

processes is called Inter-Process Communication (IPC)

Communication Models
 Process A needs to communicate with Process B

Process A

Process B

Available
Memory

Kernel

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Data copy to a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Msg

Data copy from a kernel buffer

Message Passing
 Option #1: Message Passing

Kernel

Process A

Process B

Available
Memory

Msg

Msg

Process B now has the
message in its address
space

Message Passing
 Option #2: Shared Memory

Kernel

Process A

Process B

Available
Memory

Shared Memory

A zone of memory that
“belongs” to both processes’s
address space, so that each
can read/write at will it it and
the other can “see” it all

Pros and Cons
 Message Passing

 😀 Simple to implement in the
kernel

 😡 Limited by kernel size:
small messages

 😡 One syscall per operation
(send / receive): high
overhead

 😡 Cumbersome for users as
code can be hard to read with
sends/receives everywhere

 Shared memory
 😡 Not as easy to implement in

the kernel (stay tuned…)
 😀 Large messages allowed
 😀 Low overhead: a few

syscalls to set it up, and then no
kernel involvement thereafter

 😀 Convenient for users (after
setup, just normal memory
reads/writes)

 😡 Violates the principle of
memory protection between
processes, which can lead to
horrible bugs

Message Passing
 All OSes provide several IPC abstractions and API

 And so do many user-level libraries
 In your careers you will have to define abstraction and APIs for all kinds

of purposes
 Abstraction and API design choices often seem innocuous but can have

huge impact
 Good choices can lead to awesome success, bad choices can lead to abject

failures/rewrites
 Making good Abstraction/API choices is hard:

 Sufficiently expressive (can users do anything they might want to do with it?)
 Sufficiently convenient (can users do what they want easily?)
 Not too hard for you to implement/maintain/evolve

 Pedagogic challenge: Conveying to college students how important/
crucial this is, when it all seems like a bunch of pointless nitpicking

 You wouldn’t believe the number of hours spent daily on minuscule API details in
the software industry

 Because you haven’t yet experienced the above “snowball effect” of your poorly
designed Abstractions/API



POSIX Message Queue
 A standard message passing scheme supported by

UNIX-like systems are POSIX Message Queues
 There is a message queue “object” that has a name, a

maximum message size, and a maximum number of messages
in the queue

 Both processes create their own queue object using the same
name (meaning they both have a reference to the same queue)

 The queue object supports send/receive operations
 This Abstraction/API makes several design choices

 One option called “direct communication” would have been “I
am process A and I send a message to process B”, which
requires that process B is created/known when A does the send

 Instead, this API uses “indirect communication” by using a
message queue object, which is more flexible

 Just for kicks let’s look at a hello world example…

POSIX MQ Hello World

 Let’s look at and run the real/full code in posix_mq_example.c
 Conceptually this is just like network communication, but within a machine
 There are MANY abstractions/implementations of message passing for all kinds of

scenarios/purposes, each with slight differences

pid_t pid = fork();

if (pid) { // parent

 mqd_t queue = mq_open(“mq”, O_CREAT | O_WRONLY, 0664, NULL);
 char msg[MSG_SIZE] = “Hello!";
 mq_send(queue, msg, MSG_SIZE, 1);
 waitpid(pid, NULL, 0);
 mq_close(queue);
 mq_unlink(MQ_NAME);

} else { // child

 mqd_t queue = mq_open(“mq”, O_CREAT | O_RDONLY, 0664, NULL);
 char msg[MSG_SIZE];
 mq_receive(queue, msg, MSG_SIZE, NULL);
 mq_close(queue);
 mq_unlink(MQ_NAME);

}

POSIX Shared Memory Segments
 Like there is a POSIX MQ API, there is a POSIX SHM (Shared

Memory) API
 The abstraction is that of a “shared memory segment” with a

simple API
 One process can create a shared memory segment
 Multiple processes can then attach it to their address spaces

 Bye bye memory protection
 It’s the processes’ (i.e., the developer’s) responsibility to make sure

that processes are not stepping on each other’s toes
 Once the setup is done, the OS is not involved

 What happens in shared memory stays in shared memory
 At some point, the shared memory segment is freed by the

requester
 Let’s look at a Hello World example…

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();
if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 sprintf(shared_memory, "hello");
 waitpid(pid, NULL, 0);
 shmdt(shared_memory);
 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);
 shmdt(shared_memory);

}

POSIX SHM Hello World

 Let’s look at and run the real/full code in posix_shm_example.c

int segment_id = shmget(IPC_PRIVATE, 10*sizeof(char), SHM_R | SHM_W);

pid = fork();
if (pid) { // parent

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 sprintf(shared_memory, "hello");
 waitpid(pid, NULL, 0);
 shmdt(shared_memory);
 shmctl(segment_id, IPC_RMID, NULL);

} else { // child

 char *shared_memory = (char *)shmat(segment_id, NULL, 0);
 fprintf(stdout,"Child: read '%s' in SHM\n", shared_memory);
 shmdt(shared_memory);

}

Note that the child needs the segment_id. In this
case, we’re ok because shmget() is called before
fork(). But if the child was a different program (e.g.,
after an exec()), then the segment_id would need
to be communicated to the child (e.g., via message
passing!!)

The IPC Zoo
 There are many IPC abstractions that fall into the message passing or

the shared memory category, or blur the lines
 Signals, sockets, message queues, pipes, shared memory segments, files, …

 Several abstractions share common characteristics but have a few key
differences (e.g., a message queue and a socket)

 There is a distinction between the abstraction that’s exposed by the API
and the implementation of this API

 In fact, many abstractions can be implemented on top of others
 message queues on top of shared memory segments
 message queues on top of files
 message queues on top of sockets
 shared memory segments on top of message passing
 …

 Some implementations are only for IPCs within a machine, some
implementations are also for across machines over a network

 Let’s now talk about a very, very commonplace abstraction: pipes

Pipes

 One of the most ancient, yet simple, useful,
and powerful IPC mechanism provided by
OSes is typically called pipes

 Before we get into pipes, we need to take a
little detour about UNIX file descriptors and
output redirection...

stdin, stdout, stderr
 In UNIX, every process comes with 3 already opened “files”

 Not real files, but in UNIX “everything looks like a file” by design
 These files, or streams, are:

 stdin: the standard input stream
 stdout: the standard output stream
 stderr: the standard error stream

 You’ve encountered these when developing code in all languages (C/C++,
Java, Python, etc.)

 e.g., printf() writes to stdout
 Each file in UNIX is associated to an integer file descriptor

 An index into some “this process’ open files” table
 By convention, the file descriptors for each standard stream are (see /
usr/include/unistd.h):

 stdin: STDIN_FILENO = 0
 stdout: STDOUT_FILENO = 1
 stderr: STDERR_FILENO = 2

Re-directing output
 Perhaps some of you have wondered how come something like ls >
file.txt can work?

 After all, ls has code that looks like:
 fprintf(stdout, "%s", filename);
 So how can this code magically knows to write to a file instead of to

stdout when I put a “>” on the command line???
 This is one of the famous UNIX “tricks”
 In UNIX, when I open a new file, this file gets the first available file

descriptor number
 So, if I close stdout, and open a file right after, this file will have file

descriptor 1
 Therefore, printf() will write to it as if it were stdout

 Because fprintf(stdout, …) really is just fprintf(1, ...)
 And I don’t need to change the code of ls at all!!!

 Let’s see an example program…

Output Redirect Example

 This program will run ls -la and write its output to file /tmp/stuff
 Let’s look at output_redirect_example1.c

Example program fragment
...
pid_t pid = fork();
if (!pid) { // child
 // close stdout
 close(1);
 // open a new file, which gets file descriptor 1

 FILE ∗file = fopen(”/tmp/stuff”, ”w”);
 // exec the ”ls −la” program
 char* const arguments[] = {"ls", "-la", NULL};
 execv("ls", arguments);
}
...

What if I opened the file before calling fork()?

 In the previous example, the sequence of operation is:
 Close stdout
 Open a new file, which then gets file descriptor 1

 What if I have already opened the file and it has some other file
descriptor?

 This is why the dup() syscall is there: file descriptor duplication!
 Essentially, dup() allows you to say “Create another file descriptor for an

existing opened file”, and it will always pick to lowest unused descriptor
number

 The fileno() library call returns the descriptor of an open file
 So the sequence is:

 FILE *some file = fopen(....);
 close(1);
 dup(fileno(some file));

 After this sequence, writing to file descriptor 1 writes to the file instead!
 Let’s see a simple example again...

Another Output Redirect Example

 This program will run ls -la and write its output to file /tmp/stuff
 Let’s look at output_redirect_example2.c

Example program fragment
...
FILE ∗file = fopen(”/tmp/stuff”, ”w”);

pid_t pid = fork();
if (!pid) { // child
 // close stdout
 close(1);
 // duplicate the file’s file descriptor
 dup(fileno(file));
 // exec the ”ls −la” program
 char* const arguments[] = {"ls", "-la", NULL};
 execv("ls", arguments);
}
...

UNIX Pipes
 A pipe is a simple IPC mechanism between two processes
 One can create a pipe so that process A can write to it and

process B reads from it
 Available in the shell with the | symbol: the output of a process

becomes the input of other(s)
 Just like a file indirection, but to another process’ input stream

 Example: Count the files whose names contain foo but not bar in
the /tmp directory

 List all files in /tmp: find /tmp -type f
 Keep those with foo: grep foo
 Remove those with bar: grep -v bar
 Count the lines that remain: wc -l

Putting everything together: find /tmp -type f | grep foo
| grep -v bar | wc -l

popen(): fork() with a pipe!
 Very convenient library functions are popen() and pclose()
 Sounds like “pipe open” and “pipe close”, but it’s MUCH more than that
 popen() does:

 Creates a (bi-directional) pipe, and we have to specify whether we’re going to
read (“r”) or write (“w”) to it

 Forks and execs a child process (e.g., ”ls -a”)
 Returns the pipe, which is in fact a file (FILE *)
 Both the parent and the child can “talk” through the pipe!

 pclose() does:
 Waits for the child process to complete
 Closes the pipe

 These are implemented with several system calls: fork, waitpid,
pipe (which creates a pipe), close, open, dup

 Re-implementing popen/pclose would be a bit too much here, but
let’s just see an example program that uses it...

popen() / pclose() Example

 This program prints all the output produced by ls -la
 Almost all languages provide something like this: Python’s subprocess module, Java’s

ProcessBuilder class, etc.
 Let’s look at and run popen_example1.c
 And then let’s look at and run popen_example2.c, which opens a pipe to write to

Example program fragment
// fork/exec a child process and get a pipe to READ from
FILE ∗pipe = popen(”/usr/bin/ls −la”, ”r”);

// Get lines of output from the pipe, which is just a FILE ∗,
// until EOF is reached
char buffer[2048];
while (fgets(buffer, 2048, pipe)) {
 fprintf(stderr,"LINE: %s", buffer);
}

// Wait for the child process to terminate
pclose(pipe);

Higher-Level IPC?

 What we’ve seen so far are IPC abstractions for
processes to exchange raw bytes

 With that one can do everything, since the bytes
can be encoded/interpreted in arbitrary ways

 Often IPC is used to ask another process to do
something for us and send us back the result

 This is conceptually like calling a method/
function on the other process

 A powerful abstraction has been proposed to do
this more easily than with just byte messages:
Remote Procedure Call (RPC)

RPC
 RPC provides a procedure invocation abstraction across

processes (and actually across machines)
 A client invokes a procedure in another process (almost) as

it would invoke it directly itself
 RPC has a lot of usages, of course for client-server

applications (and microkernels!)
 The “magic” is performed through a client stub (one stub for

each RPC):
 Marshal the parameters (converts structured data to bytes)
 Send the data over to the server
 Wait for the server’s answer
 Unmarshal the returned values (convert bytes to structured data)

 A lot of different implementations exist... including in Java

 Java Remote Method Invocation (RMI)

 RPC in Java: Remote Method Invocation (RMI)
 A process in a JVM can invoke a method of an

object living in another JVM
 Marshalling/Unmarshalling of data is

performed by the JVM
 Each object must be from a class that implements

the java.io.Serializable interface
 RMI hides all the gory details of RPC/IPC
 See this Java RMI Tutorial for more info
 We’ll come back to RMI later…

https://docs.oracle.com/javase/tutorial/rmi/

Main Takeaways
 Two kinds of mechanisms for processes to

communicate:
 Message Passing: Within the kernel Space
 Shared Memory: Outside the kernel Space

 Both kinds of mechanisms are implemented in all
mainstream OS and many variants and abstractions
exist
 Message Queues, Shared Memory Segments, Files,

Signals, Sockets, Pipes, RPC
 UNIX Pipes and various output redirections

mechanisms (to files, to the parent process)
 Concept of RPC

Conclusion

 The line between message passing and shared
memory is often blurred by abstractions, and
abstractions of one kind can be implemented
on top of abstractions of the other kind
 For instance, it would be easy to implement a

“message passing” pipe abstraction using a “shared
memory” implementation

 Let’s look at Optional Homework Assignment
#3

