Processes:

OS Mechanisms

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

Direct Execution

® Figure 6.1 in OSTEP shows a simple possible timeline for an OS
to run a program (slightly modified below):

0S Program

Create PCB and add it to the Process Table

Allocate memory for the process

Load the program into memory

Set up the stack with argc/argv

Clear the registers

Starts the fetch-decode-execute (at 1st instruction in main)
Run main()
Return from main

Free memory of the process

Remove PCB from the Process Table (or keep as a zombie)

" A
Direct Execution: Not a Good Idea

®m The approach on the previous slides has two big problems

®m Problem #1: If the process needs to access hardware resources
(e.g., to write to disk), then the only option is to give the process
full access to the hardware

This was the case in the 60’s, but it's WAY too dangerous

A bug in a user program could corrupt hardware status, bring the
machine down, overwrite data, ...

® Problem #2: How do we kick a process out of the CPU and give
the CPU to another process?

We can't just say “let’s start the fetch-decode-execute cycle of a program
and hope that it doesn’t hog the CPU”

For that matter, what if a process goes into an infinite loop as a bug?
m \We need to limit the way in which a process runs on the hardware

® |n other words, we need mechanisms for virtualizing the CPU to
solve both problems above

" A
Limited Execution: Restricted Operations

® The OS cannot just be a “library” that a user program can call

Because then the program would have complete control over the
system and do dangerous things and/or hog the CPU

® S0 when my program places a syscall like read (), what
happens must be different from what happens when my

program calls a regular function | have implemented myself, like
compute stuff ()

® This is done by building CPUs that have two kinds of
instructions!

® Unprotected instruction that a program can execute at any time

® Protected (or Privileged) instructions that do “special” things
and that a program can't just execute in normal operation

" A
User-Mode vs. Kernel-Mode

m All (first in the 60s and mainstream since the late 70s) CPUs
support (at least) two modes of execution:

User Mode: protected instructions cannot be executed
Kernel Mode: all instructions can be executed

m User code executes in user mode
m Kernel code executes in kernel mode

® The mode is indicated by a status bit (the mode bit) in a protected
control register in the CPU

®m The CPU checks the mode bit before executing a protected
iInstruction

® MS-DOS had only one mode (because it was designed for the

8086 which had no kernel mode bit)
= Which is very scary now, in hindsight

" A
User-Mode vs. Kernel-Mode

m Steps are added to the Decode stage in the Fetch-
Decode-Execute cycle:

Decode instruction and look up some internal hardware table
of the opcodes that are protected?

If the instruction’s opcode is in that table and the mode bit is

not set to “Kernel mode”, abort and raise a trap (that the OS

will answer by terminating the program saying something like
“not allowed”)

Otherwise, execute the instruction

® |n current CPUs there are actually multiple modes
(multiple levels in the kernel, multiple levels in the CPU)

m Question: which instructions should be protected?

" A
Which Instructions are Protected?

® The instruction to change the mode bit
Obviously :)
m Basically all instructions that directly control the hardware
Halt the CPU
Update the CPU’s control registers (more later...)
Change the system clock
Read/Write to registers of I/O device controllers

® Therefore, all these operations can only happen in Kernel
mode and only kernel code can use them

m Essentially, the kernel is the only trusted software component
that is allowed to interact with hardware components directly

® \Which is why we have syscalls to say “please execute to
Kernel code on my behalf”

"
Syscalls: How do they work?

B The user code runs in user mode
® The kernel code runs in kernel mode
B So the mode bit must change for doing a syscall!

B This is exactly why the CPU has a special
“syscall” instruction

® This instruction is a trap to which the Kernel must
react

Remember that the Kernel is basically a big event

handler, and that a trap is an event (cause by a
program’s execution)

" JE
The Trap Table

m At boot time, the OS initializes a Trap Table
On the x86 architecture, it's called the Interrupt Descriptor Table
®m The Trap Table is stored in RAM, and the CPU has a register that
points to it

® For each event type that the CPU could receive, this table indicates
the address in the kernel of the code that should be run to react to
the event

®m Whenever an event occurs the CPU can just do:
Look at the Trap Table in RAM

Lookup the entry in the Trap Table for the event and find the kernel
handler’s address

Set the mode bit to “Kernel”
Jump to the kernel handler and fetch-decode-execute it
m | et’s look at this on a picture...

" J
The Trap Table

m At boot time, the kernel
Is loaded into RAM

® The kernel code includes
handlers, i.e., pieces of
code that should execute
to answer particular
events

® |n this example, we
consider

a “keyboard event”
handler

a “disk 1/0O event”
handler

a “syscall event” handler

Code to handle keyboard input

Code to handle disk /0O

Code to handle sys calls

Kernel in RAM

"
The Trap Table

m At boot time, in RAM a
Trap Table is created as
an array of consecutive
bytes

® Entry each event type is
set to the address of the
first instruction of the
corresponding kernel
even handler code
= Of course, each event is
described as an integer,
which is simply an index
into the Trap Table, which

is just an array of
addresses

Kernel in RAM

"
The Trap Table

m A special register on
the CPU is initialized
with the address of
the first byte of the
Trap Table

CP/J

register

Kernel in RAM

"
The Trap Table

®m This is how the
Kernel is able to react
to all event (Is
everything in this
course about
indirection?)

CP/J

register

Kernel in RAM

" JE
The “trap” Instruction

m A CPU has an instruction to trigger the “| want to do a system call” event,
often called the “trap instruction”
On the x86 architecture the instruction is called int (short for interrupt)
Nothing to do with an integer!
® The trap instruction does:
Set the mode bit to “kernel”
Jump to the “handle system call” kernel code
Set the mode bit to “user”
Jump back to user code

® There are many syscalls, but a single syscall handler
® Therefore, the user must specify which syscall to run as a syscall number

® The handler checks that the syscall number if valid, and then jumps to the
corresponding kernel code

® Yes, there is a table that says for each syscall number what
the address in the kernel of the code for that syscall is (/usr/src/linux-

headers-*/include/uapi/asm-generic/unistd.h)

" A
On a Picture

User Code / User Mode (mode bit = 1)

User code Trap instruction User code
executing for syscall resuming

[T

| ,/

mode bit setto =0 mode bit set to 1
\ Kernel code /
executing

Kernel Code / Kernel Mode (mode bit = 0)

~ What's a kernel?
Ehe New ork imes PCWorld

The kernel inside a chip is basically an invisible process that facilitates the

way apps and functions work on your computer. It has complete control over
The software patches could slow the Yy app y p D

performance of affected machines by 20 to 30
percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

voiced similar concerns m e a/n e giSter®

your operating system. Your PC needs to switch between user mode and

Biting the hand that feeds IT

Via Skype

‘ - Think of the kernel as God sitting on a cloud, looking down on Earth. It's
- there, and no normal being can see it, yet they can pray to it.

These KPTI patches move the kernel into a completely separate address
space, so it's not just invisible to a running process, it's not even there at
all. Really, this shouldn't be needed, but clearly there is a flaw in Intel's
silicon that allows kernel access protections to be bypassed in some way.

The exact bug is related to the way that

regular apps and programs can discover the FMW IS REMTE” "] KERNH

News headlines i RS

1/3/201 8 control over the entire system, and connect applications to the processor, memory, and
on other hardware inside a computer. There appears to be a flaw in Intel's processors that lets

(14 - 79 attackers bypass kernel access protections so that regular apps can read the contents of
Intel chip bug

kernel memory. To protect against this, Linux programmers have been separating the

DEVELOPING STORY

EXPERTS: ALMOST ALL COMPUTER SYSTEMS AFFECTED K&\

Nikkei A 741.39

NEWS STREAM

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

kernel's memory away from user processes in what’s being called “Kernel Page Table

[solation.”

What's a kernel? [>/@V,Y/sY1ls/
e
@l] e Nem ﬂo rl(q;lmeg The kernel inside a chip is basically an invisibles that facilitates the

way apps and functions work on your computer. It has complete control over

The software patches could slow the

performance of affected machines by 20 to 30
percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

your operating system. Your PC needs to switch between user mode and

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

voiced similar concerns "'ea/ne 'Ster

Biting the hand that feeds IT

Via Skype

- ¢ Think of the kernel as God sitting on a cIoud looking down on Earth. It's

9:24 PM

there, and no normal being can see it, yet they can pray to it. }

These KPTI pétches move the kernel into a completely separate address

space sol's notJust invisible to a running process it's not even there at
hondivim ovidromobnsd shmemnnig @ flaw in Intel's

Think of the kernel as God sitting on a cloud ssed in some way.
looking down on Earth. It’s there, and no normal RGE
being can see it, yet they can pray to it

;(;;urar apps and progran:lsuc;;r:';ysc:\jer the FMW ls REMTE” "] KERNH

News headlines i RS

control over the entire system, and connect applications to the processor, memory, and
rocessors that lets

Let’s look at the full excerpt from that article... gd o contonts of

(1 I
t kernel memory. To protect against this, Linux programmers have been separating the

DEVELOPIN

kernel's memory away from user processes in what’s being called “Kernel Page Table

[solation.”

What's a kernel? [>/@V\V/eTals|

e
@he Nem ﬂorl(q;lmeg The kernel inside a chip is basically "'e aRO/MEe i Ste" he

e way apps and functions work on yo

< 0 ©vTT -

‘Whenever a running program needs to do anythmg useful — such as

control of the processor to the kernel to carry out the job. To make the
transition from user mode to kernel mode and back to user mode as
fast and efficient as possible, the kernel is present in all processes' dress
virtual memory address spaces, although it is invisible to these pre at
programs. When the kernel is needed, the program makes a system |
call, the processor switches to kernel mode and enters the kernel. -,
When it is done, the CPU is told to switch back to user mode, and]E
reenter the process. While in user mode, the kernel's code and data
remains out of sight but present in the process's page tables.

Think of the kernel as God sitting on a cloud, looking down on Earth. It's 4
there, and no normal bemg can see it, yet they can pray to |t p lets

wneerdts Of

& . . 0 :
I u kernel memory. To protect against this, Linux programmers have been separating the
kernel's memory away from user processes in what's being called “Kernel Page Table

[solation.”

Che New Hork Eimes

The software patches could slow the

What's a kernel? [2/@V\V/oTale.

FROM IDG

The kernel inside a chip is basically an invisible process that facilitates the

way apps and functions work on your computer. It has complete control over

performance of affected machines by 20 to 30 your operating system. Your PC needs to switch between user mode and

percent, said Andres Freund, an independent kernel mode thousands of times a day, making sure instructions and data

software developer who has tested the new Linux flow seamlessly and instantaneously. Here’s how The Register puts it: “Think
code. The researchers who discovered the flaws

o)

A\

We cannot really understand the rest of the article because we need to i

()

L2 KNOW more about virtual memory, which is later this semester s
k|t actually will be difficult to understand the whole bug and solution b5
because it goes beyond course material, but we’ll do what we can...

vay.

DE\

Part of the bug is due to speculative execution (show of hand?)

s P ofhe ug s duelc

NEWS STREAM

News headlines
on 1/3/2018
“Intel chip bug”

THURSDAY. JANUARY 4, 2018 | CHIPOCALYPSE NOW

The exact bug is related to the way that

regular apps and programs can discover the FMW IS RHATE” "] KERNH
contents of protect kernel memory areas. MEM”RY AL'EESS

Kernels in operating systems have complete

control over the entire system, and connect applications to the processor, memory, and
other hardware inside a computer. There appears to be a flaw in Intel’s processors that lets
attackers bypass kernel access protections so that regular apps can read the contents of
kernel memory. To protect against this, Linux programmers have been separating the
kernel's memory away from user processes in what's being called “Kernel Page Table
Isolation.”

Che N

The software 1
performance o
percent, said A
software devel
code. The rese
voiced similar

DEVELOPING ST

EXPERTS: ALMOS]

News

on |

“Intel

THE MELTDOUN AND SPELCTRE. EXPLOITS USE
"SPECULATIVE EXECUTION?" LHATS THAT?

YOU KNOW THE: TROLLEY PROBLEM? LJELL,
FOR A WHILE NOU, CPUs HAVE BASICALLY
BEEN SENDING TROUEYS DOUN BOTH
PATHS, QUANTUM-SIVLE, WHILE AWAITING
YOUR CHOICE. THEN THE UNNEEDED

THE PHANTOM TROLLEY ISNT
SUPPOSED To TOUCH ANYONE.
BUT IT TURNS OUT YOU CAN
SILL ,UGE IT TO DO STUFF.

AND IT CAN DRIVE
THROUGH WALLS.

\

es the
ntrol over

G)
er

nk

"PHANTOM" TROLLEY DISAPPEARS. ster’
g? / Farth. It's
e address
N there at
THAT SOUNDS BAD LHRIE{YZ??; A ROU OF S0 YOURE SAYING :(;nmtzlvsvay.
OGGLE MEFORY" | THE CLOUD IS FULL OF
HO%T}J’:G{J’EESSRFS CELLS ON AND OFF REALLY FAST YOU | pHANTOM TROLLEYS
FDOOH‘SSUE' D' FVER SINCE CAN USE ELECTRICAL INTERFERENCE | p@MED LIITH HAMMERS.
T LEARNED ABOUT TO FLIP NEARBY BITS AND— YES, THAT IS NEl
ROLHAMTER, | DO VE JUST SUCK / EXACTLY RIGHT.
CC' PUTERD: OKAY. T, UH...

od | ¥

GOOD IDEA.

<
P

s that lets
htents of

" J
Limited Execution: Whole Story

® You write your user program, which calls a standard
library function, which places a system call, e.g., write ()

® The trap instruction is executed, the CPU sets the mode
bit to kernel, figures out this is a “syscall” event, looks up
the Trap Table, finds out in it the address of the handler for
that event in the kernel code, and jumps to that code

® The handler code looks at the system call number passed
to the trap instruction, looks up its table of syscall, finds
the address of the code for that particular system call, and
jumps to that code

® The syscall code is executed

® The syscall code returns to the system call handler, which
sets the mode bit to “user” and returns to your program

One Problem down, one to go

= Problem#1-How do-wepreventuserprograms
from-getting full control/access to the hardware”?
Mode bit, trap instruction, syscalls, SOLVED!

® Problem #2: How do we kick a process out of
the CPU and give the CPU to another process?

m | et’'s now deal with Problem #2
B The main idea is to switch between processes

"
It’s all about Regaining Control

m Switching between processes should be simple

B The OS should just decide to stop one process
and start another

m But it's not so easy: if a process is running on
the CPU, by definition the OS is not running!

Meaning, Kernel code is not running
®m S0 then how can the OS do anything???

B The question is: How can the OS regain control
of the CPU?

" A
The Cooperative Approach

® From the title, you already know it's not going to work ;)

® |n the cooperative approach, you just assume processes are nice
and willingly give up the CPU frequently

m For instance, each time a process places a syscall, then by
definition Kernel code is running, and then the OS can take
whatever action (like kicking the process off the CPU)

There could be a yield () syscall that does nothing and to just give up
the CPU so that Kernel code gets a chance to run

WEe'll see that there is something like this for threads!
® The old MacOS 9 is a famous example that used this approach

Yes, on an old Mac, a while (1) {} program will lock up the machine and
you'll need to reboot!

The easiest malware ever?
® How can we avoid this?
B Answer: with a timer

" JE
The Timer Interrupt

® To deal with non-cooperative processes, whenever the OS starts
the fetch-decode-execute cycle of a process it sets a timer

® \When the timer goes off, an interrupt is generated, so that the
CPU will stop what it's doing and notify the OS

® The kernel has a handler for this interrupt

® This handler is the way in which the OS regains control

And can say “you’ve have enough CPU, let me kick you off the CPU
and pick somebody else to run”

® Setting and enabling/disabling the timer are privileged
Instructions

Otherwise a user program could set the timer to 10 hours and hog the
CPU as much as it wants

® So now, we have the mechanism to regain control
m Next up: how to switch between processes?

"
Context Switching

® The mechanism to kick a process off the CPU and give the CPU to
another process is called a context switch:

Save the context of the running process to the PCB in RAM (which includes all
register values)

Change its state from Running to Ready

Restore, from the PCB in RAM, the context of another Ready process (which
includes all register values)

Make the state of this process Running
Restart its fetch-decode-execute cycle
® The context switch code is in assembly (Figure 6.4 in OSTEP)

® |t should be as fast as possible because it is pure overhead
Nothing “useful to users” happens during a context switch
Nowadays it's under 1us
m Context switch is a mechanism, and deciding when to context switch

(i.e., picking good timer values) and which Ready process to pick is a
policy, which is called scheduling

" A
Disclaimer about the Next Slide

B The next slide makes simplifying assumptions:
We assume a single CPU / single core system

We won't talk about threads, scheduling, and other concepts
= \WWe'll see those later, and we want to keep things simple for now
We assume that we have only two processes in memory

We also assume that they never to go the Waiting state
(e.g., performing some |/O) and that they never go to the
Terminated state (i.e., they run forever)

® Therefore with the above assumptions: At any given
time, one process is in the Running state and the other
IS In the Ready state

"
Context Switching

Event Time | Process #1 OS Process #2
- 1 Running - Ready

Timer! - Running - Ready
- 2 Ready (Context switch begins) Ready
- 3 Ready Save state in PCB #1 Ready
- 4 Ready Save state in PCB #1 Ready
- 5 Ready Restore state from PCB #2 Ready
- 6 Ready Restore state from PCB #2 Ready
- 7 Ready (Context switch ends) Running
- 8 Ready - Running
- 9 Ready - Running
- 30 Ready - Running

Timer! 31 Ready - Running
- 32 Ready (Context switch begins) Ready

Context Switching

Event Time | Process #1 OS Process #2
- 1 Running - Ready

Timer! - Running - Ready
- 2 Ready (Context switch begins) Ready
- 3 Ready Save state in PCB #1 Ready
- 4 Ready Save state in PCB #1 Ready
- 5 Ready Restore state from PCB #2 Ready
- 6 Ready Restore state from PCB #2 Ready
- 7 Ready (Context switch ends) Running
- 8 Ready - Running
- 9 Ready - Running
- 30 Ready - Running

Timer! 31 Ready - Running
- 32 Ready (Context switch begins) Ready

peay4ano

Buiyoyims

JX39jU0)

" J
Throwback to previous Module

® \We've now said several time that the Kernel
IS an event handler

® Remember that in the previous module we

showed “unrealistic pseudo-code” for the
kernel?

m \We've now talked about several new events,
so let’'s add to what we had said back then...

" JE
The Kernel’s (unrealistic) pseudo-

Event handling code

class Kernel {

[. . .1

method processEvent (Event event) ({
switch (event.type) ({
case MOUSE CLICK:

Kernel .MouseManager.handleClick (event.mouse_position); break;
case NETWORK COMMUNICATION:

Kernel.NeE%orkManager.handleConnection(event.network_interface); break;
case DIVISION BY ZERO:

Kernel.ProcessManager. terminateProgram(“Can't divide by zero"); break;

case INVALID MODE:
Kernel .ProcessManager. terminateProcess (“"Forbidden instruction”); break;

case TRAP_ INSTRUCTION:
Kernel.doSystemCall (event.syscall number); break;

case TIMER;INTERRUPT:
Kernel .ContextSwitchToAnotherProcess(); break;

}

return;

"
Main Takeaways

m | etting programs use all CPU instructions
directly is a BAD idea

User mode and kernel mode execution is a much
better idea

Some (dangerous) instructions are protected
The Trap Table and the Trap (syscall) instruction
Programs keep switching mode

m | etting programs hog the CPU is a BAD idea

Setting a timer and having the kernel regaining
control when the time goes off is a much better idea

Context switching

" A
Conclusion

B OSTEP makes a good “the OS is baby proofing the CPU”
analogy:

Make sure processes don’t do anything dangerous (privileged
instructions they’re not allow to execute)

But they can ask permission for an adult (the kernel) to do
something dangerous on their behalf (via system calls)

Make sure they don’t hog shared toys (the CPU) for too long (via a
timer interrupt)

B Quiz next week on this Module!

m Chapter 6 in OSTEP finishes by saying “now let’s talk about
scheduling”

m But first we'll talk about threads (in the next module)
® And then we’ll talk about scheduling...

