
Henri Casanova (henric@hawaii.edu)

ICS332
Operating Systems

Processes
(Practice)

(q1) What does this print?

 Note that the order
in which things are
printed will not be
deterministicint x = 12;

int pid = fork();
x += (pid == 0);
printf(“%d\n”,x);

(q1) Answer

int x = 12;
int pid = fork();
x += (pid == 0);
printf(“%d\n”,x);

12
13

or

13
12

(q2) What does this print?

 Note that the order
in which things are
printed will not be
deterministic

int x = 12;
int pid = fork();
x += (pid == 0);
printf(“%d\n”,x);
if (fork()) {
 x++;
}
printf(“%d\n”,x);

(q2) Answer

int x = 12;
int pid = fork();
x += (pid == 0);
printf(“%d\n”,x);
if (fork()) {
 x++;
}
printf(“%d\n”,x);

12
13
12
13
13
14

(q2) Count Processes

 How many new processes
does this program create (not
counting the initial process)?

int i = 3;
int pid;

while(i > 0) {
 pid = fork();
 if (pid > 0) {
 exit(0);
 } else {
 i--;
 }
}

(q2) Answer

 3 calls to fork(), so the answer
is 3
 The parent process exits after

calling fork(), and so there is no
proliferation of processes

int i = 3;
int pid;

while(i > 0) {
 pid = fork();
 if (pid > 0) {
 exit(0);
 } else {
 i--;
 }
}

(q3) Count Processes

 How many new processes
does this program create (not
counting the initial process)?

int i = 3;
int pid;

while(i > 0) {
 pid = fork();
 if (pid > 0) {
 i--;
 exit(0);
 } else {
 // nothing
 }
}

(q3) Answer

 Infinite
 The loop index is never

decremented in the child process
each time, and only the child
process loops back

 This is NOT a “fork bomb” because at
any given time there is a single process
running

 If you run this it will be hard to kill
manually

 By the time you look at the PID, it’s
already gone and there is a new
PID to kill

 The killall command saves the day!

int i = 3;
int pid;

while(i > 0) {
 pid = fork();
 if (pid > 0) {
 i--;
 exit(0);
 } else {
 // nothing
 }
}

(q4) Count Processes

 How many new processes
does this loop create (not
counting the initial process)?

for (int i=0;i<=3;i++) {
 fork();
}

(q4) Answer
 Iteration i=0: the main process creates

a child process, and now 2 processes
loop back and do iteration i=1

 Iteration i=1: 2 processes each create
one child process, so now 4 processes
loop back and do iteration i=2

 Iteration i=2: 4 processes each create
one child process, so now 8 processes
loop back to do iteration i=3

 Iteration i=3: 8 processes each create
one child process, for a total of 16
running processes

 Overall, this program creates 15
processes (not counting the main
process)

for (int i=0;i<=3;i++){
 fork();
}

(q5) Problem?

 What would be an eventual
problem if you were to execute
this program on your
computer? Explain.

int main() {
 for (;;) {
 pid = fork();
 if (pid == 0) {
 exit(0);
 } else {
 sleep(1);
 }
 }
}

(q5) Answer

 At each iteration the child
exists, but the parent never
acknowledges its death

 All created children linger as
zombies, eventually filling up
the process table

 We can run this (because we
have a sleep(1) in there!)
and observe….

int main() {
 for (;;) {
 pid_t pid = fork();
 if (pid == 0) {
 exit(0);
 } else {
 sleep(1);
 }
 }
}

(q6) No Zombies

 This program
creates an
increasing number
of zombies

 How can we add
one line of code to
make sure no
zombies are
generated?

for (;;) {
 pid_t pid = fork();
 if (pid == 0) {
 fork();
 exit(0);
 } else {
 // nothing
 }
}

(q6) Answer
 This is the classical “bad

grandpa” example from the
lecture notes

 At each iteration, the parent
process creates a child and
a grandchild, both of which
exit right away

 The grandchild will be
immediately adopted
because it becomes an
orphan

 But the child lingers
 The fix: have the parent

acknowledge the child’s
death

for (;;) {
 pid_t pid = fork();
 if (pid == 0) {
 fork();
 exit(0);
 } else {
 wait(NULL);
 }
}

(q7) Orphans?

 After this program
terminates, how
many orphans
where adopted?

 And how many of
these orphans are
still running?

for (int i=0; i < 1000; i++) {
 pid_t pid = fork();
 if (pid == 0) {
 if (!fork()) {
 sleep(10);

 }
 exit(0);

 } else {
 wait(NULL);
 }
 sleep(100);
}

(q7) Answer

 1000 orphans have
been adopted
 All the grand

children
 0 are running

 They all exit after
the sleep 10

for (int i=0; i < 1000; i++) {
 pid_t pid = fork();
 if (pid == 0) {
 if (!fork()) {
 sleep(10);

 }
 exit(0);

 } else {
 wait(NULL);
 }
 sleep(100);
}

(q8) Quick Orphan

 Write the shortest possible program that
creates an orphan that survives it forever…

(q8) Answer

 Write the shortest possible program that
creates an orphan that survives it forever…

int main() {
 if (!fork()) {
 for (;;);
 }
}

(q9) What does this print?
int x = 6;
int main() {
 int pid = fork();
 if (pid != 0) {
 x += 4;
 printf("%d\n",x);
 waitpid(pid, NULL, 0);
 printf("%d\n",x);
 } else {
 sleep(2);
 fork();
 printf("%d\n", x);
 }
}

(q9) What does this print?
int x = 6;
int main() {
 int pid = fork();
 if (pid != 0) {
 x += 4;
 printf("%d\n",x);
 waitpid(pid, NULL, 0);
 printf("%d\n",x);
 } else {
 sleep(2);
 fork();
 printf("%d\n", x);
 }
}

10
6
6
10

10
6
10
6

or

 The waitpid() call
waits only for the child,
not the grandchild, so
the second option
above is also possible

(q10) What does this print?

int main(int argc, char **argv) {
 FILE *output = fopen("sort","w");
 pid_t pid = fork();
 if (pid) {
 int exit_code;
 waitpid(pid, &exit_code, 0);
 fclose(output);
 } else {
 dup(fileno(output));
 execl(“/bin/ls","/bin/ls",
 (char *)NULL);
 }
 exit(0);
}

 An ICS 332 student
decided to write a program
that calls ls and pipes its
output to the sort
command, so that the
program should print the
sorted files in the current
directory

 This program has two
main mistakes

 Question 1: What does
this program actually do
and print?

 Question 2: How to fix it?

(q10) Answer

int main(int argc, char **argv) {
 FILE *output = fopen("sort","w");
 pid_t pid = fork();
 if (pid) {
 int exit_code;
 waitpid(pid, &exit_code, 0);
 fclose(output);
 } else {
 dup(fileno(output));
 execl(“/bin/ls","/bin/ls",
 (char *)NULL);
 }
 exit(0);
}

 Question 1:
 The program will

just print the
output of the ls
command to the
terminal

 And it will create
an empty file
called sort

(q10) Answer

int main(int argc, char **argv) {
 FILE *output = popen("sort","w");
 pid_t pid = fork();
 if (pid) {
 int exit_code;
 waitpid(pid, &exit_code, 0);
 pclose(output);
 } else {
 close(1);
 dup(fileno(output));
 execl(“/bin/ls","/bin/ls",
 (char *)NULL);
 }
 exit(0);
}

 Question 2:
 Use popen/pclose

as opposed to
fopen/fclose

 Note that fopen/
fclose would be
useful if we wanted
the output to go to a
file!

 Don’t forget to close file
descriptor 1 (stdout) so
that the output of the ls
command is redirected

