Processes

(Practice)

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

"
(q1) What does this print?

® Note that the order
In which things are
printed will not be

int x = 12; deterministic

int pid = fork()

x += (pid == 0);

printf (“%d\n”,x) ;

"
(q1) Answer

int x = 12;

int pid = fork()
x += (pid == 0);
printf (“%d\n”,x) ;

12
13

or

13
12

" JE
(q2) What does this print?

® Note that the order
In which things are
LEiE 53 = L2 printed will not be

int pid = fork(); deterministic

x += (pid == 0);

printf (“%d\n”,x) ;

if (fork()) {
xX++;

}
printf (“%d\n”,x) ;

"
(q2) Answer

int x = 12;

int pid = fork()

x += (pid == 0);

printf (“%d\n”,x) ;

if (fork()) {
X++;

}
printf (“%d\n”,x) ;

"
(q2) Count Processes

B How many new processes
_ _ does this program create (not
int pid; counting the initial process)?

int 1 = 3;

while(i > 0) {
pid = fork() ;
if (pid > 0) {
exit (0) ;
} else {
i--;

}

(q2) Answer

3;

int 1
int pid;

while(i > 0) {
pid = fork()
if (pid > 0) {
exit (0) ;
} else {
i--;

}

m 3 calls to fork(), so the answer

Is 3
The parent process exits after

calling fork(), and so there is no
proliferation of processes

(q3) Count Processes

int i = 3;
int pid;

while (i1 > 0) {
pid = fork();
if (pid > 0) {
i--;
exit (0) ;
} else {
// nothing

}

B How many new processes

does this program create (not
counting the initial process)?

"
(q3) Answer

int i = 3;
int pid;

while (i1 > 0) {
pid = fork();
if (pid > 0) {
i--;
exit (0) ;
} else {
// nothing

Infinite

The loop index is never
decremented in the child process
each time, and only the child
process loops back

This is NOT a “fork bomb” because at
any given time there is a single process
running

If you run this it will be hard to kill
manually

By the time you look at the PID, it's
already gone and there is a new
PID to kill

The killall command saves the day!

" A
(q4) Count Processes

B How many new processes
for (int i=0;i<=3;i++) { does this loop create (not
fork () ; counting the initial process)?

}

(q4) Answer

for (int 1i=0;i<=3;i++) {
fork () ;

lteration i=0: the main process creates
a child process, and now 2 processes
loop back and do iteration i=1

lteration i=1: 2 processes each create
one child process, so now 4 processes
loop back and do iteration i=2

lteration i=2: 4 processes each create
one child process, so now 8 processes
loop back to do iteration i=3

lteration i=3: 8 processes each create
one child process, for a total of 16
running processes

Overall, this program creates 15
processes (not counting the main
process)

" A
(q5) Problem?

_ _ ® \What would be an eventual
LN By problem if you were to execute
for (;;) { this program on your
pid = fork(); computer? Explain.
if (pid == 0) {
exit (0) ;
} else {
sleep (1) ;
}
}
}

"
(q5) Answer

int main() {
for (;;) {
pid t pid = fork();
if (pid == 0) {
exit (0) ;
} else {
sleep (1) ;

At each iteration the child
exists, but the parent never
acknowledges its death

All created children linger as
zombies, eventually filling up
the process table

We can run this (because we
have a sleep (1) in there!)

and observe....

"
(q6) No Zombies

® This program
creates an
for (;7) A increasing number
pid_t pid = fork(); of zombies
if (pid == 0) {
fork () ; ® How can we add
exit (0) ; one line of code to
} else { make sure no
// nothing zombies are
} generated?
}

(q6) Answer

for (;;) {
pid t pid = fork();
if (pid == 0) {
fork () ;
exit (0) ;
} else {
wait (NULL) ;

® This is the classical “bad
grandpa” example from the
lecture notes

m At each iteration, the parent
process creates a child and
a grandchild, both of which
exit right away

® The grandchild will be
immediately adopted
because it becomes an
orphan

m But the child lingers

® The fix: have the parent
acknowledge the child’'s
death

"
(9q7) Orphans?

for (int i=0; i < 1000; i++) {

pid t pid = fork();
if (pid == 0) {

if ('fork()) {

sleep(10) ;

}

exit (0);
} else {

wait (NULL) ;

}
sleep(100) ;

m After this program
terminates, how
many orphans
where adopted?

® And how many of
these orphans are
still running?

"
(q7) Answer

for (int i=0; i < 1000; i++) {

pid t pid = fork();
if (pid == 0) {

if ('fork()) {

sleep(10) ;

}

exit (0);
} else {

wait (NULL) ;

}
sleep(100) ;

}

®m 1000 orphans have
been adopted

All the grand
children

® 0 are running

They all exit after
the sleep 10

" JE
(q8) Quick Orphan

m \Write the shortest possible program that
creates an orphan that survives it forever...

" J
(q8) Answer

m \Write the shortest possible program that
creates an orphan that survives it forever...

int main() {
if ('fork()) {
for (;;);
}
}

" J
(q9) What does this print?

int x = 6;
int main() {
int pid = fork():;
if (pid '= 0) {
X += 4;
printf ("%d\n", x) ;
waitpid(pid, NULL, O);
printf ("%d\n", x) ;
} else {
sleep(2) ;
fork () ;
printf ("%d\n", x);

" J
(q9) What does this print?

int x = 6; 10 10

int main() {

_ _ 6 6

int pid = fork(); or

if (pid '= 0) { 6 10
x += 4; 10 6

printf ("%d\n",x) ;
waitpid(pid, NULL, O);
printf ("%d\n",x) ;

} else { m The waitpid () call
sleep(2); waits only for the child,
fork () ;

not the grandchild, so
the second option
} above is also possible

printf ("$d\n", x);

(q10) What does this print?

int main(int argc, char **argv) ({

pid t pid = fork();

if (pid) {
int exit code;
waitpid(pid, &exit code, 0);
fclose (output) ;

} else {
dup (fileno (output)) ;
execl (V“/bin/l1ls","/bin/1s",

(char *)NULL) ;
}
exit(0) ;
}

FILE *output = fopen("sort","w")

An ICS 332 student
decided to write a program
that calls 1s and pipes its
output to the sort
command, so that the
program should print the
sorted files in the current
directory

This program has two
main mistakes

Question 1: What does
this program actually do
and print?

Question 2: How to fix it?

"
(q10) Answer

int main(int argc, char **argv) {
FILE *output = fopen("sort","w")
pid t pid = fork();
if (pid) {
int exit code;
waitpid(pid, &exit code, 0);
fclose (output) ;
} else {
dup (fileno (output)) ;
execl (V“/bin/l1ls","/bin/1s",
(char *)NULL) ;
}
exit(0) ;
}

m Question 1:

The program will
just print the
output of the 1s

command to the
terminal

And it will create
an empty file
called sort

"
(q10) Answer

m Question 2:

int main(int argc, char **argv) ({

FILE *output = popen("sort","w"); Use popen/pclose
pid t pid = fork(); as opposed to
if (pid) { fopen/fclose

int exit_code;

Note that fopen/

waitpid(pid, &exit code, 0);
fclose would be

pclose (output) ;

} else { useful if we wanted
close (1) ; the output to go to a
dup (fileno (output)) ; file!
execl (“/bin/1s","/bin/1ls", _

(char *)NULL) ; ®m Don't forget to close file

} descriptor 1 (stdout) so

exit (0); that the output of the 1s

: command is redirected

