Threads: Principles

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)



"
Concurrent Programming

®m Concurrency: the execution of multiple “tasks” at the “same” time

m College students mostly write non-concurrent, or sequential,
programs

At any point, you could stop the program and say exactly which
instruction is being executed and what the runtime stack looks like

And there is a single answer to all the above for all execution of your
program at the same point in its execution

® |n a concurrent program, you design the program in terms of
tasks, where each task has a “life of its own”
Each task has a specific job to do
Tasks may need to “talk” to each other or “wait” for one another

Tasks can be in different regions of the code or in the same region of
the code a the same time

® |[t's a different way of thinking and of programming



" JE
Example #1: Make it Fast

m Consider an input array of 10,000 integers: { 23, 56, 7, 68, 68 ...}

® | want to output a boolean array where each element is true if and only if
the corresponding integer in the input array is odd
{ true, false, true, false, false ...}

m Assume it takes one millisecond to test an integer value and update the
output array
® Sequential programming:
Iterate through the array, which would take 10,000 milliseconds.
®m Concurrent programming:

If | create 10 “tasks” that each compute 1,000 output values, i.e., 1/10-th of the
work, each task takes 1,000 milliseconds

Now if | can execute these 10 tasks independently (on a 10-core CPU), the
whole execution could take as few as 1,000 milliseconds, i.e., 10x faster

In practice, we can’t go quite 10x faster due to various overheads and
bottlenecks (e.g., the memory)

But we should go much faster than sequential provided be have multiple cores
(which we all do in this day and age!)



" J——_
Example #2: Make it Responsive

m Consider a Photoshop-like app in which a click of a button launches a
transformation filter of all images that a user has selected

If many images are selected, this can take minutes
m Sequential programming:

While the transformation is happening, no other code can run, including the
code that reacts to button clicks, meaning that the application is “frozen”,
including whatever “Cancel” button one may have tried to implement

One solution, which is terrible, is to sprinkle “check whether the button is being
clicked” code all over the code that performs the transformation

And it may not be feasible if that code is, for instance, a third-party library
®m Concurrent programming:

Create a “task” in charge of watching buttons and reacting to clicks, which runs
all the time

Whenever the user clicks on some “OK” button to perform the image
transformation, create a “task” in charge of the transformation

Both tasks then run “at the same time”: while the image transformation is being
performed, the user can still interact with the app (e.g., to quit!)



"
Why Concurrency

® The two previous examples illustrate the two main
motivations for concurrency

® Make programs faster

Because multiple tasks can use different hardware
components at the same time

e.g., while task #1 uses a core, task #2 uses another
core, and task #3 uses the network card

B Make programs more responsive

While a task is blocked or doing something time-
consuming, other tasks can still do their work

e.g., while a task is waiting for a network packet to
arrive, another can animate a spinning beachball



"
False Concurrency on One Core

® \We now know that OSes use context-switching to alternate
between processes/threads on a core

® This is known as False Concurrency
® Example (gaps = context-switching overhead):

one core

S
rd

time

® Provides the illusion of concurrency to a human because
time quanta are short

® |[ncreases core utilization because when a process/thread
does I/0O, the core is used by another process/thread



" JEE
True Concurrency on Multiple Cores

=
O
| .
O
(@)
time>
C D S () C—
AN
=
O
| .
O
(@)

v

time

m False concurrency within each core
B True concurrency across cores

m e.g., the yellow and red threads sometimes experience true
concurrency



"
True/False Concurrency

®m The programmer should not have to care/know whether concurrency will
be true or false

A concurrent program with 10 threads will work on a single-core processor, a
quad-core processor, a 32-core processor, etc.

Typically you don’t know on what kind of computer the program will run anyway
® A multi-threaded program will reach higher interactivity with True and/or
False concurrency

® A multi-threaded program will reach higher performance only with True
concurrency

® Concurrency is not only about cores: there can be concurrency
between any two hardware resources

e.g., between the CPU and the Disk (a Web browser can have a thread that
reads data from the disk and a thread that renders that data)

m A “let’s just add threads and things will be more interactive and faster”
approach often works

® The OS makes it all transparent because it virtualizes the CPU



" J
Concurrency with Processes

® \We have already talked about concurrency
After all it's the 2nd “easy piece” in our textbook

® Processes run concurrently on the computer

They were used for concurrent programming a lot until the
early 90’s

And still used today

® But because the OS virtualizes memory, by default
processes don’t share memory

® \\e have seen that processes can communicate with [PC

Message passing: often not easy when processes have
complicated cooperating behaviors

Shared Memory: often simpler, but requires many system calls
and is cumbersome, up until the arrival of... threads!



" A
Threads

m Athread is a basic unit of CPU utilization within a process (i.e., it can
be seen as a “task”)

m A multi-threaded process: Concurrent executions of different parts of
the same running program, where each execution is a thread

m Each thread has its own:

Thread ID (assigned by the OS)

Program Counter (which instruction the thread currently executes)

Registers Set (which values are stored in registers)

Stack (bookkeeping of the thread’s function/method invocations)
®m The above fully defines “what a thread is doing right now”
m But “within a process” threads share:

The code/text section

The data segment (global variables)

The heap

And other things (file descriptors, signal handlers, ...)



"
Threads: Typical Representation

code || data || heap

regs stack

/

_ thread

Single-Threaded Process



"
Threads: Typical Representation

code || data || heap code || data || heap

regs stack ri|s|l|r||s|||r||s

_ thread

— S\\\

Single-Threaded Process Multi-Threaded Process



Multi-Threaded Program in Execution

OMMA
END

DJMO ) / DIC;

TURNAS ) * DAS2R;

TURNAS

TURNAS ) * DAS2R;

TURNAS

TURNAS ) * DAS2R

48 * £, TURNAS ) *

58 * DD2R +
5077.493988 * t, TURNAS ) * DAS2R

* DD2R +
0.377991 * t, TURNAS ) * D 2R

744430 * DD2R
4309600.8557

1*sin(elp)-

s = sin a )
dp += [ DsiliI0% psilili2] * t) * c +
(LIS psilili3] + t) +

de +=| psl 0] + epsij]
( 11 + epsij]

14)
19t) s

*dpsi = ( d 6 -0.042888 - 0.29856 * t ) * DAS2R;
*dep: 171 .

025)*t)*t)*t)*t)*t)* DAS2R

w=t/3600.0;

elsun = dmod ( 28!

090 * w, 360.0 ) * DD2R;

elj = dmod ( 34.35151874 +109306899.89453 * w, 360.0 ) * DD2R;

els = dmod ( 50.07744430 +44046398.47038 * w, 360.0 ) * DD2R;
wt= 0.00020e- elsun - els )
00e-10 *u 0+ emsun )

]
0013
+ elsun -elj )
+2.0 * elsun + emsun )
cos ( elsun + emsun )
+0.05312e-10 * u * sin ( tsol - emsun )
-0.13677e-10 * u * sin ( tsol + 2.0 * elsun )
-1.3184e-10_* v * cos (elsun )
+3.17679e-10 * u * sin ( tsol );

t + fairhdl[i3-1] );

1*t + fairhd[i3-1]);

64;i

fairhd[i3-3] * sin ( fairhd[i3-2] * t + fairhd[i3-1]

=765;-i){

* sin ( fairhd[i3-2] * t + fairhd[i3-1]);

t + fairhd[i3-1]);

wl) + wO;




Multi-Threaded Program in Execution

OMMA
END

DJMO ) / DIC;
LRNAS ) * DAS2R;
TURNAS
TURNAS ) * DAS2R;
TURNAS

TURNAS

) * DAS2R

R+
57991 +t, TURNAS ) + DA JR:

744430 * DD2R
4309600.855732 * t, TURNAS /| DAS2R:

1*sin(elp)-1

+ psiljli2]* t)
( v psiljli3
de +=| »psl (0] + eps|

( 1] + epsijlt

s = sin a )
dp += | silj
iy

*dpsi = ( dp
*deps =

025)*t)*t)*t)*t)*t)* DAS2R

w=t/3600.0;

elsun = dmod ( 280.4

els = dmod ( 50.0774

wt = 0.00029e-10 *
00e.

64;i

fairhd[i3-3] {

+ 1.0/amas(ip] da*da*da

dpe, da, de, di, dm

0 * w, 360.0) * DD2R;

3*w, 3600)*

DD!

2

R;

w, 360.0 ) * DD2R;

emsun )
os (elsun + emsun )

sin ( tsol - emsun )

5in ( tsol + 2.0 * elsun )

os ( elsun )

sin ( tsol );

bin ( fairhd[i3 t + fairhd[i3-1] );

§in ( fairhd[i3-2] * t + fairhd[i3-1]);

in ( fairhd[i3-2] * t + fairhd[i3-1]

in ( fairhd[i3-2] * t + fairhd[i3-1]);

in ( fairhd( t + fairhd[i3-1]);

wl) + wo;




Multi-Threaded Program in Execution

w=t/3600.0;

elsun = dmod ( 280.4 360.0 ) * DD2R;
emsun = dmod ( 3 2010918 +1295965810.481 * w, 360.0 ) * DD2R;

dmod ( 207.8501 0w, 360.0 ) * DD2R;
elj = dmod ( 34.3515 3+ w,360.0) * DD2R;
els = dmod ( 50.0774 47038 * w, 360.0 ) * DD2R,
0.00029¢-10 * [* sin ( tsol + elsun - els )
100e-10 * I <in > emsun )
n 1 s e un-elj)
DjMo) /DiC 5in ( tsol + 2.0 ’ el
bs (elsun + e sun)
sin ( tsol -en un )
Lin ( tsol + 2. ' elsun )
os ( elsun )
LRNAS ) * DAS2R: sin ( tsol );

pin ( fairhd[i3- * t + fairhd[i3-1]);

in ( fairhdli3. t + fairhd[i3-1] );

in ( fairhd[i3-25 * t + fairhd[i3-1]);
))) ), TURNAS

t, TURNAS ) * DAS2R.

in ( fairhd[i3-2] * t + fairhd[i3-1]);

. + 10/ama il (i = 78 Mg 783 i) €
i*3
fairhd[i3-3]%in ( fairhdl t + fairhdli3-1]);

i3
es2R : dpe, da, de, dl, dm, pv, & W+

wl) + wo;

psilile+ psiljli2] ¢ ) *

IS psiljli3] * t) *

psl (01 + epsijl[2] * t)*
11+ epslili31*t) *'s

DAS2R




Multi-Threaded Program in Execution

w=t/3600.0;

elsun = dmod ( 28 360.0 ) * DD2R;

emsun = dmod ( 3 810.481 * w, 360.0 ) * DD2R;

dmod ( 207 0+ w, 360.0) * DD2R;
e\‘| = dmod ( 34.3515 3+ w,360.0) * DD2R;
a1s Y dmod (56,0774 47038 * w, 360.0 ) * DD2R,
0.000296-10 | - in { ts01 = slsun -1t}
100e-10 * I <in > emsun )

e un-elj)
sin (tsol + 2. ' e
os (elsun + e sun)
sin (tsol -en un)
sin (tsol + 2.( * elsun)
. os ( elsun )
WRNAS ) * DAS2R; sin ( tsol );

DJMO ) / DIC;

Threads in a process can be SEES
doing different things -

in ( fairhd[i3-25 * t + fairhd[i3-1]
1)) ), TURNAS )

t, TURNAS ) * DAS2R.

in ( fairhd[i3-2] * t + fairhd[i3-1]

2R, n * . -
+ 10/ama il (i =78 g, 7850 ) {

i3=i+3;
Das2n ! dpe, da, de, I, dm, pv, & w4 += fairhd[i3-3]%in ( fairhd] t + fairhdli3-1]

wl) + wo;

psilile+ psiljli2] ¢ ) *

IS psiljli3] * t) *

psl (01 + epsijl[2] * t)*
11+ epslili31*t) *'s

DAS2R



Multi-Threaded Program in Execution

Or they can be running the
, i same code at the same time &
.. more or less e

3 *w, 360.0) * DD2R;

PFE 50.07744430 +44046398.47038 * w, 360.0 ) * DD2R;

wt= 0.00 1 )

DJMO ) / DIC; emsun )
10 *v* cos ( elsun + emsun )
-10 * u * sin ( tsol - emsun )
-10 * u * sin ( tsol + 2.0 * elsun )
* cos (elsun)
*u*sin (tsol );

sin ( fairhdli t + fairhd[i3-1] );

sin ( fairhdli t + fairhd[i3-1]);

64;i

Te
2 += fairhd[i3-3@* sin ( fairhd[i t + fairhd[i3-1]

05939 ) ))). TUR 1as ) * DAS2R
48 £, TURNE A n : e
* sin ( fairhd[{ - t + fairhd[i3-1] );

DD2R +
3988 * t, TURNA ) * DAS2R,

D2R +
77991 * t, TURNA
5: i) {

* sin ( fairhdl[; t + fairhd[i3-1]);

nterms
( (d

*dpsi = ( dp
*deps = (

025)*t)*t)*t)*t)*t)* DAS2R




Multi-Threaded Program in Execution

PERIOD
2

MINUS
OTHER

OMMA
END

DJMO ) / DIC;

) * DAS2R:

) * DAS2R;

05

939))) ), TUF

) * DAS2R,

) * DAS2R,
2R +
77991 * £, TURNA

4309600

sin (el

*dpsi = ( d
*dep:

5)%t)*t)*t)*t)*t)* DAS2R

wj -

elsug = dmod ( 28!

dmod ( 34.35

151874 +10930:

1
+0.05312e-10%u*
-0.13677e-10*u*
-1.3184e-10 *v*
+ 3.17679%-10*

sin ( fairhdlifF2] * t

i)
300
w2 += fairhd[i3-3@8* sin ( fairhd[i®-2] * t

* sin ( fairhd[i§-2] * t

7.0 >

fairhdl[i3-:

20 * w

360.0 ) * DD2R;
).481 * w, 360.0 ) * DD2R;
*w, 360.0) * DD2R;

3 * w, 360.0) * DD2R;

*w, 360.0 ) * DD2R;

+emsun )

airhd[i3-1] );

airhdl[i3-1] );

airhd[i3-1]

airhd[i3-1] );

airhd[i3-1] );

sin (t*




" A
Threads vs. Processes

® &) Memory sharing
Threads naturally share memory among each other
® Provides a Shared Memory IPC mechanism with no system calls
Having concurrent activities in the same address space is very powerful
It makes it possible to implement all kinds of concurrency behaviors/patterns

= @ No memory protection

This is a “feature” since we want threads to share memory
But this can cause really, really difficult bugs
More about this in the Synchronization module

" &) Economy

Creating a thread is cheap
» Slightly cheaper than creating a process in MacOS/Linux
= Much cheaper than creating a process in Windows

Context-switching between threads in a process is cheaper than between different
processes

m Because they share the same address space (TLB... see much later this semester)

So if you can use threads instead of processes, then you likely can go a bit faster
m |In old OSes (Solaris 4), threads were called “lightweight processes”



" A
Threads vs. Processes

" 9 Less fault-tolerance

If a thread fails/crashes, then the whole process fails/crashes, instead of
processes, which are independent of each other

This motivates developers to use both processes and threads (see next slide)

" @9 Possibly more memory-constrained

Since threads execute in the same address space, and an OS can bound the
size of a process’ address space

But that’s typically not a big deal (one can configure the OS if need be)

® The advantages here are well worth the drawbacks/limitations
The big drawback/feature is “no memory protection”

We have developed many, many approaches/solutions to deal with it (see the
Synchronization module)

® Natural question: is concurrency with processes obsolete?



"
Concurrency with Processes?

®m Should we still care about concurrency with processes?

®m YES because many applications consists of multiple processes (each of
which are often multi-threaded)

m \Well-known examples are some popular Web browser (Chrome, Firefox)!
They calls fork() each time you open a tab
Each tab is a (possibly heavily) multi-threaded process

As a result, the code contains processes that do IPC because they don'’t “see” the
same memory naturally

But if a tab crashes (due to running bad JavaScript code, for instance) your browser
doesn’t crash!

Google “firefox chrome processes threads” :)
® |n real-world settings you often have to put together different software
products to make up a whole system
Some may just be executables instead of libraries with nice APls
So you have to create processes

You interact with them via stdin/stdout/stderr streams for instance (see our
programming assignment) or via any supported IPC mechanisms

m Bottom-line: don't drink the “I'll only do threads, not processes” Kool-Aid



" A
User vs. Kernel Threads

® Threads can be supported solely in User Space (User Threads)
You can write your own thread implementation without help from the OS
Often a homework assignment in a graduate OS course

® The main advantage of User Threads is low overhead
e.g., because no system calls

m User Threads have several drawbacks:
If one thread blocks, all other threads block

All threads run on the same core (because the OS doesn’t know that
there are threads within a process)

® For these reasons User Threads are (no longer) heavily used
But Java recently re-introduced its old “Green (user) threads™!!

m All OSes today provide support for threads (Kernel Threads) that
can run on different cores and be truly independent of each other

m \We typically just call them “threads”



" A
Linux/MacOS Threads

® Processes and Threads are implemented as tasks
Kernel data structure: task struct
We already looked at it when we talked about processes

B The clone () syscall is used to create a task

® |t can be invoked with several options, each set or not set

m Each option specifies something the child should share or not share
with its parent

m fork () just calls clone () with a particular set of options
Preserved as a system call for backward compatibility to create processes

® From the man page: “if CLONE_VM is set, the calling process and the
child process run in the same memory space”

m To create a process, clone () is called without the CLONE_VM option

m To create a thread, clone () is called with, among other things, the
CLONE_VM option



"
Main Takeaways

®m Concurrency is used to make programs
faster and/or more responsive

® False and True concurrency

®m Threads within a process
Share the code and the heap

Have their own stack, registers, and program
counter
®m Concurrency with processes is not obsolete,
and many programs use both multiple
processes and multiple threads



Conclusion

® Threads have been mainstream for decades: multi-threading
today is everywhere, in part due to us having multi-core
architectures

m | et'sdo aps auxMon my MacOS laptop and see how many
processes are multi-threaded...

When | did this while back writing this slides | got 350 processes and
1157 threads. Almost all processes are multithreaded, with up to 60+
threads for a process

® | et's move on to seeing how to use them in programming
languages...

Almost all languages have some way to create and manage threads!



