
Henri Casanova (henric@hawaii.edu)

ICS332 
Operating Systems 

Threads: 
Programming



Threads in Programming Languages

 C/C++: Pthreads 
 C/C++: OpenMP (built on top of Pthreads) 
 C++: std::thread 
 Java: Java threads (implemented by the JVM, which relies on 

Pthreads) 
 Python: threading / multiprocessing packages 

 WARNING: the threading package implements user threads!! 
 Rust: std::thread 
 JavaScript: no multithreading in the language, and it won’t change, but 

there are options: 
 Node.js provides worker_threads, but without memory sharing,  a Worker 

thread implementation 
 There is a standard Web Worker API 

 Let’s look at Java…



Java Threads

 Java makes is easy to use threads 

 There is a Thread class 
 There is a Runnable interface 
 There is a Callable interface 
 There is an ExecutorService interface 

 Let’s see simple examples 



Java Threads

 Java makes is easy to use threads 

 There is a Thread class 
 There is a Runnable interface 
 There is a Callable interface 
 There is an ExecutorService interface 

 Let’s see simple examples of the first two



Extending the Thread class
 Extend the thread class 
 Override the run() method with what the thread should do 

 If you forget to override run(), your thread won’t do anything 
 Call the start() method to start the thread

Thread subclass
public class MyThread extends Thread { 
  MyThread(…) { … } 

  @override 
  public void run() { // code for what the thread should do } 
}

Main  program
public class MyProgram { 
  public static void main(…) { 
     MyThread myThread = new MyThread(…);    
     myThread.start(); 
     // At this point, 2 threads  are running! 
  } 
}



run() vs. start()

 You implement the thread’s code in run() 
 You start the thread with start() 

 WARNING: Calling run() does not create 
a thread, but it works  (it’s just a normal 
method call) 

 The start() method, which you should not 
override, does all the thread launching 

 It places whatever system calls are needed to start a 
thread, e.g., clone() on Linux 

 And then makes it so that the newly created thread’s 
fetch-decode-execute cycle begins with the first line of  
code of the run() method



The Runnable Interface
 Using the Runnable interface is preferred 

because then you can still extend another class 
 Java doesn’t have multiple inheritance 
 Typically if you can use an implements 

instead of an extends, you should 
 So that you keep the extends option open for 

another purpose 

 Let’s see an example…



Using the Runnable Interface
Runnable class

public class MyRunnable implements Runnable { 
  MyRunnable(…) { … } 

  @override 
  public void run() { // code for what the thread should do } 
}

Main  program

public class MyProgram { 

  public static void main(…) { 
     //  Create an instance of the runnable class 
     MyRunnable myRunnable = new MyRunnable(…); 
     // Pass it to the Thread constructor 
     Thread thread = new Thread(myRunnable); 
     // Start the thread 
     thread.start(); 
    // At this point, 2 threads  are running! 
  } 
}



In-line Thread Creation

Main  program

public class MyProgram { 

  public static void main(…) { 

    // Start an anonymous thread with a single statement 
    new Thread( new Runnable() { 

   @Override 
   public void run() { 
    …  
   } 

    }).start(); 

  } 
}

 Sometimes it’s cumbersome to declare one-shot 
Runnable  classes, so one can inline everything



Printing 0’s Example
Runnable class

public class HelloWorldRunnable implements Runnable { 
  private int index; 
  public HelloWorldRunnable(int index) { 
    this.index = index; 
  } 
  @Override 
  public void run() {  
    for (int i=0;i<10000;i++) {  
      System.out.print(this.index);  
    } 
  }  
} 

public class MyProgram { 
  public static void main(String[] args) {  
    HelloWorldRunnable helloRunnable = new HelloWorldRunnable(0); 
    Thread helloThread = new Thread (helloRunnable); 
    helloThread.start(); 
  } 
}



Printing 0’s Example
 The previous program runs as a Java process 

 In fact as a thread inside the JVM process  
 We call it the “main thread” 

 When the main thread calls the start() method it creates 
a new thread 

 We now have two threads that are running: 
 The main thread, which doesn’t do anything 
 The newly created thread, which prints 0’s to the terminal 

 In Java, the program terminates only when all your threads 
terminate (not true in all languages) 

 The main thread terminates when it returns from main() 
 All others terminate when they return from run() 

 Let’s now have the main thread do something as well…



Printing 0’s and 1’s Example
Runnable class

public class HelloWorldRunnable implements Runnable { 
  private int index; 
  public HelloWorldRunnable(int index) { 
    this.index = index; 
  } 
  @Override 
  public void run() {  
    for (int i=0;i<10000;i++) {  
      System.out.print(this.index);  
    } 
  }  
} 

public class MyProgram { 
  public static void main(String[] args) {  
    HelloWorldRunnable helloRunnable = new HelloWorldRunnable(0); 
    Thread helloThread = new Thread (helloRunnable); 
    helloThread.start(); 
    for (int i=0;i<10000;i++) {  
      System.out.print(1);  
    } 
  } 
}



What to Expect?
 Now we have the main threads printing to the 

terminal and the new thread printing to the 
terminal 

 What will the output be? 
 Answer: Impossible to tell for sure 

 If you know the details of the implementation of the 
JVM on your host, and you know your OS and 
hardware well, perhaps you can have some idea of 
what it might look like 

 ... but it’s not very useful because it will look different on 
a different setup (it’s not portable)  

 Let’s have a look at a few executions…



What to Expect?
 Now we have the main threads printing to the 

terminal and the new thread printing to the terminal 
 What will the output be? 
 Answer: Impossible to tell for sure 

 If you know the details of the implementation of the JVM 
on your host, and you know your OS and hardware well, 
perhaps you can have some idea of what it might look 
like 

 ... but it’s not very useful because it will look different on 
a different setup (it’s not portable) and at least a bit 
different each time you run it 

 Let’s have a look at a few executions…



Output Samples

 The execution is 
non-deterministic 

 Something 
decides when a 
thread runs 
(JVM, OS) 

 Deciding when a 
thread runs is 
called scheduling



Multi-Threaded Programming
 Major challenge: You cannot make any assumption 

about thread scheduling, since the OS is in charge  
 And what the OS does depend on the hardware and on 

other running processes  
 Major difficulty: You may not be able to reproduce a 

bug because each execution is different!  
 Makes it hard to debug! 
 Worse: you may think your code is correct, but that’s 

because you haven’t been able to observe the bug yet… 
 If you run your code 10,000 times and don’t see the bug, 

you still cannot be sure that the bug will not happen 
 But, someday, your users will 😱



Java/Kernel Threads
 The JVM is itself multi-threaded!  

 The JVM has a thread scheduler for application threads, which are 
mapped to kernel threads  

 Several application threads could be mapped to the same kernel thread (they 
are then “user threads”) 

 That thread scheduler runs itself in a dedicated thread 
 The OS is in charge of scheduling kernel threads 

 But it also runs many threads itself (e.g., the garbage collector) 

 In a nutshell: Threads are everywhere 
 Kernel threads that run application threads 
 Kernel threads that do some work for the JVM  

 Let’s write a Java program that does nothing and count threads 
(ps auxM)…



Influencing Threads?
 At this point, it seems that we throw a bunch of threads in, the OS “shakes the 

bag”, and we don’t really know what happens  
 To some extent this is true, but we have ways to influence what happens control  
 In Java, a thread can call Thread.yield(), which says “I am willingly giving 

up the CPU now”  
 But it is still not deterministic! 
 Programs should NEVER rely on yield() for correctness (it’s more a hint to the JVM, 

and can help for interactivity)  
 In Java, there is a Thread.setPriority() method  

 Thread priorities are integers ranging between Thread.MIN_PRIORITY and 
Thread.MAX_PRIORITY: the greater the integer, the higher the priority 

 These are hints and you can’t rely on them (and they don’t work at all on some JVM 
implementations!!)  

 All the above are “hints that may have some effect”, nothing more  
 So they don’t really solve anything for certain  

 Bottom Line: Orchestrating thread executions requires more advanced 
features (stay tuned…)



Java Thread LifeCycle

NEW

RUNNABLE

WAITING

TERMINATED

start()

BLOCKEDTIMED_WAITING

These three states are reached when calling various methods 



Java Thread LifeCycle

NEW

RUNNABLE

WAITING

TERMINATED

start()

BLOCKEDTIMED_WAITING

These three states are reached when calling various methods 

This lifecycle is of course very 
similar to the process lifecycle…



Flashback: Process LifeCycle

New

Running

Waiting

Terminated

Ready

NEW

RUNNABLE

WAITING

TERMINATED

BLOCKEDTIMED_WAITING

Java Threads OS Processes/Threads



Java Threads: the join() Method
 The Thread::join() method causes a thread to 

wait for another thread’s termination
Example program

public class JoinExample { 
  public static void main(String args[]) { 
    // Create a thread 
    Thread t = new Thread (new Runnable() { 
     public void run() { . . . }}); 
    
    // Spawn it 
    t.start(); 
     
    // Do some work myself 
    . . . 

    // Wait for the thread to finish 
    try {  
      t.join();  
    } catch (InterruptedException e) {} 
  } 
}

 Useful to give work to do 
to a thread 

 This is our first example of 
thread “synchronization” 

 Synchronization is a 
generic word used to 
denote ways in which one 
can control the execution 
of a group of threads 

 We’ll talk more about this 
in the Synchronization 
module



Main Takeaways

 Java has several ways to create threads 
 The easiest is to extend the Thread class 
 A better way (software engineering wise) is to 

implement the Runnable interface 
 Execution can be non-deterministic 
 The Thread::join() method causes a thread to 

wait for the termination of another



Conclusion

 In this course we don’t have a large focus on 
using threads  
 We barely scratched the surface in these lecture notes 
 We’ll talk more about programming with threads in the 

Synchronization module 

 The main topic of ICS 432 is using threads 

 Quiz next week on this module...  
 Optional Homework Assignment #4...  
 This concludes all material for Midterm #1!


