Threads:

Programming

ICS332
Operating Systems

Henri Casanova (henric@hawaii.edu)

" JEE
Threads in Programming Languages

m C/C++: Pthreads
m C/C++: OpenMP (built on top of Pthreads)
m C++: std::thread

® Java: Java threads (implemented by the JVM, which relies on
Pthreads)
® Python: threading / multiprocessing packages
WARNING: the threading package implements user threads!!
m Rust: std::thread
m JavaScript: no multithreading in the language, and it won’t change, but
there are options:

Node.js provides worker_threads, but without memory sharing, a Worker
thread implementation

There is a standard Web Worker API

m Let's look at Java...

" A
Java Threads

® Java makes is easy to use threads

nere Is a Thread class

nere i1s a Runnable interface

nere is a Callable interface

nere i1s an ExecutorService interface

m | et's see simple examples

" A
Java Threads

® Java makes is easy to use threads

B Thereis a Thread class
® There is a Runnable interface

m | et’'s see simple examples of the first two

"
Extending the Thread class

m Extend the thread class
m Override the run () method with what the thread should do

If you forget to override run (), your thread won’t do anything
m Call the start () method to start the thread

Thread subclass

public class MyThread extends Thread ({
MyThread(..) { .. }

Qoverride
public void run() { // code for what the thread should do }

}

public class MyProgram ({
public static void main(..) {
MyThread myThread = new MyThread(..) ;
myThread.start() ;
// At this point, 2 threads are running!

" JE
run() vs. start()

m You implement the thread’s code in run ()
m You start the thread with start ()

m WARNING: Calling run () does not create
a thread, but it works (it's just a normal
method call)

®m The start () method, which you should not
override, does all the thread launching

It places whatever system calls are needed to start a
thread, e.g., clone () on Linux

And then makes it so that the newly created thread'’s
fetch-decode-execute cycle begins with the first line of
code of the run () method

" A
The Runnable Interface

® Using the Runnable interface is preferred
because then you can still extend another class

Java doesn’'t have multiple inheritance

Typically if you can use an implements
instead of an extends, you should

= So that you keep the extends option open for
another purpose

m | et's see an example...

"
Using the Runnable Interface

public class MyRunnable implements Runnable {
MyRunnable(..) { .. }

Qoverride
public void run() { // code for what the thread should do }

}

public class MyProgram ({

public static void main(..) {
// Create an instance of the runnable class
MyRunnable myRunnable = new MyRunnable(..) ;
// Pass it to the Thread constructor
Thread thread = new Thread (myRunnable) ;
// Start the thread
thread.start () ;
// At this point, 2 threads are running!
}
}

" B
In-line Thread Creation

B Sometimes it's cumbersome to declare one-shot
Runnable classes, so one can inline everything

public class MyProgram ({

public static void main(..) {

// Start an anonymous thread with a single statement
new Thread(new Runnable () {

@Override
public void run() {

}m
}) .start () ;

Printing 0’s Example

public class HelloWorldRunnable implements Runnable ({
private int index;
public HelloWorldRunnable (int index) {
this.index = index;
}
@Override
public void run() {
for (int i=0,;i<10000;i++) {
System.out.print (this.index) ;
}
}
}

public class MyProgram ({
public static void main(String[] args) ({
HelloWorldRunnable helloRunnable = new HelloWorldRunnable (0) ;
Thread helloThread = new Thread (helloRunnable) ;
helloThread.start() ;

}

"
Printing 0’s Example

B The previous program runs as a Java process
In fact as a thread inside the JVM process
We call it the “main thread”
m \When the main thread calls the start () method it creates
a new thread
® \We now have two threads that are running:
The main thread, which doesn’t do anything
The newly created thread, which prints O’s to the terminal

® |n Java, the program terminates only when all your threads
terminate (not true in all languages)

The main thread terminates when it returns from main ()
All others terminate when they return from run ()

® | et’'s now have the main thread do something as well...

Printing 0’s and 1’s Example

public class HelloWorldRunnable implements Runnable ({
private int index;

public HelloWorldRunnable (int index) ({
this.index = index;

}

@Override

public void run() {
for (int i=0,;i<10000;i++) {

System.out.print (this.index) ;

}

}

public class MyProgram {

public static void main(String[] args) {

HelloWorldRunnable helloRunnable = new HelloWorldRunnable (0) ;

Thread helloThread = new Thread (helloRunnable) ;
helloThread.start() ;
for (int i=0;i<10000;i++) {

System.out.print (1) ;
}

" J———
What to Expect?

® Now we have the main threads printing to the
terminal and the new thread printing to the
terminal

® \What will the output be?

" J——_
What to Expect?

® Now we have the main threads printing to the
terminal and the new thread printing to the terminal

® \What will the output be?

® Answer: Impossible to tell for sure

If you know the details of the implementation of the JVM
on your host, and you know your OS and hardware well,
perhaps you can have some idea of what it might look
like

... but it's not very useful because it will look different on
a different setup (it's not portable) and at least a bit
different each time you run it

m | et’'s have a look at a few executions...

" S
Output Samples

File Edit View Terminal Tabs Help

schastel@flies:~/workspace.ics332/050 Threads_010% java -cp bin edu.hawaii.ics332.HelloWorldRunnable
00000000000000000000111111111111111111111111111111113111111113131211113131111113131313133131311113131311113131311111131111111611111111111111111111731111711711111111111
1111111111111 1131313121131313111111711111111111111160000001111111111111111111111131313103133131310332331313133133131311113131311113131311111171171111111111111111110000000
0001000111111110600111111111111100000000111000000000000000000111110
00011111100000111000000000000000000000000000000000011000111111111111111000
00000000001100000000001111111000000000000000000000000111001160011111111100000001111111111111111111110000000000000000001111111111110000011111111600011110011111111111
111111111160001100000000001111111111111111111111600111111111100000000000000011111000000000000000000000000000111000000000000000011100001111111111000000011110001116000
011001111111111111111111000000000011116001100000011000111111111111111111111111111111111060000000110000000001111111100000000000011111
11111111111111111111111110000000000000000000011111111111111111111111111111111111600160000000000000000001000000000011111100000111111 4 .
11111110601111111111111000011116001111111111110011160000111111000000000000011111111111111111116000001111111111111000000000011111111 . The executlon IS
111111111060000000000001111116000011111100000000000011111111116001111111111111111160100000011111111111116000000111111111111160000000
0160111111111111111111060000000111001000000000000000000000000111111111111111111111160600111111111111111111111111111000000111111100001 t . s t.
00! ..(j
00000000000000000000000000000000 non e ermlnls IC
schastel@flies:~/workspace.ics332/050 Threads 010% java -cp bin edu.hawaii.ics332.HelloWorldRunnable
00000000000000000000011111111111111111111100111111111110000000010000000000000000000000000001 55; tl1'
10000000000000000000000001111111111606011111111111116000010000000000000001111111111111111116011110110000000000000011111011111111116011 ()lﬂr]fa |r]€;
111111111111111111111111111311313111131171111111711111111111111111111160000011111000000011 i
001111111111111111111111111111113131111113131111111131111117313117111131731717111171171111111111111111110000000001111111160001111111111111 deCIdeS When a
001111111111111111111111111106000011111111000000000000000000000000111111111111111111060111111111160000111111111600000111111111111111
11100000000000011111111111600601111111111111100000000000011600001111111111160000
0000000000000000011111111111000000000000000001111111111111111111111171171111111111111111111111600000000001100000001111111111111111111 thread runs
0011111111111110000000000000000011111111111111111111111111111111110000000000001111111111111111100000000000011111111111111600001111
00000000000000000000011111111111110001100000000001111111
0000000000000000000000000000000000001100111111111111100000111111111111111111111111111111111160000000000000000000000000000000000001 (JVM OS)
00000000011111111111111111111111111111111100000000000000000000000000000000001111111000111111111111111110000000000000000000000000001 4
00

00000000000000000000000000000000 D d h
schastel@flies:~/workspace.ics332/050 Threads 0105 java -cp bin edu.hawaii.ics332.HelloWorldRunnable eCI Ing W en a
0000000000000111111111111111111111111111111111111600000000000000111111111111111111111111600600111111111111111111111111111111111601111 .
1111111111111111160000111111111111111111111111111110011111111711131171311317117131171311311713111111601111111317137131711713117111311711111111601111111 thread runs IS
111111111111111111116000000111111111111111111111111116000000111111111111111111100000000000011111111111111111117111111111111111111111
0000000111111111111111111111000000011111100011111111111111111111111111111111100000000000111111110001111111111111110000111111111111 .
1111100100011001111000000000000000110000000000000111111600111111116011110001111111111111111600000000001111111111160000000000000000000! Ca”ed SChedU||ng
0001110000000000000000000000011111111111101101111100000001111111111111116011111111111111111111110000000011111111111100000111000001
11111111160000000000000111111111100000000000000111111111111100000011111111111111111111111110111111111110000000011111110001111116000
01100000000001111111111111111111111111111111116000000000000000001111111100000000010000111111000000000001111111011111111111111111111000000ULLUVUUUUUUUUUUYLIUUUUUUUULL
I111111111711711111711711111116011111111116000000000111111111111111111000000000000000000000000000000001100000000011000000000000000111116000001111111111111111110001111111
1111111111111111001110000000000001100000000000000000000000111000
00
00
00000000000000000000000000000000

schastel@flies:~/workspace.ics332/050 Threads 0105 java -cp bin edu.hawaii.ics332.HelloWorldRunnable
000000000000111111111111111111711111111111111111111111100000000000000000000000000000011111111111111111111111111111100
0001111111111111110000000000001011
1111111100000000011111111111111111111111111111111111160111111111111111111111111111711111111111160111160000011111111111111110011111000000000000000111111111111111600000000
011111111111110011110000001111111111111111I11I1I11I111111111111111100000000000001111111111000000000111111111
111111111116601111000001111111111111110600011110000000000000001111111111111000111111111111111111111000001100000011111111000000000000011111100000000000000000001111111
11111111111160000000000000001111111111111100000001111111111111111111111111111111110000000000000011111111111116000001111111111111111160011111111111100111111111111600000
0000000111000111111111000001110000000000000000000111111111111111111116001160001111111111111111111111110000000000000001111111111
1111111111111111111100011111111111111111111111111111600000011111111111111111111600011111111111111111111111000000000000000000001111000000000000000001111111111111111111
1111111111711131713131711111711111116011111111171113171317131713713171111601111171317131313371313331337333133337133713133731371337137131713117111111110011111000001111111111111111111111111116060
000111111111111111111111111111160000000000111000000011111000010111000000000000000000000000001111110000000111111111111111111000001111111111111111100000000000011111100
00
00
00000000000000000000000000000000

schastel@flies:~/workspace.ics332/050 Threads 010

"
Multi-Threaded Programming

m \lajor challenge: You cannot make any assumption
about thread scheduling, since the OS is in charge

And what the OS does depend on the hardware and on
other running processes

m \iajor difficulty: You may not be able to reproduce a
bug because each execution is different!

Makes it hard to debug!

Worse: you may think your code is correct, but that's
because you haven't been able to observe the bug yet...

If you run your code 10,000 times and don’t see the bug,
you still cannot be sure that the bug will not happen

But, someday, your users will &2

" A
Java/Kernel Threads

® The JVM is itself multi-threaded!

The JVM has a thread scheduler for application threads, which are
mapped to kernel threads

® Several application threads could be mapped to the same kernel thread (they
are then “user threads”)

®m That thread scheduler runs itself in a dedicated thread
= The OS is in charge of scheduling kernel threads

But it also runs many threads itself (e.g., the garbage collector)

® |n a nutshell: Threads are everywhere
Kernel threads that run application threads
Kernel threads that do some work for the JVM

m | et's write a Java program that does nothing and count threads
(ps auxM)...

" J
Influencing Threads?

m At this point, it seems that we throw a bunch of threads in, the OS “shakes the
bag”, and we don’t really know what happens

® To some extent this is true, but we have ways to influence what happens control

® [n Java, a thread can call Thread.yield (), which says “I am willingly giving

up the CPU now”

But it is still not deterministic!

Programs should NEVER rely on yield () for correctness (it's more a hint to the JVM,
and can help for interactivity)

m |In Java, there is a Thread.setPriority () method

Thread priorities are integers ranging between Thread .MIN PRIORITY and
Thread.MAX PRIORITY: the greater the integer, the higher the priority

These are hints and you can’t rely on them (and they don’t work at all on some JVM
implementations!!)

m All the above are “hints that may have some effect”, nothing more
So they don’t really solve anything for certain

®m Bottom Line: Orchestrating thread executions requires more advanced
features (stay tuned...)

" J
Java Thread LifeCycle

start ()

RUNNABLE

@ BLOCKED

These three states are reached when calling various methods

"
Java Thread LifeCycle

Crev > e

start ()

; This lifecycle is of course very
i similar to the process lifecycle...

e N L i SN S i kot o ‘--.

These three states are reached when calling various methods

Flashback: Process LifeCycle

Java Threads OS Processes/Threads

Java Threads: the join() Method

m The Thread: : join () method causes a thread to

wait for another thread’s termination

Example program

public class JoinExample ({
public static void main(String args[]) {
// Create a thread
Thread t = new Thread (new Runnable() {
public void run() { . . . }1});

// Spawn it
t.start () ;

// Do some work myself

// Wait for the thread to finish
try {

t.join();
} catch (InterruptedException e) ({}

m Useful to give work to do
to a thread

® This is our first example of
thread “synchronization”

® Synchronization is a
generic word used to
denote ways in which one
can control the execution
of a group of threads

m \We'll talk more about this
in the Synchronization
module

"
Main Takeaways

® Java has several ways to create threads
B The easiest is to extend the Thread class

m A better way (software engineering wise) is to
implement the Runnable interface

B Execution can be non-deterministic

® The Thread::join() method causes a thread to
walit for the termination of another

" A
Conclusion

® |n this course we don’t have a large focus on
using threads

We barely scratched the surface in these lecture notes

We'll talk more about programming with threads in the
Synchronization module

® The main topic of ICS 432 is using threads

® Quiz next week on this module...
m Optional Homework Assignment #4...
B This concludes all material for Midterm #1!

