Classic

Concurrency
Problems

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" A
Classic Problems

m Studying concurrency in real-world applications is always difficult
Applications have their own idiosyncrasies

They are often very large and it would take hours for us to
understand how they work

® So people have designed easy-to-understand applications that
raise relevant and challenging concurrency issues

Based on “everyday life” situations
® \Ne have seen Producer / Consume and Reader / Writer

m | et’s look at a few others in some detail (in whatever pseudo-
code)

Savings Account (very simple)
Barbershop (still pretty easy)
Dining Philosophers (difficult and very famous)
m \We'll look at possible solutions, and discuss pros and cons

" A
Shared Bank Account

m Consider a bank account shared by
multiple people
® There are two operations
deposit(): adds money to the account
withdraw(): remove money
= Should block if not enough money
® A simple problem, very similar to producer /
consumer at first glance

The difference is that one can deposit and
withdraw more than one dollar at a time

m | et's look at a solution with locks/condvars

" A
With Locks/Condvars

public class BankAccount {

int total=0; ® A bit brute-force: we wake up
Condvar more_money; everyone for every deposit!
Lock mutex;

void deposit(int amount) { ® Problem: starvation

mutex.lock();

total += amount;
mutex.unlock();
more_money.signal_all();

}

void withdraw(int amount) {
mutex.lock();
while (amount > total) {
more_money.wait(mutex);
}

total -= amount;
mutex.unlock();

® Anybody sees why?...

With Locks/Condvars

public class BankAccount {
int total=0;
Condvar more_money;
Lock mutex;

void deposit(int amount) {
mutex.lock();
total += amount;
mutex.unlock();
more_money.signal_all();

}

void withdraw(int amount) {
mutex.lock();
while (amount > total) {
more_money.wait(mutex);
}
total -= amount;
mutex.unlock();

}
}

m A bit brute-force: we wake up
everyone for every deposit!

® Problem: starvation
® Anybody sees why?...

® A large withdrawal can
constantly be overtaken by a
stream of small
withdrawals...
= A: withdraw(10000)
= B: while (true) { withdraw(1); }

m Before we try to fix this, let’s
attempt to do the exact same
this with semaphores...

" J—_
With Semaphores

int total = 0
Semaphore mutex = 1 void withdraw(int amount) {
Semaphore money = 0 mutex.P();
while (amount > total) {
mutex.V();
void deposit(int amount) { money.P();
mutex.P(); mutex.P();
total += amount;)
money.V(); total -= amount
} mutex.V(); mutex.V();
}

This is not very semaphore-like: we're using the total variable to keep
track of the money in the account (using a counting semaphore instead
comes to mind)

It turns out that this doesn’t actually work... any ideas why?

" J—_—
With Semaphores

int total = 0 void withdraw(int amount) {
Semaphore mutex = 1 mutex.P():
Semaphore money = 0 while (amount > total) {
mutex.V();
void deposit(int amount) { money.P(),
mutex.P(); mutex.P();
total += amount; } _
money.V(); total -= amount
mutex.V(); mutex.V();

Thread A: withdraw(500)
Thread B: withdraw(500)
Thread C: deposit(1000)

Only one of A or B is “awakened”, and the other ones may
sleep forever even though there is enough money in the
account for its withdrawal

m No direct equivalent of signal_all() in the monitor solution

But we know that we should be able to use any synchronization paradigm
as they are all equivalent... that means we need to make the code more
complicated

" J—_
With Semaphores

® One possible solution
void withdraw(int amount) {

int total = 0 mutex.P();
sem_t mutex = 1 while (amount > 0) {
sem_t onedollar = 0 mutex.V();
for (i=0; i < amount; i++) {
void deposit(int amount) { onedollar.P();
mutex.P(); amount--;
total += amount: mutex.P();
for (i=0; i < amount; i++) ’Eotal = amount:
onedollar.V(); ’

mutex.V(); : mutex.V();

m By calling V() for each dollar, and calling P() for each dollar now we
don’t have the problem that a withdrawer can “miss” a call to V()

® But it has high overhead for large $ amounts

®m \We have another problem, that we have seen before with reader-write,
if we have two withdrawals happening concurrently: splitting the
amount....

" A
Bank Account with Semaphores

int total = 0 void withdraw(int amount) {

mutex.P();
Selm_ L NUES = 1_ while (a(erount > 0) {
sem_t onedollar =0 mutex.V();
for (i=0; i < amount; i++) {
void deposit(int amount) { onedollar.P();
mutex.P(); amount--;
total += amount; mutex.P();
for (i=0; i < amount; i++) }
onedollar.V(); total -= amount;
mutex.V(); mutex.V();

} Y

B Say two withdrawals for $500 happens are ongoing and
$500 is deposited

m With the above code it's possible that each withdrawer gets
$250 and then is stuck

® So we have starvation again...

" J——
Sequential Withdrawals

® \We have a starvation problem in all our previous
solutions because withdrawals can happen
“simultaneously”

m | et's now opt for a brute-force solution to the
starvation problem: force withdrawals to happen in
order!

m | et’'s do this both for our lock/condvar and our
semaphore solution....

" A
With Lock/Condvars

public class BankAccount {
int total=0; . g
Condvar more_money; - By using an additional
Lock mutex, withdrawing; lock, we can force

withdrawals to happen in

void deposit(int amount) {

mutex.lock(); sequence

total += amount;

mutex.unlock();

more_money.signal_all(); m | et's do it with
} semaphores...

void withdraw(int amount) {
withdrawing.lock()
mutex.lock();
while (amount > total) {

more_money.wait(mutex);

}
total -= amount;
mutex.unlock();
withdrawing.lock();

}

" J——
With Semaphores

int total = 0 void withdraw(int amount) {
Semaphore mutex = 1 withdrawing.P();
Semaphore withdrawing = 1 mutex.P();
Semaphore money =0 while (amount > total) {
mutex.V();
void deposit(int amount) { money.P();
mutex.P(); mutex.P();
total += amount; }
money.V(); total -= amount
mutex.V(): mutex.V();
) withdrawing.V()

}

® Now that withdrawals happen in sequence, we don’t have to go
dollar-per-dollar and can use single calls for money.V() and
money.P()

®m This works but is very non-semaphore-like, let's now use a
counting semaphore...

" J——_
With Semaphore

B A nicer, more semaphore-esque solution

sem _t balance =0

sem_t withdrawing = 1 void withdraw(int amount) {
Withdrawing.P();
for (i=0; i < amount; i++)

void deposit(int amount) { balance.P();
for (i=0; i < amount; i++) withdrawing.V();
balance.V(); }
}

®m Using a counting semaphore removes the need for the total
variable, which makes the code much better (not while/if

statements)
m But then it goes dollar-per-dollar, which has higher overhead
again....

" A
Bank Account

®m Each solution has its own “features”

Starvation behaviors

= Which we “fixed” by imposing a sequential order on withdrawals,
which is both good and bad

Code complexity
Overhead

® Depending on the desired behavior and the use case,
some solutions may be preferable

® Aiming for a great solutions across all use cases is
perhaps not possible, and you can see how one could
spend a lot of time designing it

® This is the whole point of these “metaphor” problems:
perhaps there is no great solution, but thinking one is a
great learning and thought experiment

" A
The BarberShop Problem

® A simpler problem, for which there are great solutions
| |t's “just” about thread communication

® The Barber provides a service (i.e., a haircut) to customers
opens the door to the shop
waits for a customer
gives a haircut
tells the customer to leave
waits until the customer has left through the back
B The Customer
walits for the door to open
enters the barber shop
waits until the barber is available
waits until the haircut is finished
leaves the shop through the back door
® The problem: develop a Barber Shop monitor

The BarberShop

customer
has left

customer getting barber

a haircut

%/0

©0 0

waiting customers

" A
With Locks/Condvars

® \Ve must implement three methods
getHaircut(): called by customers
getNextCustomer(): called by the barber when free
finishedCut(): called by the barber when done

void Customer() {

void Barber() { BarberShop.getHaircut();
while (true) { }
BarberShop.getNextCustomer();
<Cut hair> void Customer() {
BarberShop.finishedCut(); } e
}
) void Customer() {

BarberShop.getHaircut();
}

" A
BarberShop with locks/cond vars

® \We use four boolean flags
barber: IDLE / WORKING (barber)
left: GONE / STILL HERE (customer just serviced)
door: OPEN / CLOSED
chair: OCCUPIED / FREE

® \\Ve use four condition variables

The barber waits on
® chair_occupied: a customer just sat down (chair = OCCUPIED)

m customer_left: the recently served customer just left (left =
GONE)

The customer waits on
® door_open: the entrance is open (door = OPEN)
® haircut_done: the haircut is done (barber = IDLE)

" A
With Locks/Condvar

class BarberShop {
boolean barber = IDLE;
boolean chair = FREE;
boolean left = GONE;
boolean door = OPEN;

Condvar chair_occupied;
Condvar customer_left;
Condvar barber_available;
Condvar door_open;
Condvar haircut_done;

Lock mutex;

void getHaircut() { . . . }

void getNextCustomer)() { . . .

void finishedCut() { . . . }

" J
BarberShop Implementation

void getHaircut() { void getNextCustomer() {
mutex.lock(); mutex.lock();
/I wait for door to open while(chair == FREE) {

while (door == CLOSED) {
door_open.wait(mutex);

) }
door = CLOSED: mutex.unlock();

}

chair_occupied.wait(mutex);

/I make the barber non-idle
barber = WORKING;

chair = OCCUPIED: void finishCut() {

left = STILL_HERE; lock(mutex);
chair_occupied.signal(); barber = IDLE

// wait for the barber to be idle haircut_done.signal();

while (barber == WORKING) { while (left == STILL_HERE) {
} TS, Elere syt customer_left.wait(mutex)
chair = FREE: }

left = GONE: door = OPEN;
customer_left.signal(); door_open.signal();
mutex.unlock(); mutex.unlock();

" A
With Locks/Condvars

® Overall, a pretty natural solution but that requires a bit
of thoroughness

m Different solutions are possible with different flags /
condition variables

We decided arbitrarily who sets which variables, could be
done differently

Many solutions available on the Web

Some more readable than others, but that's typically pretty
subjective

Key point: pick good names for variables/flags

m Still, it's a lot of code... can we do better with
semaphores?

After all, semaphores are so easy for
communication

" J——
BarberShop with Semaphores

m | et’'s have one binary semaphore per “resource’.
left: the “fact” that the last customer has left (init = 0)
barber: the “fact” that the barber has finished (init = 0)
door: the “fact” that the front door is open (init = 0)
chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() {
door.V(); // open the door
chair.P(); // wait for chair to be taken

void getHaircut() { }
door.P(); // wait for door to be open
chair.V(); // sitin the chair void finishCut() {
barber.P(); // wait for barber to be done barber.V(); // say “| am done”
left.V/(); // leave the shop left.P(); // wait for customer
} // to have left

" J———
BarberShop with Semaphores

2 2 - J S g > - B S
S < A o aiaas = / — e N — e PV o B2 rda 2 imars —_—

| :,'

Because all we do is communication,
semaphores are very elegant for the
barbershop problem!

~ - 5% - c _ L~ B NN o - o) ~ - v

void getNextCustomer() {
door.V(); // open the door
chair.P(); // wait for chair to be taken

void getHaircut() { :
door.P(); // wait for door to be open
chair.V(); // sitin the chair void finishCut() {
barber.P(); // wait for barber to be done barber.V(); // say “| am done”
left.V(); // leave the shop left.P(); // wait for customer
} // to have left

" A
Reader-Writer-like Problems

® Many people have come up with problems that
ressemble, more or less, the reader-writer
problem

® | just made this one up: you have a cloud, and
two companies, A and B, that you charge for use

®m A company can have an unlimited number of
users in the cloud

m But there can never be users from the two
companies in it at the same time

(companies are paranoid about industrial espionage)
m | et's look at one solution...

" A
Cloud Problem

void user(int id) {

mutex.lock()

/[Wait for cloud to be void of the other company _

while (count[1 - id] > 0) { cond go_ahead[2];
go_ahead][id].wait(mutex) et

} L=

Counts[id]++ #define |d_B 1

mutex.unlock()

int counts[2] = {0,0};
lock mutex;

/[l Use the server

mutex.lock();

count[id]--

if (count[id] <=0) {
go_ahead[1-id].signal_all();

}

mutex.unlock();

" A
Cloud Problem

void user(int id) {
mutex.lock()
/[Wait for cloud to be void of the other company
while (count[1 - id] > 0) {
go_ahead]id].wait(mutex)

int counts[2] = {0,0};
lock mutex;
cond go_ahead[2];

} #define id_A 0

counts[id]++ #define id_B 1

mutex.unlock()

/I Use the server

mutex.lock();

count[id]--

if (count[id] <= 0) {

go_ahead[1-id].signal_all(); Works, but has

Enutex unlock(): starvation! (just like

) the naive reader-
writer)

"
Cloud Problem (#2)

® | et's now say that we have only 3 servers the
cloud

® \We now need to have users wait for users of

their own company to be done using the
servers!

m | et's look at the solution, which is a bit more
complicated...

"
Cloud Problem (#2)

void user(int id) {

mutex.lock(); : " — :

// Wait for cloud to be void of the other company m:: qutlngz[Zl 0{%’(_)}’

while (waiting[1-id] > O || using[1 - id] > 0) { int using[2] = {0,0};
go_ahead[id].wait(mutex)

} lock mutex;

waiting[id]++; cond go_ahead[2];

while (using[id] >= 3) { cond free_server;
free_server.wait(mutex) -

}

waiting[id]--;

usaing[igcg]i]+ | #defineid AO

mutex.unlock(); #define id_B 1

/l Use the server

mutex.lock();

using[id]--

free_server.signal()

if (waiting[id] <= 0 && using[id] <= 0) {
go_ahead[1-id].signal_all();

}

mutex.unlock();

"
Cloud Problem (#2)

void user(int id) {

mutex.lock(); : " — :

// Wait for cloud to be void of the other company m: qutlngz[Zl O{%’(_)}’

while (waiting[1-id] > 0 || using[1 - id] > 0) { int using[2] = {0,0};
go_ahead[id].wait(mutex)

} lock mutex;

waiting[id]++; cond go_ahead[2];

while (using[id] >= 3) { cond free server;
free_server.wait(mutex) -

}

waiting[id]--; .

using[id]++ #define id_ AO

mutex.unlock(); #define id_B 1

/l Use the server

mutex.lock();

L Works, but has
ree_server.signal() . . .

if (count[id] <= 0 && waiting]id] <= 0) { starvation! (just like
}go_ahead[1—id].signal_all(); the naive reader-
mutex.unlock(); writer)

" JEE
The Dining Philosophers Problem

m A classical synchronization problem
pretty meaningless at face value
but representative of many real-world problems

m 5 philosophers sit at a table with
5 plates and 5 forks/chopsticks

® Each philosopher does two
things:
think for a while
eat for a while
repeat

®m To eat, a philosopher needs two
forks/chopsticks

"
Philosopher Algorithm

void philosopher() {
<think>
pickupForks();
<eat>
putdownForks();

}

® Problem: how to implement the pickupForks()
and putdownForks() methods?

putdownForks() is actually straightforward

" A
“Protected” Forks

® \\We need to avoid two philosophers having the same chopstick in hand

m First Idea: Use an array of “locks”, one for each fork
Acquiring the lock means “getting the fork”
Releasing the lock means “giving up the fork”

® These are “conceptual” locks (e.g., may be something else in Java)

ohil #0

locks[4] E locks|[0]

® To eat, philosopher #i must
acquire lock[(i+1) % 5] and
lock(i]

" JEE
Implementation Idea #1

int left(int phil) {

return ((phil + 4) % 5); phil #0

) €

int right(int phil) { locks[4] locks[0]
return phil;

}

void pickupForks(int phil) {
lock(locks[left(phil)]);
lock(locks[right(phil)];

}

void putdownForks(int phil) {
unlock(locks][left(phil)]);
unlock(locks[right(phil)]);

}

" A
Solution #1

int left(int phil) {

return ((phil + 4) % 5); phil #0

) [

int right(int phil) { locks[4] ° locks[0]
return phil; _

}

void pickupForks(int phil) {
lock(locks[left(phil)]);
lock(locks[right(phil)];

}

void putdownForks(int phil) {
unlock(locks[left(phil)]);

} uniockfiockslnght®ehibl:——\ hat is wrong in this solution?

" JEE
Solution #1 Deadlocks

m |f all philosophers pick up the fork on their left
simultaneously and then try to pick up the fork
on their right, then we have a deadlock

® The deadlock may happen very rarely on a
single proc system

What are the odds that all threads are interrupted right
in between the two calls to pthread lock()

® May happen more frequently on a multi-core
system

m At any rate, one is never guaranteed that the
code will not block at some point in time
Think of a server that must stay up for months...

m Question: What’s a deadlock-free
implementation?

" A
Solution #2

B A simple Idea: make the solution asymmetrical
Odd-numbered philosophers start with the left fork

Even-numbered philosophers start with the right
fork

void pickupForks(int phil) {
if (phil %2 == 0) {
lock(locks[right(phil)]);
lock(locks[left(phil)];
} else {
lock(locks[left(phil)]);
lock(locks[right(phil)];
}
}

Solution #2 doesn’t Deadlock!

phil #0
m |[f P1 gets to f1 before P2 E
P2 does not pICk up f2 IOCkS[4] ' IOCkS[O]

If P4 gets to f3 before P3

= |f P4 gets to f4 before PO
P4 eats!
PO doesn’t pick up fO
P1 eats

u = o

® This kind of exhaustive
reasoning is very tedious

® But we can see that at
least two philosophers can
always eat no matter what

® Formal reasoning for
something like this can be
very difficult

"
Solution #2 isn’t so great...

® Small possibility of starvation

A philosopher could put down a fork and pick it
right back up

But this depends upon the way in which threads
are implemented

And requires that a philosopher’s think time could
be 0 seconds

m Biggest problem: the implementation is unfair

One of the threads has an advantage over the
others

Philosopher 0 doesn’t face a lot of competition
when picking up the fork on its right

Let’s see this on a picture...

" A
Solution #2 is Unfair

Unfair advantage
because of less

competition E

" A
Towards a Fair Solution

® How can we not give an unfair advantage to Philosopher 0?
® The problem is that it's a jungle out there

There is no communication between philosophers

They have their eyes on the forks, and not on each other
® New idea:

when a philosopher wants to eat, he checks the forks

if they are available, he eats

otherwise, he waits on a condition variable
® one condition variable per philosopher

when a philosopher finishes eating he checks to see if his
neighbors are waiting

if so, he signals them so that they can recheck the forks

® Major difference: everything is about philosopher state not
about the forks

= THINKING, HUNGRY, EATING

" A
Solution #3

void pickupForks(int phil) {
lock(mutex); // enter critical section
state[phil] = HUNGRY;
while ((state[left(phil)] == EATING) ||
(state[right(phil)] == EATING)) {
wait(cond[phil], mutex);

void putdownForks(int phil) {
lock(mutex); // enter critical section
if (state[left(phil)] == HUNGRY)
signal(cond[left(phil)]);
if (state[right(phil)] == HUNGRY)
signal(cond[right(phil)];

} . _
state[phil] = EATING: state[phil] = THINKING;

unlock(mutex); // leave critical section

} }

One lock for mutual exclusion

One array of condition variables, one per philosopher
All philosophers are equal

Still a problem :(

unlock(mutex); // leave critical section

"
Solution #3 not that good...

m Risk of starvation

There could be a ping-pong effect
= PO and P2 get to eat
= P1 and P3 get to eat
= PO and P2 get to eat

= P4 never gets to eat!
® This is rare, but could happen in the long run

® |t would be nice to have something that is
guaranteed to work well and fairly

m At this point we're getting into the “theoretical”
domain, while most “systems” people would be
ok with what we already have

"
Solution #4: The Queue

m To guarantee fairness one can use a queue of philosophers

If a philosopher finds that he can eat, then great
Otherwise, he is placed in a queue

Only the philosopher at the head of the queue is allowed to eat
among those in the queue (and gets removed from the queue)

® Problem

A philosopher could find that he can pickup forks BUT he is
not at the head of the queue

In this case he has to wait

Hence philosophers cannot eat as much as they want
So it’s fair, but not very efficient
m Possible Solution

Allows philosophers to jump ahead in the queue when they

use forks that are not needed by anybody ahead of them in the
queue

" A
Solution #5: The Deli

® Use numbers (the “Deli” model)
When hungry, a philosopher takes a number

If a philosopher is hungry and so are his neighbors, the one
with the lowest number gets to eat

Numbers always increase

m \Works pretty well, but still can lead to poor performance
with too much blocking

B Some solutions use a mix of everything we've seen so far...

® |t turns out that having a deadlock-free and fair solution is
rather difficult

® Some of the solutions we have seen are good, but could
potentially break down in particular situations
Depending on thinking / eating times
Depending on the number of philosophers

" A
Conclusion

® Main things to worry about
Deadlock
Starvation / Fairness
Performance
® For some problems it can be very difficult to come up with
a good solution that works under all conditions
There may be no such solution at all
® For some problems, semaphores are more elegant than
monitors, for some others it’s the other way around
Let’s check out “The little book of semaphores!”

® |n this course | don’t have you do the beaten-to-death
“implement dining philosophers” assignment

® But | have the assignment. So if you want the experience,
let me know...

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

