
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Classic
Concurrency
Problems

Classic Problems
 Studying concurrency in real-world applications is always difficult

 Applications have their own idiosyncrasies
 They are often very large and it would take hours for us to

understand how they work
 So people have designed easy-to-understand applications that

raise relevant and challenging concurrency issues
 Based on “everyday life” situations

 We have seen Producer / Consume and Reader / Writer
 Let’s look at a few others in some detail (in whatever pseudo-

code)
 Savings Account (very simple)
 Barbershop (still pretty easy)
 Dining Philosophers (difficult and very famous)

 We’ll look at possible solutions, and discuss pros and cons

Shared Bank Account

 Consider a bank account shared by
multiple people

 There are two operations
 deposit(): adds money to the account
 withdraw(): remove money

 Should block if not enough money

 A simple problem, very similar to producer /
consumer at first glance
 The difference is that one can deposit and

withdraw more than one dollar at a time
 Let’s look at a solution with locks/condvars

With Locks/Condvars
public class BankAccount {
 int total=0;
 Condvar more_money;
 Lock mutex;

 void deposit(int amount) {
 mutex.lock();
 total += amount;
 mutex.unlock();
 more_money.signal_all();
 }

 void withdraw(int amount) {
 mutex.lock();
 while (amount > total) {
 more_money.wait(mutex);
 }
 total -= amount;
 mutex.unlock();
 }
}

 A bit brute-force: we wake up
everyone for every deposit!

 Problem: starvation
 Anybody sees why?…

With Locks/Condvars

 A bit brute-force: we wake up
everyone for every deposit!

 Problem: starvation
 Anybody sees why?…
 A large withdrawal can

constantly be overtaken by a
stream of small
withdrawals…

 A: withdraw(10000)
 B: while (true) { withdraw(1); }

 Before we try to fix this, let’s
attempt to do the exact same
this with semaphores…

public class BankAccount {
 int total=0;
 Condvar more_money;
 Lock mutex;

 void deposit(int amount) {
 mutex.lock();
 total += amount;
 mutex.unlock();
 more_money.signal_all();
 }

 void withdraw(int amount) {
 mutex.lock();
 while (amount > total) {
 more_money.wait(mutex);
 }
 total -= amount;
 mutex.unlock();
 }
}

With Semaphores

This is not very semaphore-like: we’re using the total variable to keep
track of the money in the account (using a counting semaphore instead
comes to mind)

It turns out that this doesn’t actually work… any ideas why?

int total = 0
Semaphore mutex = 1
Semaphore money = 0

void deposit(int amount) {
 mutex.P();
 total += amount;
 money.V();
 mutex.V();
 }

 void withdraw(int amount) {
 mutex.P();
 while (amount > total) {

 mutex.V();
 money.P();
 mutex.P();

 }
 total -= amount
 mutex.V();
 }

With Semaphores

 Thread A: withdraw(500)
 Thread B: withdraw(500)
 Thread C: deposit(1000)
 Only one of A or B is “awakened”, and the other ones may

sleep forever even though there is enough money in the
account for its withdrawal

 No direct equivalent of signal_all() in the monitor solution
 But we know that we should be able to use any synchronization paradigm

as they are all equivalent… that means we need to make the code more
complicated

int total = 0
Semaphore mutex = 1
Semaphore money = 0

void deposit(int amount) {
 mutex.P();
 total += amount;
 money.V();
 mutex.V();
 }

 void withdraw(int amount) {
 mutex.P();
 while (amount > total) {

 mutex.V();
 money.P();
 mutex.P();

 }
 total -= amount
 mutex.V();
 }

With Semaphores
 One possible solution

int total = 0
sem_t mutex = 1
sem_t onedollar = 0

void deposit(int amount) {
 mutex.P();
 total += amount;
 for (i=0; i < amount; i++)
 onedollar.V();
 mutex.V();
 }

 void withdraw(int amount) {
 mutex.P();
 while (amount > 0) {

 mutex.V();
 for (i=0; i < amount; i++) {
 onedollar.P();
 amount--;
 mutex.P();

 }
 total -= amount;
 mutex.V();
 }

 By calling V() for each dollar, and calling P() for each dollar now we
don’t have the problem that a withdrawer can “miss” a call to V()
 But it has high overhead for large $ amounts

 We have another problem, that we have seen before with reader-write,
if we have two withdrawals happening concurrently: splitting the
amount….

Bank Account with Semaphores
int total = 0
sem_t mutex = 1
sem_t onedollar = 0

void deposit(int amount) {
 mutex.P();
 total += amount;
 for (i=0; i < amount; i++)
 onedollar.V();
 mutex.V();
 }

 void withdraw(int amount) {
 mutex.P();
 while (amount > 0) {

 mutex.V();
 for (i=0; i < amount; i++) {
 onedollar.P();
 amount--;
 mutex.P();

 }
 total -= amount;
 mutex.V();
 }

 Say two withdrawals for $500 happens are ongoing and
$500 is deposited

 With the above code it’s possible that each withdrawer gets
$250 and then is stuck

 So we have starvation again…

Sequential Withdrawals
 We have a starvation problem in all our previous

solutions because withdrawals can happen
“simultaneously”

 Let’s now opt for a brute-force solution to the
starvation problem: force withdrawals to happen in
order!

 Let’s do this both for our lock/condvar and our
semaphore solution….

With Lock/Condvars

 By using an additional
lock, we can force
withdrawals to happen in
sequence

 Let’s do it with
semaphores…

public class BankAccount {
 int total=0;
 Condvar more_money;
 Lock mutex, withdrawing;

 void deposit(int amount) {
 mutex.lock();
 total += amount;
 mutex.unlock();
 more_money.signal_all();
 }

 void withdraw(int amount) {
 withdrawing.lock()
 mutex.lock();
 while (amount > total) {
 more_money.wait(mutex);
 }
 total -= amount;
 mutex.unlock();
 withdrawing.lock();
 }

With Semaphores
int total = 0
Semaphore mutex = 1
Semaphore withdrawing = 1
Semaphore money = 0

void deposit(int amount) {
 mutex.P();
 total += amount;
 money.V();
 mutex.V();
 }

 void withdraw(int amount) {
 withdrawing.P();
 mutex.P();
 while (amount > total) {

 mutex.V();
 money.P();
 mutex.P();

 }
 total -= amount
 mutex.V();
 withdrawing.V()
 }

 Now that withdrawals happen in sequence, we don’t have to go
dollar-per-dollar and can use single calls for money.V() and
money.P()

 This works but is very non-semaphore-like, let’s now use a
counting semaphore…

With Semaphore
 A nicer, more semaphore-esque solution

sem_t balance = 0
sem_t withdrawing = 1

void deposit(int amount) {
for (i=0; i < amount; i++)
 balance.V();

 }

 void withdraw(int amount) {
 Withdrawing.P();
 for (i=0; i < amount; i++)
 balance.P();
 withdrawing.V();
 }

 Using a counting semaphore removes the need for the total
variable, which makes the code much better (not while/if
statements)

 But then it goes dollar-per-dollar, which has higher overhead
again….

Bank Account
 Each solution has its own “features”

 Starvation behaviors
 Which we “fixed” by imposing a sequential order on withdrawals,

which is both good and bad
 Code complexity
 Overhead

 Depending on the desired behavior and the use case,
some solutions may be preferable

 Aiming for a great solutions across all use cases is
perhaps not possible, and you can see how one could
spend a lot of time designing it

 This is the whole point of these “metaphor” problems:
perhaps there is no great solution, but thinking one is a
great learning and thought experiment

The BarberShop Problem
A simpler problem, for which there are great solutions
 It’s “just” about thread communication
The Barber provides a service (i.e., a haircut) to customers

opens the door to the shop
waits for a customer
gives a haircut
 tells the customer to leave
waits until the customer has left through the back

The Customer
waits for the door to open
enters the barber shop
waits until the barber is available
waits until the haircut is finished
 leaves the shop through the back door

The problem: develop a Barber Shop monitor

The BarberShop

customer
has left

waiting customers

barbercustomer getting
a haircut

With Locks/Condvars
 We must implement three methods

 getHaircut(): called by customers
 getNextCustomer(): called by the barber when free
 finishedCut(): called by the barber when done

void Barber() {
 while (true) {
 BarberShop.getNextCustomer();
 <Cut hair>
 BarberShop.finishedCut();
 }
}

void Customer() {
 BarberShop.getHaircut();
}

void Customer() {
 BarberShop.getHaircut();
}

void Customer() {
 BarberShop.getHaircut();
}

. . .

BarberShop with locks/cond vars

 We use four boolean flags
 barber: IDLE / WORKING (barber)
 left: GONE / STILL_HERE (customer just serviced)
 door: OPEN / CLOSED
 chair: OCCUPIED / FREE

 We use four condition variables
 The barber waits on

 chair_occupied: a customer just sat down (chair = OCCUPIED)
 customer_left: the recently served customer just left (left =

GONE)
 The customer waits on

 door_open: the entrance is open (door = OPEN)
 haircut_done: the haircut is done (barber = IDLE)

With Locks/Condvar
class BarberShop {
 boolean barber = IDLE;
 boolean chair = FREE;
 boolean left = GONE;
 boolean door = OPEN;

 Condvar chair_occupied;
 Condvar customer_left;
 Condvar barber_available;
 Condvar door_open;
 Condvar haircut_done;

 Lock mutex;

 void getHaircut() { . . . }
 void getNextCustomer)() { . . . }
 void finishedCut() { . . . }
}

BarberShop Implementation
void getHaircut() {
 mutex.lock();
 // wait for door to open
 while (door == CLOSED) {
 door_open.wait(mutex);
 }
 door = CLOSED;

 // make the barber non-idle
 barber = WORKING;
 chair = OCCUPIED;
 left = STILL_HERE;
 chair_occupied.signal();
 // wait for the barber to be idle
 while (barber == WORKING) {
 haircut_done.wait(mutex);
 }
 chair = FREE;
 left = GONE;
 customer_left.signal();
 mutex.unlock();
}

void getNextCustomer() {
 mutex.lock();
 while(chair == FREE) {
 chair_occupied.wait(mutex);
 }
 mutex.unlock();
}

void finishCut() {
 lock(mutex);
 barber = IDLE
 haircut_done.signal();
 while (left == STILL_HERE) {
 customer_left.wait(mutex)
 }
 door = OPEN;
 door_open.signal();
 mutex.unlock();
}

With Locks/Condvars
 Overall, a pretty natural solution but that requires a bit

of thoroughness
 Different solutions are possible with different flags /

condition variables
 We decided arbitrarily who sets which variables, could be

done differently
 Many solutions available on the Web
 Some more readable than others, but that’s typically pretty

subjective
 Key point: pick good names for variables/flags

 Still, it’s a lot of code… can we do better with
semaphores?

 After all, semaphores are so easy for
communication

BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”:

 left: the “fact” that the last customer has left (init = 0)
 barber: the “fact” that the barber has finished (init = 0)
 door: the “fact” that the front door is open (init = 0)
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() {
 door.V(); // open the door
 chair.P(); // wait for chair to be taken
}

void finishCut() {
 barber.V(); // say “I am done”
 left.P(); // wait for customer
 // to have left
}

void getHaircut() {
 door.P(); // wait for door to be open
 chair.V(); // sit in the chair
 barber.P(); // wait for barber to be done
 left.V(); // leave the shop
}

BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”:

 left: the “fact” that the last customer has left (init = 0)
 barber: the “fact” that the barber has finished (init = 0)
 door: the “fact” that the front door is open (init = 0)
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() {
 door.V(); // open the door
 chair.P(); // wait for chair to be taken
}

void finishCut() {
 barber.V(); // say “I am done”
 left.P(); // wait for customer
 // to have left
}

void getHaircut() {
 door.P(); // wait for door to be open
 chair.V(); // sit in the chair
 barber.P(); // wait for barber to be done
 left.V(); // leave the shop
}

Because all we do is communication,
semaphores are very elegant for the

barbershop problem!

Reader-Writer-like Problems

 Many people have come up with problems that
ressemble, more or less, the reader-writer
problem

 I just made this one up: you have a cloud, and
two companies, A and B, that you charge for use

 A company can have an unlimited number of
users in the cloud

 But there can never be users from the two
companies in it at the same time
 (companies are paranoid about industrial espionage)

 Let’s look at one solution…

Cloud Problem
int counts[2] = {0,0};
lock mutex;
cond go_ahead[2];

#define id_A 0
#define id_B 1

void user(int id) {
 mutex.lock()
 // Wait for cloud to be void of the other company
 while (count[1 - id] > 0) {
 go_ahead[id].wait(mutex)
 }
 counts[id]++
 mutex.unlock()

 // Use the server

 mutex.lock();
 count[id]--
 if (count[id] <= 0) {
 go_ahead[1-id].signal_all();
 }
 mutex.unlock();
}

Cloud Problem
int counts[2] = {0,0};
lock mutex;
cond go_ahead[2];

#define id_A 0
#define id_B 1

void user(int id) {
 mutex.lock()
 // Wait for cloud to be void of the other company
 while (count[1 - id] > 0) {
 go_ahead[id].wait(mutex)
 }
 counts[id]++
 mutex.unlock()

 // Use the server

 mutex.lock();
 count[id]--
 if (count[id] <= 0) {
 go_ahead[1-id].signal_all();
 }
 mutex.unlock();
}

Works, but has
starvation! (just like
the naive reader-
writer)

Cloud Problem (#2)

 Let’s now say that we have only 3 servers the
cloud

 We now need to have users wait for users of
their own company to be done using the
servers!

 Let’s look at the solution, which is a bit more
complicated…

Cloud Problem (#2)

int waiting[2] = {0,0};
int using[2] = {0,0};

lock mutex;
cond go_ahead[2];
cond free_server;

#define id_A 0
#define id_B 1

void user(int id) {
 mutex.lock();
 // Wait for cloud to be void of the other company
 while (waiting[1-id] > 0 || using[1 - id] > 0) {
 go_ahead[id].wait(mutex)
 }
 waiting[id]++;
 while (using[id] >= 3) {
 free_server.wait(mutex)
 }
 waiting[id]--;
 using[id]++
 mutex.unlock();

 // Use the server

 mutex.lock();
 using[id]--
 free_server.signal()
 if (waiting[id] <= 0 && using[id] <= 0) {
 go_ahead[1-id].signal_all();
 }
 mutex.unlock();
}

Cloud Problem (#2)

int waiting[2] = {0,0};
int using[2] = {0,0};

lock mutex;
cond go_ahead[2];
cond free_server;

#define id_A 0
#define id_B 1

void user(int id) {
 mutex.lock();
 // Wait for cloud to be void of the other company
 while (waiting[1-id] > 0 || using[1 - id] > 0) {
 go_ahead[id].wait(mutex)
 }
 waiting[id]++;
 while (using[id] >= 3) {
 free_server.wait(mutex)
 }
 waiting[id]--;
 using[id]++
 mutex.unlock();

 // Use the server

 mutex.lock();
 using[id]--
 free_server.signal()
 if (count[id] <= 0 && waiting[id] <= 0) {
 go_ahead[1-id].signal_all();
 }
 mutex.unlock();
}

Works, but has
starvation! (just like
the naive reader-
writer)

The Dining Philosophers Problem
 A classical synchronization problem

 pretty meaningless at face value
 but representative of many real-world problems

 5 philosophers sit at a table with
5 plates and 5 forks/chopsticks

 Each philosopher does two
things:
 think for a while
 eat for a while
 repeat

 To eat, a philosopher needs two
forks/chopsticks

Philosopher Algorithm

 Problem: how to implement the pickupForks()
and putdownForks() methods?
 putdownForks() is actually straightforward

void philosopher() {
 <think>
 pickupForks();
 <eat>
 putdownForks();
}

“Protected” Forks
 We need to avoid two philosophers having the same chopstick in hand
 First Idea: Use an array of “locks”, one for each fork

 Acquiring the lock means “getting the fork”
 Releasing the lock means “giving up the fork”

 These are “conceptual” locks (e.g., may be something else in Java)

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4  To eat, philosopher #i must
acquire lock[(i+1) % 5] and
lock[i]

Implementation Idea #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) {
 return ((phil + 4) % 5);
}
int right(int phil) {
 return phil;
}

void pickupForks(int phil) {
 lock(locks[left(phil)]);
 lock(locks[right(phil)];
}

void putdownForks(int phil) {
 unlock(locks[left(phil)]);
 unlock(locks[right(phil)]);
}

Solution #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) {
 return ((phil + 4) % 5);
}
int right(int phil) {
 return phil;
}

void pickupForks(int phil) {
 lock(locks[left(phil)]);
 lock(locks[right(phil)];
}

void putdownForks(int phil) {
 unlock(locks[left(phil)]);
 unlock(locks[right(phil)]);
} what is wrong in this solution?

Solution #1 Deadlocks
 If all philosophers pick up the fork on their left

simultaneously and then try to pick up the fork
on their right, then we have a deadlock

 The deadlock may happen very rarely on a
single proc system

 What are the odds that all threads are interrupted right
in between the two calls to pthread_lock()

 May happen more frequently on a multi-core
system

 At any rate, one is never guaranteed that the
code will not block at some point in time

 Think of a server that must stay up for months...
 Question: What’s a deadlock-free

implementation?

Solution #2
 A simple Idea: make the solution asymmetrical

 Odd-numbered philosophers start with the left fork
 Even-numbered philosophers start with the right

fork
void pickupForks(int phil) {
 if (phil %2 == 0) {
 lock(locks[right(phil)]);
 lock(locks[left(phil)];
 } else {
 lock(locks[left(phil)]);
 lock(locks[right(phil)];
 }
}

Solution #2 doesn’t Deadlock!
 If P1 gets to f1 before P2

 P2 does not pick up f2
 If P4 gets to f3 before P3

 If P4 gets to f4 before P0
 P4 eats!
 P0 doesn’t pick up f0
 P1 eats

 . . .
 This kind of exhaustive

reasoning is very tedious
 But we can see that at

least two philosophers can
always eat no matter what

 Formal reasoning for
something like this can be
very difficult

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

Solution #2 isn’t so great...

 Small possibility of starvation
 A philosopher could put down a fork and pick it

right back up
 But this depends upon the way in which threads

are implemented
 And requires that a philosopher’s think time could

be 0 seconds
 Biggest problem: the implementation is unfair

 One of the threads has an advantage over the
others

 Philosopher 0 doesn’t face a lot of competition
when picking up the fork on its right

 Let’s see this on a picture…

Solution #2 is Unfair

0

1

23

4

Unfair advantage
because of less
competition

Towards a Fair Solution
 How can we not give an unfair advantage to Philosopher 0?
 The problem is that it’s a jungle out there

 There is no communication between philosophers
 They have their eyes on the forks, and not on each other

 New idea:
 when a philosopher wants to eat, he checks the forks
 if they are available, he eats
 otherwise, he waits on a condition variable

 one condition variable per philosopher
 when a philosopher finishes eating he checks to see if his

neighbors are waiting
 if so, he signals them so that they can recheck the forks

 Major difference: everything is about philosopher state not
about the forks

 THINKING, HUNGRY, EATING

Solution #3
void pickupForks(int phil) {
 lock(mutex); // enter critical section
 state[phil] = HUNGRY;
 while ((state[left(phil)] == EATING) ||
 (state[right(phil)] == EATING)) {
 wait(cond[phil], mutex);
 }
 state[phil] = EATING;
 unlock(mutex); // leave critical section
}

void putdownForks(int phil) {
 lock(mutex); // enter critical section
 if (state[left(phil)] == HUNGRY)
 signal(cond[left(phil)]);
 if (state[right(phil)] == HUNGRY)
 signal(cond[right(phil)];
 state[phil] = THINKING;
 unlock(mutex); // leave critical section
}

 One lock for mutual exclusion
 One array of condition variables, one per philosopher
 All philosophers are equal
 Still a problem :(

Solution #3 not that good...
 Risk of starvation

 There could be a ping-pong effect
 P0 and P2 get to eat
 P1 and P3 get to eat
 P0 and P2 get to eat

 P4 never gets to eat!

 This is rare, but could happen in the long run
 It would be nice to have something that is

guaranteed to work well and fairly
 At this point we’re getting into the “theoretical”

domain, while most “systems” people would be
ok with what we already have

Solution #4: The Queue
 To guarantee fairness one can use a queue of philosophers

 If a philosopher finds that he can eat, then great
 Otherwise, he is placed in a queue
 Only the philosopher at the head of the queue is allowed to eat

among those in the queue (and gets removed from the queue)
 Problem

 A philosopher could find that he can pickup forks BUT he is
not at the head of the queue

 In this case he has to wait
 Hence philosophers cannot eat as much as they want
 So it’s fair, but not very efficient

 Possible Solution
 Allows philosophers to jump ahead in the queue when they

use forks that are not needed by anybody ahead of them in the
queue

Solution #5: The Deli
 Use numbers (the “Deli” model)

 When hungry, a philosopher takes a number
 If a philosopher is hungry and so are his neighbors, the one

with the lowest number gets to eat
 Numbers always increase

 Works pretty well, but still can lead to poor performance
with too much blocking

 Some solutions use a mix of everything we’ve seen so far...
 It turns out that having a deadlock-free and fair solution is

rather difficult
 Some of the solutions we have seen are good, but could

potentially break down in particular situations
 Depending on thinking / eating times
 Depending on the number of philosophers

Conclusion
 Main things to worry about

 Deadlock
 Starvation / Fairness
 Performance

 For some problems it can be very difficult to come up with
a good solution that works under all conditions

 There may be no such solution at all
 For some problems, semaphores are more elegant than

monitors, for some others it’s the other way around
 Let’s check out “The little book of semaphores!”

 In this course I don’t have you do the beaten-to-death
“implement dining philosophers” assignment

 But I have the assignment. So if you want the experience,
let me know…

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

