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Classic Problems 
 Studying concurrency in real-world applications is always difficult 

 Applications have their own idiosyncrasies 
 They are often very large and it would take hours for us to 

understand how they work 
 So people have designed easy-to-understand applications that 

raise relevant and challenging concurrency issues 
 Based on “everyday life” situations 

 We have seen Producer / Consume and Reader / Writer 
 Let’s look at a few others in some detail (in whatever pseudo-

code) 
 Savings Account (very simple) 
 Barbershop (still pretty easy) 
 Dining Philosophers (difficult and very famous) 

 We’ll look at possible solutions, and discuss pros and cons



Shared Bank Account

 Consider a bank account shared by 
multiple people 

 There are two operations 
 deposit(): adds money to the account 
 withdraw(): remove money 

 Should block if not enough money 

 A simple problem, very similar to producer / 
consumer at first glance 
 The difference is that one can deposit and 

withdraw more than one dollar at a time 
 Let’s look at a solution with locks/condvars



With Locks/Condvars
public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all(); 
  } 

  void withdraw(int amount) { 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
      total -= amount; 
      mutex.unlock(); 
  } 
}

 A bit brute-force: we wake up 
everyone for every deposit! 

 Problem: starvation 
 Anybody sees why?…



With Locks/Condvars

 A bit brute-force: we wake up 
everyone for every deposit! 

 Problem: starvation 
 Anybody sees why?… 
 A large withdrawal can 

constantly be overtaken by a 
stream of small 
withdrawals… 

 A: withdraw(10000) 
 B: while (true) { withdraw(1); }  

 Before we try to fix this, let’s 
attempt to do the exact same 
this with semaphores…

public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all();  
  } 

  void withdraw(int amount) { 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
      total -= amount; 
      mutex.unlock(); 
   } 
}



With Semaphores

This is not very semaphore-like: we’re using the total variable to keep 
track of the money in the account (using a counting semaphore instead 
comes to mind) 

It turns out that this doesn’t actually work… any ideas why?

int total = 0 
Semaphore mutex = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
 }



With Semaphores

 Thread A: withdraw(500) 
 Thread B: withdraw(500) 
 Thread C: deposit(1000) 
 Only one of A or B is “awakened”, and the other ones may 

sleep forever even though there is enough money in the 
account for its withdrawal 

 No direct equivalent of signal_all() in the monitor solution 
 But we know that we should be able to use any synchronization paradigm 

as they are all equivalent… that means we need to make the code more 
complicated

int total = 0 
Semaphore mutex = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
 }



With Semaphores
 One possible solution

int total = 0 
sem_t mutex = 1 
sem_t onedollar = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      for (i=0; i < amount; i++)  
          onedollar.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > 0) { 

 mutex.V(); 
 for (i=0; i < amount; i++) { 
    onedollar.P(); 
    amount--; 
 mutex.P(); 

      } 
      total -= amount; 
      mutex.V(); 
 }

 By calling V() for each dollar, and calling P() for each dollar now we 
don’t have the problem that a withdrawer can “miss” a call to V() 
 But it has high overhead for large $ amounts 

 We have another problem, that we have seen before with reader-write, 
if we have two withdrawals happening concurrently: splitting the 
amount….



Bank Account with Semaphores
int total = 0 
sem_t mutex = 1 
sem_t onedollar = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      for (i=0; i < amount; i++)  
          onedollar.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > 0) { 

 mutex.V(); 
 for (i=0; i < amount; i++) { 
    onedollar.P(); 
    amount--; 
 mutex.P(); 

      } 
      total -= amount; 
      mutex.V(); 
 }

 Say two withdrawals for $500 happens are ongoing and 
$500 is deposited 

 With the above code it’s possible that each withdrawer gets 
$250 and then is stuck  

 So we have starvation again…



Sequential Withdrawals
 We have a starvation problem in all our previous 

solutions because withdrawals can happen 
“simultaneously” 

 Let’s now opt for a brute-force solution to the 
starvation problem: force withdrawals to happen in 
order! 

 Let’s do this both for our lock/condvar and our 
semaphore solution….



With Lock/Condvars

 By using an additional 
lock, we can force 
withdrawals to happen in 
sequence 

 Let’s do it with 
semaphores…

public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex, withdrawing; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all();  
  } 

  void withdraw(int amount) { 
     withdrawing.lock() 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
     total -= amount; 
     mutex.unlock(); 
     withdrawing.lock(); 
  } 



With Semaphores
int total = 0 
Semaphore mutex = 1 
Semaphore withdrawing = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
      withdrawing.P(); 
      mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
      withdrawing.V() 
  }

 Now that withdrawals happen in sequence,  we don’t have to go 
dollar-per-dollar and can use single calls for money.V() and 
money.P() 

 This works but is very non-semaphore-like, let’s now use a 
counting semaphore…



With Semaphore
 A nicer, more semaphore-esque solution

sem_t balance = 0 
sem_t withdrawing = 1

void deposit(int amount) { 
for (i=0; i < amount; i++)  
  balance.V(); 

  }

  void withdraw(int amount) { 
      Withdrawing.P(); 
     for (i=0; i < amount; i++)  
         balance.P(); 
      withdrawing.V(); 
  }

 Using a counting semaphore removes the need for the total 
variable, which makes the code much better (not while/if 
statements) 

 But then it goes dollar-per-dollar, which has higher overhead 
again….



Bank Account
 Each solution has its own “features” 

 Starvation behaviors 
 Which we “fixed” by imposing a sequential order on withdrawals, 

which is both good and bad 
 Code complexity 
 Overhead 

 Depending on the desired behavior and the use case, 
some solutions may be preferable 

 Aiming for a great solutions across all use cases is 
perhaps not possible, and you can see how one could 
spend a lot of time designing it 

 This is the whole point of these “metaphor” problems: 
perhaps there is no great solution, but thinking one is a 
great learning and thought experiment 



The BarberShop Problem
A simpler problem, for which there are great solutions 
 It’s “just” about thread communication 
The Barber provides a service (i.e., a haircut) to customers 

opens the door to the shop 
waits for a customer 
gives a haircut 
 tells the customer to leave 
waits until the customer has left through the back 

The Customer 
waits for the door to open 
enters the barber shop 
waits until the barber is available 
waits until the haircut is finished 
 leaves the shop through the back door 

The problem: develop a Barber Shop monitor



The BarberShop

customer 
has left

waiting customers

barbercustomer getting 
a haircut



With Locks/Condvars
 We must implement three methods 

 getHaircut(): called by customers 
 getNextCustomer(): called by the barber when free 
 finishedCut(): called by the barber when done

void Barber() { 
  while (true) { 
    BarberShop.getNextCustomer(); 
    <Cut hair> 
    BarberShop.finishedCut(); 
  } 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

. . .



BarberShop with locks/cond vars

 We use four boolean flags 
 barber: IDLE / WORKING (barber) 
 left: GONE / STILL_HERE   (customer just serviced) 
 door: OPEN / CLOSED 
 chair: OCCUPIED / FREE 

 We use four condition variables 
 The barber waits on 

 chair_occupied: a customer just sat down (chair = OCCUPIED) 
 customer_left: the recently served customer just left (left = 

GONE) 
 The customer waits on 

 door_open: the entrance is open (door = OPEN) 
 haircut_done: the haircut is done (barber = IDLE)



With Locks/Condvar
class BarberShop { 
  boolean barber = IDLE; 
  boolean chair = FREE; 
  boolean left = GONE; 
  boolean door = OPEN; 

  Condvar chair_occupied; 
  Condvar customer_left; 
  Condvar barber_available; 
  Condvar door_open; 
  Condvar haircut_done; 

  Lock mutex; 

  void getHaircut() { . . . } 
  void getNextCustomer)() { . . . } 
  void finishedCut() { . . . } 
}



BarberShop Implementation
void getHaircut() { 
  mutex.lock(); 
  // wait for door to open 
  while (door == CLOSED) { 
    door_open.wait(mutex); 
  } 
  door = CLOSED; 

  // make the barber non-idle 
  barber = WORKING; 
  chair = OCCUPIED; 
  left = STILL_HERE; 
  chair_occupied.signal(); 
  // wait for the barber to be idle 
  while (barber == WORKING) { 
     haircut_done.wait(mutex); 
  } 
  chair = FREE; 
  left = GONE; 
  customer_left.signal(); 
  mutex.unlock(); 
}

void getNextCustomer() { 
  mutex.lock(); 
  while(chair == FREE) { 
    chair_occupied.wait(mutex); 
  } 
  mutex.unlock(); 
}

void finishCut() { 
  lock(mutex); 
  barber = IDLE 
  haircut_done.signal(); 
  while (left == STILL_HERE) { 
    customer_left.wait(mutex) 
  } 
  door = OPEN; 
  door_open.signal(); 
  mutex.unlock(); 
}



With Locks/Condvars
 Overall, a pretty natural solution but that requires a bit 

of thoroughness 
 Different solutions are possible with different flags / 

condition variables 
 We decided arbitrarily who sets which variables, could be 

done differently 
 Many solutions available on the Web 
 Some more readable than others, but that’s typically pretty 

subjective 
 Key point: pick good names for variables/flags 

 Still, it’s a lot of code… can we do better with 
semaphores?  

 After all, semaphores are so easy for 
communication



BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”: 

 left: the “fact” that the last customer has left (init = 0) 
 barber: the “fact” that the barber has finished (init = 0) 
 door: the “fact” that the front door is open (init = 0) 
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() { 
  door.V();  // open the door 
  chair.P(); // wait for chair to be taken 
}

void finishCut() { 
  barber.V(); // say “I am done” 
  left.P();      // wait for customer 
                   // to have left 
}

void getHaircut() { 
  door.P();     // wait for door to be open 
  chair.V();    // sit in the chair 
  barber.P(); // wait for barber to be done 
  left.V();      // leave the shop 
}



BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”: 

 left: the “fact” that the last customer has left (init = 0) 
 barber: the “fact” that the barber has finished (init = 0) 
 door: the “fact” that the front door is open (init = 0) 
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() { 
  door.V();  // open the door 
  chair.P(); // wait for chair to be taken 
}

void finishCut() { 
  barber.V(); // say “I am done” 
  left.P();      // wait for customer 
                   // to have left 
}

void getHaircut() { 
  door.P();     // wait for door to be open 
  chair.V();    // sit in the chair 
  barber.P(); // wait for barber to be done 
  left.V();      // leave the shop 
}

Because all we do is communication, 
semaphores are very elegant for the 

barbershop problem!



Reader-Writer-like Problems

 Many people have come up with problems that 
ressemble, more or less, the reader-writer 
problem 

 I just made this one up: you have a cloud, and 
two companies, A and B, that you charge for use 

 A company can have an unlimited number of 
users in the cloud 

 But there can never be users from the two 
companies in it at the same time   
 (companies are paranoid about industrial espionage) 

 Let’s look at one solution…



Cloud Problem
int counts[2] = {0,0}; 
lock mutex; 
cond go_ahead[2]; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock() 
  // Wait for cloud to be void of the other company 
  while (count[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
   } 
  counts[id]++ 
  mutex.unlock() 
     
  // Use the server 

  mutex.lock(); 
  count[id]-- 
  if (count[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}



Cloud Problem
int counts[2] = {0,0}; 
lock mutex; 
cond go_ahead[2]; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock() 
  // Wait for cloud to be void of the other company 
  while (count[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
   } 
  counts[id]++ 
  mutex.unlock() 
     
  // Use the server 

  mutex.lock(); 
  count[id]-- 
  if (count[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}

Works, but has 
starvation! (just like 
the naive reader-
writer)



Cloud Problem (#2)

 Let’s now say that we have only 3 servers the 
cloud 

 We now need to have users wait for users of 
their own company to be done using the 
servers! 

 Let’s look at the solution, which is a bit more 
complicated…



Cloud Problem (#2)

int waiting[2] = {0,0}; 
int using[2] = {0,0}; 

lock mutex; 
cond go_ahead[2]; 
cond free_server; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock(); 
  // Wait for cloud to be void of the other company 
  while (waiting[1-id] > 0 || using[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
  } 
  waiting[id]++; 
  while (using[id] >= 3) { 
    free_server.wait(mutex) 
  } 
  waiting[id]--; 
  using[id]++ 
  mutex.unlock(); 
     
  // Use the server 

  mutex.lock(); 
  using[id]-- 
  free_server.signal() 
  if (waiting[id] <= 0 && using[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}



Cloud Problem (#2)

int waiting[2] = {0,0}; 
int using[2] = {0,0}; 

lock mutex; 
cond go_ahead[2]; 
cond free_server; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock(); 
  // Wait for cloud to be void of the other company 
  while (waiting[1-id] > 0 || using[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
  } 
  waiting[id]++; 
  while (using[id] >= 3) { 
    free_server.wait(mutex) 
  } 
  waiting[id]--; 
  using[id]++ 
  mutex.unlock(); 
     
  // Use the server 

  mutex.lock(); 
  using[id]-- 
  free_server.signal() 
  if (count[id] <= 0 && waiting[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}

Works, but has 
starvation! (just like 
the naive reader-
writer)



The Dining Philosophers Problem
 A classical synchronization problem 

 pretty meaningless at face value 
 but representative of many real-world problems

 5 philosophers sit at a table with 
5 plates and 5 forks/chopsticks 

 Each philosopher does two 
things: 
 think for a while 
 eat for a while 
 repeat 

 To eat, a philosopher needs two 
forks/chopsticks



Philosopher Algorithm

 Problem: how to implement the pickupForks() 
and putdownForks() methods? 
 putdownForks() is actually straightforward

void philosopher() { 
  <think> 
  pickupForks(); 
  <eat> 
  putdownForks(); 
}



“Protected” Forks
 We need to avoid two philosophers having the same chopstick in hand 
 First Idea: Use an array of “locks”, one for each fork 

 Acquiring the lock means “getting the fork” 
 Releasing the lock means “giving up the fork” 

 These are “conceptual” locks (e.g., may be something else in Java)

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4  To eat, philosopher #i must 
acquire lock[(i+1) % 5] and 
lock[i]



Implementation Idea #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) { 
  return ((phil + 4) % 5); 
} 
int right(int phil) { 
  return phil; 
} 

void pickupForks(int phil) { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
} 

void putdownForks(int phil) { 
    unlock(locks[left(phil)]); 
    unlock(locks[right(phil)]); 
}



Solution #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) { 
  return ((phil + 4) % 5); 
} 
int right(int phil) { 
  return phil; 
} 

void pickupForks(int phil) { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
} 

void putdownForks(int phil) { 
    unlock(locks[left(phil)]); 
    unlock(locks[right(phil)]); 
} what is wrong in this solution?



Solution #1 Deadlocks
 If all philosophers pick up the fork on their left 

simultaneously and then try to pick up the fork 
on their right, then we have a deadlock  

 The deadlock may happen very rarely on a 
single proc system 

 What are the odds that all threads are interrupted right 
in between the two calls to pthread_lock() 

 May happen more frequently on a multi-core 
system 

 At any rate, one is never guaranteed that the 
code will not block at some point in time 

 Think of a server that must stay up for months... 
 Question:  What’s a deadlock-free 

implementation? 



Solution #2
 A simple Idea: make the solution asymmetrical 

 Odd-numbered philosophers start with the left fork 
 Even-numbered philosophers start with the right 

fork
void pickupForks(int phil) { 
  if (phil %2 == 0) { 
    lock(locks[right(phil)]); 
    lock(locks[left(phil)]; 
  } else { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
  } 
}



Solution #2 doesn’t Deadlock!
 If P1 gets to f1 before P2 

 P2 does not pick up f2 
 If P4 gets to f3 before P3 

 If P4 gets to f4 before P0 
 P4 eats! 
 P0 doesn’t pick up f0 
 P1 eats 

 . . . 
 This kind of exhaustive 

reasoning is very tedious 
 But we can see that at 

least two philosophers can 
always eat no matter what 

 Formal reasoning for 
something like this can be 
very difficult

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4



Solution #2 isn’t so great...

 Small possibility of starvation  
 A philosopher could put down a fork and pick it 

right back up  
 But this depends upon the way in which threads 

are implemented  
 And requires that a philosopher’s think time could 

be 0 seconds 
 Biggest problem: the implementation is unfair 

 One of the threads has an advantage over the 
others 

 Philosopher 0 doesn’t face a lot of competition 
when picking up the fork on its right 

 Let’s see this on a picture…



Solution #2 is Unfair

0

1

23

4

Unfair advantage 
because of less  
competition



Towards a Fair Solution
 How can we not give an unfair advantage to Philosopher 0? 
 The problem is that it’s a jungle out there 

 There is no communication between philosophers 
 They have their eyes on the forks, and not on each other 

 New idea:  
 when a philosopher wants to eat, he checks the forks 
 if they are available, he eats 
 otherwise, he waits on a condition variable 

 one condition variable per philosopher  
 when a philosopher finishes eating he checks to see if his 

neighbors are waiting 
 if so, he signals them so that they can recheck the forks 

 Major difference: everything is about philosopher state not 
about the forks 

 THINKING, HUNGRY, EATING



Solution #3
void pickupForks(int phil) { 
  lock(mutex); // enter critical section 
  state[phil] = HUNGRY; 
  while ((state[left(phil)] == EATING) || 
             (state[right(phil)] == EATING)) { 
    wait(cond[phil], mutex); 
  } 
  state[phil] = EATING; 
  unlock(mutex); // leave critical section 
}

void putdownForks(int phil) { 
  lock(mutex); // enter critical section 
  if (state[left(phil)] == HUNGRY) 
    signal(cond[left(phil)]); 
  if (state[right(phil)] == HUNGRY) 
    signal(cond[right(phil)]; 
  state[phil] = THINKING; 
  unlock(mutex); // leave critical section 
}

 One lock for mutual exclusion 
 One array of condition variables, one per philosopher 
 All philosophers are equal  
 Still a problem :(



Solution #3 not that good...
 Risk of starvation 

 There could be a ping-pong effect 
 P0 and P2 get to eat 
 P1 and P3 get to eat 
 P0 and P2 get to eat 
 .... 
 P4 never gets to eat! 

 This is rare, but could happen in the long run 
 It would be nice to have something that is 

guaranteed to work well and fairly 
 At this point we’re getting into the “theoretical” 

domain, while most “systems” people would be 
ok with what we already have



Solution #4: The Queue
 To guarantee fairness one can use a queue of philosophers 

 If a philosopher finds that he can eat, then great 
 Otherwise, he is placed in a queue 
 Only the philosopher at the head of the queue is allowed to eat 

among those in the queue (and gets removed from the queue) 
 Problem 

 A philosopher could find that he can pickup forks BUT he is  
not at the head of the queue 

 In this case he has to wait 
 Hence philosophers cannot eat as much as they want 
 So it’s fair, but not very efficient 

 Possible Solution 
 Allows philosophers to jump ahead in the queue when they 

use forks that are not needed by anybody ahead of them in the 
queue



Solution #5: The Deli
 Use numbers (the “Deli” model) 

 When hungry, a philosopher takes a number 
 If a philosopher is hungry and so are his neighbors, the one 

with the lowest number gets to eat 
 Numbers always increase 

 Works pretty well, but still can lead to poor performance 
with too much blocking 

 Some solutions use a mix of everything we’ve seen so far... 
 It turns out that having a deadlock-free and fair solution is 

rather difficult 
 Some of the solutions we have seen are good, but could 

potentially break down in particular situations 
 Depending on thinking / eating times 
 Depending on the number of philosophers



Conclusion 
 Main things to worry about 

 Deadlock 
 Starvation / Fairness 
 Performance 

 For some problems it can be very difficult to come up with 
a good solution that works under all conditions 

 There may be no such solution at all 
 For some problems, semaphores are more elegant than 

monitors, for some others it’s the other way around 
 Let’s check out “The little book of semaphores!” 

 In this course I don’t have you do the beaten-to-death 
“implement dining philosophers” assignment 

 But I have the assignment. So if you want the experience, 
let me know…

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

