
Henri Casanova (henric@hawaii.edu)

ICS432 
Concurrent and High-Performance  

Programming

Classic 
Concurrency 
Problems



Classic Problems 
 Studying concurrency in real-world applications is always difficult 

 Applications have their own idiosyncrasies 
 They are often very large and it would take hours for us to 

understand how they work 
 So people have designed easy-to-understand applications that 

raise relevant and challenging concurrency issues 
 Based on “everyday life” situations 

 We have seen Producer / Consume and Reader / Writer 
 Let’s look at a few others in some detail (in whatever pseudo-

code) 
 Savings Account (very simple) 
 Barbershop (still pretty easy) 
 Dining Philosophers (difficult and very famous) 

 We’ll look at possible solutions, and discuss pros and cons



Shared Bank Account

 Consider a bank account shared by 
multiple people 

 There are two operations 
 deposit(): adds money to the account 
 withdraw(): remove money 

 Should block if not enough money 

 A simple problem, very similar to producer / 
consumer at first glance 
 The difference is that one can deposit and 

withdraw more than one dollar at a time 
 Let’s look at a solution with locks/condvars



With Locks/Condvars
public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all(); 
  } 

  void withdraw(int amount) { 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
      total -= amount; 
      mutex.unlock(); 
  } 
}

 A bit brute-force: we wake up 
everyone for every deposit! 

 Problem: starvation 
 Anybody sees why?…



With Locks/Condvars

 A bit brute-force: we wake up 
everyone for every deposit! 

 Problem: starvation 
 Anybody sees why?… 
 A large withdrawal can 

constantly be overtaken by a 
stream of small 
withdrawals… 

 A: withdraw(10000) 
 B: while (true) { withdraw(1); }  

 Before we try to fix this, let’s 
attempt to do the exact same 
this with semaphores…

public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all();  
  } 

  void withdraw(int amount) { 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
      total -= amount; 
      mutex.unlock(); 
   } 
}



With Semaphores

This is not very semaphore-like: we’re using the total variable to keep 
track of the money in the account (using a counting semaphore instead 
comes to mind) 

It turns out that this doesn’t actually work… any ideas why?

int total = 0 
Semaphore mutex = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
 }



With Semaphores

 Thread A: withdraw(500) 
 Thread B: withdraw(500) 
 Thread C: deposit(1000) 
 Only one of A or B is “awakened”, and the other ones may 

sleep forever even though there is enough money in the 
account for its withdrawal 

 No direct equivalent of signal_all() in the monitor solution 
 But we know that we should be able to use any synchronization paradigm 

as they are all equivalent… that means we need to make the code more 
complicated

int total = 0 
Semaphore mutex = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
 }



With Semaphores
 One possible solution

int total = 0 
sem_t mutex = 1 
sem_t onedollar = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      for (i=0; i < amount; i++)  
          onedollar.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > 0) { 

 mutex.V(); 
 for (i=0; i < amount; i++) { 
    onedollar.P(); 
    amount--; 
 mutex.P(); 

      } 
      total -= amount; 
      mutex.V(); 
 }

 By calling V() for each dollar, and calling P() for each dollar now we 
don’t have the problem that a withdrawer can “miss” a call to V() 
 But it has high overhead for large $ amounts 

 We have another problem, that we have seen before with reader-write, 
if we have two withdrawals happening concurrently: splitting the 
amount….



Bank Account with Semaphores
int total = 0 
sem_t mutex = 1 
sem_t onedollar = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      for (i=0; i < amount; i++)  
          onedollar.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
     mutex.P(); 
      while (amount > 0) { 

 mutex.V(); 
 for (i=0; i < amount; i++) { 
    onedollar.P(); 
    amount--; 
 mutex.P(); 

      } 
      total -= amount; 
      mutex.V(); 
 }

 Say two withdrawals for $500 happens are ongoing and 
$500 is deposited 

 With the above code it’s possible that each withdrawer gets 
$250 and then is stuck  

 So we have starvation again…



Sequential Withdrawals
 We have a starvation problem in all our previous 

solutions because withdrawals can happen 
“simultaneously” 

 Let’s now opt for a brute-force solution to the 
starvation problem: force withdrawals to happen in 
order! 

 Let’s do this both for our lock/condvar and our 
semaphore solution….



With Lock/Condvars

 By using an additional 
lock, we can force 
withdrawals to happen in 
sequence 

 Let’s do it with 
semaphores…

public class BankAccount { 
  int total=0; 
  Condvar more_money; 
  Lock mutex, withdrawing; 

  void deposit(int amount) { 
      mutex.lock(); 
      total += amount; 
      mutex.unlock(); 
      more_money.signal_all();  
  } 

  void withdraw(int amount) { 
     withdrawing.lock() 
     mutex.lock(); 
      while (amount > total) { 
          more_money.wait(mutex); 
      } 
     total -= amount; 
     mutex.unlock(); 
     withdrawing.lock(); 
  } 



With Semaphores
int total = 0 
Semaphore mutex = 1 
Semaphore withdrawing = 1 
Semaphore money = 0

void deposit(int amount) { 
      mutex.P(); 
      total += amount;  
      money.V(); 
      mutex.V(); 
  }

  void withdraw(int amount) { 
      withdrawing.P(); 
      mutex.P(); 
      while (amount > total) { 

 mutex.V(); 
 money.P(); 
 mutex.P(); 

      } 
      total -= amount 
      mutex.V(); 
      withdrawing.V() 
  }

 Now that withdrawals happen in sequence,  we don’t have to go 
dollar-per-dollar and can use single calls for money.V() and 
money.P() 

 This works but is very non-semaphore-like, let’s now use a 
counting semaphore…



With Semaphore
 A nicer, more semaphore-esque solution

sem_t balance = 0 
sem_t withdrawing = 1

void deposit(int amount) { 
for (i=0; i < amount; i++)  
  balance.V(); 

  }

  void withdraw(int amount) { 
      Withdrawing.P(); 
     for (i=0; i < amount; i++)  
         balance.P(); 
      withdrawing.V(); 
  }

 Using a counting semaphore removes the need for the total 
variable, which makes the code much better (not while/if 
statements) 

 But then it goes dollar-per-dollar, which has higher overhead 
again….



Bank Account
 Each solution has its own “features” 

 Starvation behaviors 
 Which we “fixed” by imposing a sequential order on withdrawals, 

which is both good and bad 
 Code complexity 
 Overhead 

 Depending on the desired behavior and the use case, 
some solutions may be preferable 

 Aiming for a great solutions across all use cases is 
perhaps not possible, and you can see how one could 
spend a lot of time designing it 

 This is the whole point of these “metaphor” problems: 
perhaps there is no great solution, but thinking one is a 
great learning and thought experiment 



The BarberShop Problem
A simpler problem, for which there are great solutions 
 It’s “just” about thread communication 
The Barber provides a service (i.e., a haircut) to customers 

opens the door to the shop 
waits for a customer 
gives a haircut 
 tells the customer to leave 
waits until the customer has left through the back 

The Customer 
waits for the door to open 
enters the barber shop 
waits until the barber is available 
waits until the haircut is finished 
 leaves the shop through the back door 

The problem: develop a Barber Shop monitor



The BarberShop

customer 
has left

waiting customers

barbercustomer getting 
a haircut



With Locks/Condvars
 We must implement three methods 

 getHaircut(): called by customers 
 getNextCustomer(): called by the barber when free 
 finishedCut(): called by the barber when done

void Barber() { 
  while (true) { 
    BarberShop.getNextCustomer(); 
    <Cut hair> 
    BarberShop.finishedCut(); 
  } 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

void Customer() { 
  BarberShop.getHaircut(); 
}

. . .



BarberShop with locks/cond vars

 We use four boolean flags 
 barber: IDLE / WORKING (barber) 
 left: GONE / STILL_HERE   (customer just serviced) 
 door: OPEN / CLOSED 
 chair: OCCUPIED / FREE 

 We use four condition variables 
 The barber waits on 

 chair_occupied: a customer just sat down (chair = OCCUPIED) 
 customer_left: the recently served customer just left (left = 

GONE) 
 The customer waits on 

 door_open: the entrance is open (door = OPEN) 
 haircut_done: the haircut is done (barber = IDLE)



With Locks/Condvar
class BarberShop { 
  boolean barber = IDLE; 
  boolean chair = FREE; 
  boolean left = GONE; 
  boolean door = OPEN; 

  Condvar chair_occupied; 
  Condvar customer_left; 
  Condvar barber_available; 
  Condvar door_open; 
  Condvar haircut_done; 

  Lock mutex; 

  void getHaircut() { . . . } 
  void getNextCustomer)() { . . . } 
  void finishedCut() { . . . } 
}



BarberShop Implementation
void getHaircut() { 
  mutex.lock(); 
  // wait for door to open 
  while (door == CLOSED) { 
    door_open.wait(mutex); 
  } 
  door = CLOSED; 

  // make the barber non-idle 
  barber = WORKING; 
  chair = OCCUPIED; 
  left = STILL_HERE; 
  chair_occupied.signal(); 
  // wait for the barber to be idle 
  while (barber == WORKING) { 
     haircut_done.wait(mutex); 
  } 
  chair = FREE; 
  left = GONE; 
  customer_left.signal(); 
  mutex.unlock(); 
}

void getNextCustomer() { 
  mutex.lock(); 
  while(chair == FREE) { 
    chair_occupied.wait(mutex); 
  } 
  mutex.unlock(); 
}

void finishCut() { 
  lock(mutex); 
  barber = IDLE 
  haircut_done.signal(); 
  while (left == STILL_HERE) { 
    customer_left.wait(mutex) 
  } 
  door = OPEN; 
  door_open.signal(); 
  mutex.unlock(); 
}



With Locks/Condvars
 Overall, a pretty natural solution but that requires a bit 

of thoroughness 
 Different solutions are possible with different flags / 

condition variables 
 We decided arbitrarily who sets which variables, could be 

done differently 
 Many solutions available on the Web 
 Some more readable than others, but that’s typically pretty 

subjective 
 Key point: pick good names for variables/flags 

 Still, it’s a lot of code… can we do better with 
semaphores?  

 After all, semaphores are so easy for 
communication



BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”: 

 left: the “fact” that the last customer has left (init = 0) 
 barber: the “fact” that the barber has finished (init = 0) 
 door: the “fact” that the front door is open (init = 0) 
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() { 
  door.V();  // open the door 
  chair.P(); // wait for chair to be taken 
}

void finishCut() { 
  barber.V(); // say “I am done” 
  left.P();      // wait for customer 
                   // to have left 
}

void getHaircut() { 
  door.P();     // wait for door to be open 
  chair.V();    // sit in the chair 
  barber.P(); // wait for barber to be done 
  left.V();      // leave the shop 
}



BarberShop with Semaphores
 Let’s have one binary semaphore per “resource”: 

 left: the “fact” that the last customer has left (init = 0) 
 barber: the “fact” that the barber has finished (init = 0) 
 door: the “fact” that the front door is open (init = 0) 
 chair: the “fact” that the chair is empty (init = 0)

void getNextCustomer() { 
  door.V();  // open the door 
  chair.P(); // wait for chair to be taken 
}

void finishCut() { 
  barber.V(); // say “I am done” 
  left.P();      // wait for customer 
                   // to have left 
}

void getHaircut() { 
  door.P();     // wait for door to be open 
  chair.V();    // sit in the chair 
  barber.P(); // wait for barber to be done 
  left.V();      // leave the shop 
}

Because all we do is communication, 
semaphores are very elegant for the 

barbershop problem!



Reader-Writer-like Problems

 Many people have come up with problems that 
ressemble, more or less, the reader-writer 
problem 

 I just made this one up: you have a cloud, and 
two companies, A and B, that you charge for use 

 A company can have an unlimited number of 
users in the cloud 

 But there can never be users from the two 
companies in it at the same time   
 (companies are paranoid about industrial espionage) 

 Let’s look at one solution…



Cloud Problem
int counts[2] = {0,0}; 
lock mutex; 
cond go_ahead[2]; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock() 
  // Wait for cloud to be void of the other company 
  while (count[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
   } 
  counts[id]++ 
  mutex.unlock() 
     
  // Use the server 

  mutex.lock(); 
  count[id]-- 
  if (count[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}



Cloud Problem
int counts[2] = {0,0}; 
lock mutex; 
cond go_ahead[2]; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock() 
  // Wait for cloud to be void of the other company 
  while (count[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
   } 
  counts[id]++ 
  mutex.unlock() 
     
  // Use the server 

  mutex.lock(); 
  count[id]-- 
  if (count[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}

Works, but has 
starvation! (just like 
the naive reader-
writer)



Cloud Problem (#2)

 Let’s now say that we have only 3 servers the 
cloud 

 We now need to have users wait for users of 
their own company to be done using the 
servers! 

 Let’s look at the solution, which is a bit more 
complicated…



Cloud Problem (#2)

int waiting[2] = {0,0}; 
int using[2] = {0,0}; 

lock mutex; 
cond go_ahead[2]; 
cond free_server; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock(); 
  // Wait for cloud to be void of the other company 
  while (waiting[1-id] > 0 || using[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
  } 
  waiting[id]++; 
  while (using[id] >= 3) { 
    free_server.wait(mutex) 
  } 
  waiting[id]--; 
  using[id]++ 
  mutex.unlock(); 
     
  // Use the server 

  mutex.lock(); 
  using[id]-- 
  free_server.signal() 
  if (waiting[id] <= 0 && using[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}



Cloud Problem (#2)

int waiting[2] = {0,0}; 
int using[2] = {0,0}; 

lock mutex; 
cond go_ahead[2]; 
cond free_server; 

#define id_A 0 
#define id_B 1

void user(int id) { 
  mutex.lock(); 
  // Wait for cloud to be void of the other company 
  while (waiting[1-id] > 0 || using[1 - id] > 0) { 
    go_ahead[id].wait(mutex) 
  } 
  waiting[id]++; 
  while (using[id] >= 3) { 
    free_server.wait(mutex) 
  } 
  waiting[id]--; 
  using[id]++ 
  mutex.unlock(); 
     
  // Use the server 

  mutex.lock(); 
  using[id]-- 
  free_server.signal() 
  if (count[id] <= 0 && waiting[id] <= 0)  { 
    go_ahead[1-id].signal_all();  
  } 
  mutex.unlock(); 
}

Works, but has 
starvation! (just like 
the naive reader-
writer)



The Dining Philosophers Problem
 A classical synchronization problem 

 pretty meaningless at face value 
 but representative of many real-world problems

 5 philosophers sit at a table with 
5 plates and 5 forks/chopsticks 

 Each philosopher does two 
things: 
 think for a while 
 eat for a while 
 repeat 

 To eat, a philosopher needs two 
forks/chopsticks



Philosopher Algorithm

 Problem: how to implement the pickupForks() 
and putdownForks() methods? 
 putdownForks() is actually straightforward

void philosopher() { 
  <think> 
  pickupForks(); 
  <eat> 
  putdownForks(); 
}



“Protected” Forks
 We need to avoid two philosophers having the same chopstick in hand 
 First Idea: Use an array of “locks”, one for each fork 

 Acquiring the lock means “getting the fork” 
 Releasing the lock means “giving up the fork” 

 These are “conceptual” locks (e.g., may be something else in Java)

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4  To eat, philosopher #i must 
acquire lock[(i+1) % 5] and 
lock[i]



Implementation Idea #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) { 
  return ((phil + 4) % 5); 
} 
int right(int phil) { 
  return phil; 
} 

void pickupForks(int phil) { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
} 

void putdownForks(int phil) { 
    unlock(locks[left(phil)]); 
    unlock(locks[right(phil)]); 
}



Solution #1

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4

int left(int phil) { 
  return ((phil + 4) % 5); 
} 
int right(int phil) { 
  return phil; 
} 

void pickupForks(int phil) { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
} 

void putdownForks(int phil) { 
    unlock(locks[left(phil)]); 
    unlock(locks[right(phil)]); 
} what is wrong in this solution?



Solution #1 Deadlocks
 If all philosophers pick up the fork on their left 

simultaneously and then try to pick up the fork 
on their right, then we have a deadlock  

 The deadlock may happen very rarely on a 
single proc system 

 What are the odds that all threads are interrupted right 
in between the two calls to pthread_lock() 

 May happen more frequently on a multi-core 
system 

 At any rate, one is never guaranteed that the 
code will not block at some point in time 

 Think of a server that must stay up for months... 
 Question:  What’s a deadlock-free 

implementation? 



Solution #2
 A simple Idea: make the solution asymmetrical 

 Odd-numbered philosophers start with the left fork 
 Even-numbered philosophers start with the right 

fork
void pickupForks(int phil) { 
  if (phil %2 == 0) { 
    lock(locks[right(phil)]); 
    lock(locks[left(phil)]; 
  } else { 
    lock(locks[left(phil)]); 
    lock(locks[right(phil)]; 
  } 
}



Solution #2 doesn’t Deadlock!
 If P1 gets to f1 before P2 

 P2 does not pick up f2 
 If P4 gets to f3 before P3 

 If P4 gets to f4 before P0 
 P4 eats! 
 P0 doesn’t pick up f0 
 P1 eats 

 . . . 
 This kind of exhaustive 

reasoning is very tedious 
 But we can see that at 

least two philosophers can 
always eat no matter what 

 Formal reasoning for 
something like this can be 
very difficult

locks[0]

locks[1]

locks[2]

locks[3]

locks[4]

phil #0

phil #1

phil #2phil #3

phil #4



Solution #2 isn’t so great...

 Small possibility of starvation  
 A philosopher could put down a fork and pick it 

right back up  
 But this depends upon the way in which threads 

are implemented  
 And requires that a philosopher’s think time could 

be 0 seconds 
 Biggest problem: the implementation is unfair 

 One of the threads has an advantage over the 
others 

 Philosopher 0 doesn’t face a lot of competition 
when picking up the fork on its right 

 Let’s see this on a picture…



Solution #2 is Unfair

0

1

23

4

Unfair advantage 
because of less  
competition



Towards a Fair Solution
 How can we not give an unfair advantage to Philosopher 0? 
 The problem is that it’s a jungle out there 

 There is no communication between philosophers 
 They have their eyes on the forks, and not on each other 

 New idea:  
 when a philosopher wants to eat, he checks the forks 
 if they are available, he eats 
 otherwise, he waits on a condition variable 

 one condition variable per philosopher  
 when a philosopher finishes eating he checks to see if his 

neighbors are waiting 
 if so, he signals them so that they can recheck the forks 

 Major difference: everything is about philosopher state not 
about the forks 

 THINKING, HUNGRY, EATING



Solution #3
void pickupForks(int phil) { 
  lock(mutex); // enter critical section 
  state[phil] = HUNGRY; 
  while ((state[left(phil)] == EATING) || 
             (state[right(phil)] == EATING)) { 
    wait(cond[phil], mutex); 
  } 
  state[phil] = EATING; 
  unlock(mutex); // leave critical section 
}

void putdownForks(int phil) { 
  lock(mutex); // enter critical section 
  if (state[left(phil)] == HUNGRY) 
    signal(cond[left(phil)]); 
  if (state[right(phil)] == HUNGRY) 
    signal(cond[right(phil)]; 
  state[phil] = THINKING; 
  unlock(mutex); // leave critical section 
}

 One lock for mutual exclusion 
 One array of condition variables, one per philosopher 
 All philosophers are equal  
 Still a problem :(



Solution #3 not that good...
 Risk of starvation 

 There could be a ping-pong effect 
 P0 and P2 get to eat 
 P1 and P3 get to eat 
 P0 and P2 get to eat 
 .... 
 P4 never gets to eat! 

 This is rare, but could happen in the long run 
 It would be nice to have something that is 

guaranteed to work well and fairly 
 At this point we’re getting into the “theoretical” 

domain, while most “systems” people would be 
ok with what we already have



Solution #4: The Queue
 To guarantee fairness one can use a queue of philosophers 

 If a philosopher finds that he can eat, then great 
 Otherwise, he is placed in a queue 
 Only the philosopher at the head of the queue is allowed to eat 

among those in the queue (and gets removed from the queue) 
 Problem 

 A philosopher could find that he can pickup forks BUT he is  
not at the head of the queue 

 In this case he has to wait 
 Hence philosophers cannot eat as much as they want 
 So it’s fair, but not very efficient 

 Possible Solution 
 Allows philosophers to jump ahead in the queue when they 

use forks that are not needed by anybody ahead of them in the 
queue



Solution #5: The Deli
 Use numbers (the “Deli” model) 

 When hungry, a philosopher takes a number 
 If a philosopher is hungry and so are his neighbors, the one 

with the lowest number gets to eat 
 Numbers always increase 

 Works pretty well, but still can lead to poor performance 
with too much blocking 

 Some solutions use a mix of everything we’ve seen so far... 
 It turns out that having a deadlock-free and fair solution is 

rather difficult 
 Some of the solutions we have seen are good, but could 

potentially break down in particular situations 
 Depending on thinking / eating times 
 Depending on the number of philosophers



Conclusion 
 Main things to worry about 

 Deadlock 
 Starvation / Fairness 
 Performance 

 For some problems it can be very difficult to come up with 
a good solution that works under all conditions 

 There may be no such solution at all 
 For some problems, semaphores are more elegant than 

monitors, for some others it’s the other way around 
 Let’s check out “The little book of semaphores!” 

 In this course I don’t have you do the beaten-to-death 
“implement dining philosophers” assignment 

 But I have the assignment. So if you want the experience, 
let me know…

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf

