What is

Concurrency?

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" A
Disclaimer

® There is content in the two sets of lecture
notes in this module that overlaps with
|CS332

® |f you took ICS332 last semester, bear with
us (or zone out)

m But if you took it a long(er) time ago,
experience shows this is useful!

"
Concurrency

m Definition: Execution of multiple “tasks” at the “same” time
® You have mostly written non-concurrent, or sequential, programs

At any point, you could stop the program and say exactly which
execution is being executed, what the calling sequence is, what
the runtime stack looks like, etc.

And there is a single answer to all the above for any execution of
your program
® [n a concurrent program, you design the program in terms of
tasks, where each task as a “life of its own”
Each task has a specific job to do
Tasks may need to “talk” to each other

Tasks can be in different regions of the code or in the same region
of the code a the same time

Tasks can be short-lived or last the whole program’s execution
m A different way of thinking/programming

"
A brief history of concurrency (1)

”

® First machines were used in “single-user mode

| declare: “| am going to use the machine for 2PM till
4PM”
| go in the special machine room and sit there for 2
hours
= | try the punch cards that | have prepared in advance
= | find bugs
= | debug
= etc.

m Extreme lack of productivity

During my “thinking time”, this multi-million $ machine
does nothing

A brief history of concurrency (2)

m Batch Processing!

Instead of reserving the machine for a lapse of
time to do all my activities (including
debugging), | “submit” requests to a “queue”
® The queue serves requests in order (possibly with
priorities)
= When my program fails and stops, somebody else
gets the machine immediately

Great but: CPU idle during 1/O!

® And I/O takes foreeeeeever

" A
A brief history of concurrency (3)

® Multi-programming (the 60’s)
Multiple programs reside in memory at once
Made possible due to increased memory size
Requires interrupts and memory protection
® Time-sharing (the 70’s)
Multi-programming but rapid alternation between programs

Provides the illusion of programs all running simultaneously on
the machine

® This is all in ICS332, and is what we have today
® Virtual memory, fast context switching, etc.

m Fventually this has led to concurrency in user applications!
My application is “logically” multiple concurrent tasks

| can now implement it as concurrent tasks and the OS will run
them simultaneously!

This is a main topic of this course

erminal n 8;

preferred,

Concurrent Programs

® A program consists of multiple S
files/modules/classes/functions

erminal — vim x69

erminal — vim — 101x71

r_host, int
ation,
arted, int p

jobrequ

job_requ

job_reques
b_requ

ler_info_t preferrad,
*schadu

jobrequ Uauration);
jobrequ
b_r

—put(task, schedule
£1¢0,

T_L0G_NEW_DEFAULT_CATEGORY{RECE I VER,

nts

_percentag
intra_cluster_algorithn_t intra_cluster_algori thm,
nt intra_cluster_percentage,

nt port_started, int por:

uler

¢ *target.
dunar_t dynar;

arguli],
£,

Bnun_tar

{dy y s *Jargu(213)
¢

whi La¢

ort_quet
port_a. int r

ithn_t alg, scheduler_bookkeeping

ied
bk=>running

switch (alg
case FCFS:

_percentage ar, dynar_Length oid*) task);

int port_done, int port_queus_size)

" J
Concurrent Programs

m A sequential program does this

" J
Concurrent Programs

m A concurrent program does this
a blue task
a red task

Concurrent Programs

m or this

T

a blue task
a red task
a green tas

bk->qu
bk=>runn

ed
ing

erminal

ithn_t ala,

chedu

6_NEW_DEFRULT_CATEGORY(RECE I VER,

ar, dynar_Length(

erminal

oid*)task);

"
Concurrent Programs

® Thinking about what a concurrent program does is more
difficult than for a sequential program

One may have to keep a mental picture of what each task
is doing at all time (we try not to)

Questions like “While task #1 is in function f where is task
#27" are often difficult (and we try not to have their answers
matter so that we don’t have to ask them)

Two executions of the same program may not be identical
m \We'll explain this in more details
® As a result, concurrent programs are
Almost always more difficult to design for correctness
Almost always more difficult to read
Always more difficult to debug

m S0, why do we bother at all?

" J
Concurrency for Interactivity

® One of the oldest uses for concurrency is to make programs
more interactive

® \While a program is running and doing stuff, the user should
still be able to interact with it
®m Fxample:

What if in your Web browser you couldn’t click “back”
before the browser has finished loading the page you
immediately realized is the wrong one?

What if in iTunes you couldn’t look at your play list while
you're playing a song because the program is busy
playing the song?
® One wants to avoid the “frozen because | am working”
problem as much as possible

m | et’s look at a made-up example...

"
Designing a Concurrent GUI

® A common application of concurrent
programming is for designing Graphical User
Interfaces (GUIs)

m Example application

Say you want to write a program that renders 3-D
objects on the screen

You have a clickable button to launch the rendering
But rendering takes a long time

You don’t want the GUI to appear “frozen” while
rendering the objects

For instance, you want the “Quit” and “Cancel”
buttons to still work

" A
Concurrent GUI?

® One way to avoid the “frozen” problem without
using concurrency is to write your code with
breaking down a task into sub-tasks

Typically, I'll write code fragments in C/C++-like
pseudo-code or in Java, without declarations, etc.

void render(...) {
for (step=0; step<l00; step++) {
this.doSomeRendering(...) ;
if (gui.cancelButton.clicked())
break;

"
That was (often) a bad idea

® |[t's cumbersome:
What if you want to do 7 tasks?

Sprinkle “interaction checks” throughout your code
will make is unreadable and annoying to maintain

® |[t's no always doable:

What if rendering is not breakable into multiple
calls??
= Perhaps you call some library that you didn’t write
and cannot modify
m \What if some tasks have some real-time requirements?

e.g., you want to have an animated symbol that
changes every t milliseconds but a call to
doSimpleRendering() takes longer than that?

"
Task-based design

B |nstead of thinking of your application as one
task that has to juggle many things at once,
you think of your application as a bunch of
tasks that run concurrently

m Each task does one thing and perhaps
doesn’t even know that there are other tasks

B Assuming that we have a programming
language that allows us to define tasks we
can rewrite our application...

" A
Concurrent GUI

® |n horrible pseudo-code:

renderer = new Task (render)
mousewatcher = new Task (watchmouse)

renderer.start () ;
mousewatcher.start () ;
renderer.wait until finished()

Renderer: :render () {
// do rendering on screen

}

Mousewatcher: :watchmouse () {
// whenever mouse clicked, kill renderer

}

" A
Concurrent Tasks Abstraction

® Fortunately, our OSs support the concurrent
tasks abstraction

After all, on our machines many programs can run
simultaneously

So why not tasks within our programs?

® This can be done by
A special library
A virtual machine like the JVM
The Operating System
A combination of the above

® Almost all modern programming languages allow
you to create “tasks” in your programs

" A
“Simultaneous” tasks?

®m Can we really have simultaneous
concurrent tasks?

® There are two kinds of concurrency:

True concurrency: two or more “things”
happen at the same instant in time

False concurrency: only one thing happens at
a time, but the illusion of concurrency is
achieved because the OS performs rapid
context switching

" J
True/False Concurrency

m Consider a program that defines two
concurrent tasks, T1 and T2

® On a single core, only one task can use
the CPU

The concurrent tasks use false concurrency

® On a multi-core system, each task can be
on a different core

The concurrent tasks use true concurrency

False Concurrency on One Core

one processor

time

® False concurrency between the red task, the green
task, and the blue task

® The OS context-switches back and forth between
the three tasks

m Because this is very fast, we have the “illusion” of
simultaneous execution

" A
On Two Cores

time

one core

one core

time
® True concurrency between the yellow task and the
green task, the grey and the blue, etc.

" JE
True/False Concurrency

® The programmer shouldn’t have to care/know whether
concurrency will be true or false
Besides the fact that true concurrency offers better performance
than false concurrency
® Typically, the programmer doesn’t know on which computer
the program will run!
You have no idea how many cores your “customer” will have on
their machines
m A concurrent program with 10 tasks will work on a single-core
processor, a quad-core processor, a 32-core processor, etc

Your job as a developer is to create tasks

® e.g., the program could easily discover that the machine it's running on
has 8 cores, and thus decides to create 8 tasks

The job of the OS is to dispatch these tasks to the cores

= e.g., the OS is smart enough to put each of the 8 tasks on its own core
without you having to make those decisions

" A
Performance!l!

m But wait, with true concurrency we can also
go faster!!!

If you have to bake 2 cakes and you have 1
oven it will take you 2 hours

But if you have 2 ovens that can be on at
the same time, it will take you only 1 hour

® This brings us to the second major reason
why people want to use concurrency:
compute stuff faster

B o summarize we have two motivations:
concurrency for interactivity
concurrency for performance

" A
Multi-core Processors

® There have always been different hardware resources
to use concurrently to increase performance

e.g., the disk, the network, and the CPU can all be used at
the same time because they are different pieces of
hardware
m But the last decades have seen the advent of multi-
core processors, which are now ubiquitous

®m Many programs have been made concurrent so as to
utilize multiple cores concurrently

It's become impossible to say “I| am an employable
software developer but | don’t deal with concurrency”

® How come we have multi-core processors in the first
place?

" A
Moore’s Law

® |In 1965, Gordon Moore (co-founder
of Intel) predicted that transistor
density of semiconductor chips
would double roughly every 24 months
(often “misquoted” as 18 months)

He was right

But, the law was often wrongly interpreted as:
“Computers get twice as fast every 2 years”

This wrong interpretation was true for a while, but
no longer...

"
50-year Trend

O Cores (count) S
16407 Io§Y Y
O Frequency (MHz) Vs g
A Process (nm) Predicted growth
Vv Transistors (thousands) (x2 every two years)
1e+05

1e+03 - -
\Y O
Agé%é O
1e+01 1 08 @gég 0
y EDHDEDDD B4
' oooo O O
O O O AV
® %
1e_01 T T T T T T
1970 1980 1990 2000 2010
Year

2020
Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

"
50-year Trend

O Cores (count)
1e+07 -
et O Frequency (MHz) This plateau
A
Process (nm) (was really, really
Vv Transistors (thousands)
. bad news
1e+03 1
\4
1e+01 4
3 \V
=[>
o
1e-01 - : i ! '
1970 1980 1990 2000
Year

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

"
50-year Trend

O Cores (count) _ -t

140711 Frequency (MHz) This plateau | This 1?NadS tf‘:e

7 Process (nm) (| was really, really ‘ Wf:% 'to cd

vV Transist th d 4h
o5 ransistors (thousands) bad news 1 WI |
1e+03 -

\%
1e+01 -

: O

1e_01 i T O T T T T T

1970 1980 1990 2000 2010 2020

Year

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

" A
Multi-core Chips

® Constructors cannot increase clock rate further
Power/heat issues

® They bring you multi-core processors
Multiple “low” clock rate processors on a chip

® [t's really a solution to a problem, not a cool new advance

Even though there are many cool/interesting things about multicore
processors

Even though writing concurrent code is cool/interesting, as we'll see
in this course

® But most users/programmers would rather have a 100GHz
core than 50 2GHz cores
In which case we would not need to write concurrent programs

When given the choice, if you can get by without concurrency,
you're likely better off (until you can’t avoid concurrency anymore)

l.e., in general no compiler will nicely take your sequential app and
magically transform it into an efficient multi-threaded app

" JEEE
So, Multi-Core = High Performance?

® A big question is: how much performance benefit
can we really get from concurrency?

® |t's a difficult question because the answer
depends on the application
depends on the computer
depends on the language / operating system

® |[n some cases, it's very easy to achieve great
performance via concurrency

® |n others, it's very difficult

m \We'll be exposed to this in this course

"
Take-away

®m Concurrency is about structuring your
programs as sets of tasks

m Typically done for interactivity and/or for
performance

®m Concurrency is supported by programming
languages, by OSes, and by the hardware
B |ssues for programmers:

Correctness (we’ll see this can be a tough one)
Performance (sometimes easy, sometimes not)

"
Task-based Thinking

® From now on, you should begin writing code with concurrency in
mind (even if the code is not concurrent right away)

® You currently think of your programs as sets of classes/objects
Or data structures and functions

® But now, you also have to think of your programs as sets of tasks
And these tasks operate on the objects
® This requires a little bit of mental adjustment, and our
programming assignments will help making that adjustment
You have been exposed to this a little bit in ICS332, which will help too

® Thinking of programs as “sets of tasks” will become second
nature soon enough
And is very natural for many applications actually
e.g., each tab in your Web browser is a task

® \When | write a sequential program, | typically think of it as a
concurrent program that happens to have a single task

" A
Conclusion

B |n the next set of lecture notes, we'll look
at processes and threads

What they are (super quick ICS332 “review”)

How we can use them to make an application
concurrent (beyond ICS332)

