
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

What is
Concurrency?

Disclaimer

 There is content in the two sets of lecture
notes in this module that overlaps with
ICS332

 If you took ICS332 last semester, bear with
us (or zone out)

 But if you took it a long(er) time ago,
experience shows this is useful!

Concurrency
 Definition: Execution of multiple “tasks” at the “same” time
 You have mostly written non-concurrent, or sequential, programs

 At any point, you could stop the program and say exactly which
execution is being executed, what the calling sequence is, what
the runtime stack looks like, etc.

 And there is a single answer to all the above for any execution of
your program

 In a concurrent program, you design the program in terms of
tasks, where each task as a “life of its own”

 Each task has a specific job to do
 Tasks may need to “talk” to each other
 Tasks can be in different regions of the code or in the same region

of the code a the same time
 Tasks can be short-lived or last the whole program’s execution

 A different way of thinking/programming	

A brief history of concurrency (1)

 First machines were used in “single-user mode”
 I declare: “I am going to use the machine for 2PM till

4PM”
 I go in the special machine room and sit there for 2

hours
 I try the punch cards that I have prepared in advance
 I find bugs
 I debug
 etc.

 Extreme lack of productivity
 During my “thinking time”, this multi-million $ machine

does nothing

A brief history of concurrency (2)

 Batch Processing!
 Instead of reserving the machine for a lapse of

time to do all my activities (including
debugging), I “submit” requests to a “queue”

 The queue serves requests in order (possibly with
priorities)

 When my program fails and stops, somebody else
gets the machine immediately

 Great but: CPU idle during I/O!
 And I/O takes foreeeeeever

A brief history of concurrency (3)

 Multi-programming (the 60’s)
 Multiple programs reside in memory at once
 Made possible due to increased memory size
 Requires interrupts and memory protection

 Time-sharing (the 70’s)
 Multi-programming but rapid alternation between programs
 Provides the illusion of programs all running simultaneously on

the machine
 This is all in ICS332, and is what we have today

 Virtual memory, fast context switching, etc.
 Eventually this has led to concurrency in user applications!

 My application is “logically” multiple concurrent tasks
 I can now implement it as concurrent tasks and the OS will run

them simultaneously!
 This is a main topic of this course

Concurrent Programs
 A program consists of multiple

files/modules/classes/functions

Concurrent Programs
 A sequential program does this

Concurrent Programs
 A concurrent program does this

 a blue task
 a red task

Concurrent Programs
 or this

 a blue task
 a red task
 a green task

Concurrent Programs
 Thinking about what a concurrent program does is more

difficult than for a sequential program
 One may have to keep a mental picture of what each task

is doing at all time (we try not to)
 Questions like “While task #1 is in function f where is task

#2?” are often difficult (and we try not to have their answers
matter so that we don’t have to ask them)

 Two executions of the same program may not be identical
 We’ll explain this in more details

 As a result, concurrent programs are
 Almost always more difficult to design for correctness
 Almost always more difficult to read
 Always more difficult to debug

 So, why do we bother at all?

Concurrency for Interactivity
 One of the oldest uses for concurrency is to make programs

more interactive
 While a program is running and doing stuff, the user should

still be able to interact with it
 Example:

 What if in your Web browser you couldn’t click “back”
before the browser has finished loading the page you
immediately realized is the wrong one?

 What if in iTunes you couldn’t look at your play list while
you’re playing a song because the program is busy
playing the song?

 One wants to avoid the “frozen because I am working”
problem as much as possible

 Let’s look at a made-up example…

Designing a Concurrent GUI
 A common application of concurrent

programming is for designing Graphical User
Interfaces (GUIs)

 Example application
 Say you want to write a program that renders 3-D

objects on the screen
 You have a clickable button to launch the rendering
 But rendering takes a long time
 You don’t want the GUI to appear “frozen” while

rendering the objects
 For instance, you want the “Quit” and “Cancel”

buttons to still work

Concurrent GUI?
 One way to avoid the “frozen” problem without

using concurrency is to write your code with
breaking down a task into sub-tasks
 Typically, I’ll write code fragments in C/C++-like

pseudo-code or in Java, without declarations, etc.

void render(...) {
 for (step=0; step<100; step++) {
 this.doSomeRendering(...);
 if (gui.cancelButton.clicked())
 break;
 }
}

That was (often) a bad idea
 It’s cumbersome:

 What if you want to do 7 tasks?
 Sprinkle “interaction checks” throughout your code

will make is unreadable and annoying to maintain
 It’s no always doable:

 What if rendering is not breakable into multiple
calls??

 Perhaps you call some library that you didn’t write
and cannot modify

 What if some tasks have some real-time requirements?
 e.g., you want to have an animated symbol that

changes every t milliseconds but a call to
doSimpleRendering() takes longer than that?

Task-based design

 Instead of thinking of your application as one
task that has to juggle many things at once,
you think of your application as a bunch of
tasks that run concurrently

 Each task does one thing and perhaps
doesn’t even know that there are other tasks

 Assuming that we have a programming
language that allows us to define tasks we
can rewrite our application…

Concurrent GUI
 In horrible pseudo-code:
renderer = new Task(render)
mousewatcher = new Task(watchmouse)

renderer.start();
mousewatcher.start();
renderer.wait_until_finished()

Renderer::render() {
 // do rendering on screen
}

Mousewatcher::watchmouse() {
 // whenever mouse clicked, kill renderer
}

Concurrent Tasks Abstraction
 Fortunately, our OSs support the concurrent

tasks abstraction
 After all, on our machines many programs can run

simultaneously
 So why not tasks within our programs?

 This can be done by
 A special library
 A virtual machine like the JVM
 The Operating System
 A combination of the above

 Almost all modern programming languages allow
you to create “tasks” in your programs

“Simultaneous” tasks?

 Can we really have simultaneous
concurrent tasks?

 There are two kinds of concurrency:
 True concurrency: two or more “things”

happen at the same instant in time
 False concurrency: only one thing happens at

a time, but the illusion of concurrency is
achieved because the OS performs rapid
context switching

True/False Concurrency

 Consider a program that defines two
concurrent tasks, T1 and T2

 On a single core, only one task can use
the CPU
 The concurrent tasks use false concurrency

 On a multi-core system, each task can be
on a different core
 The concurrent tasks use true concurrency

False Concurrency on One Core

timeon
e

pr
oc

es
so

r

 False concurrency between the red task, the green
task, and the blue task

 The OS context-switches back and forth between
the three tasks

 Because this is very fast, we have the “illusion” of
simultaneous execution

On Two Cores

time

timeon
e

co
re

on
e

co
re

 True concurrency between the yellow task and the
green task, the grey and the blue, etc.

True/False Concurrency
 The programmer shouldn’t have to care/know whether

concurrency will be true or false
 Besides the fact that true concurrency offers better performance

than false concurrency
 Typically, the programmer doesn’t know on which computer

the program will run!
 You have no idea how many cores your “customer” will have on

their machines
 A concurrent program with 10 tasks will work on a single-core

processor, a quad-core processor, a 32-core processor, etc
 Your job as a developer is to create tasks

 e.g., the program could easily discover that the machine it’s running on
has 8 cores, and thus decides to create 8 tasks

 The job of the OS is to dispatch these tasks to the cores
 e.g., the OS is smart enough to put each of the 8 tasks on its own core

without you having to make those decisions

Performance!!!

 But wait, with true concurrency we can also
go faster!!!
 If you have to bake 2 cakes and you have 1

oven it will take you 2 hours
 But if you have 2 ovens that can be on at

the same time, it will take you only 1 hour
 This brings us to the second major reason

why people want to use concurrency:
compute stuff faster

 To summarize we have two motivations:
 concurrency for interactivity
 concurrency for performance

Multi-core Processors
 There have always been different hardware resources

to use concurrently to increase performance
 e.g., the disk, the network, and the CPU can all be used at

the same time because they are different pieces of
hardware

 But the last decades have seen the advent of multi-
core processors, which are now ubiquitous

 Many programs have been made concurrent so as to
utilize multiple cores concurrently

 It’s become impossible to say “I am an employable
software developer but I don’t deal with concurrency”

 How come we have multi-core processors in the first
place?

Moore’s Law

 In 1965, Gordon Moore (co-founder
of Intel) predicted that transistor
density of semiconductor chips
would double roughly every 24 months

 (often “misquoted” as 18 months)
 He was right
 But, the law was often wrongly interpreted as:

“Computers get twice as fast every 2 years”
 This wrong interpretation was true for a while, but

no longer...

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

This was the
way to deal
with it

Multi-core Chips
 Constructors cannot increase clock rate further

 Power/heat issues
 They bring you multi-core processors

 Multiple “low” clock rate processors on a chip
 It’s really a solution to a problem, not a cool new advance

 Even though there are many cool/interesting things about multicore
processors

 Even though writing concurrent code is cool/interesting, as we’ll see
in this course

 But most users/programmers would rather have a 100GHz
core than 50 2GHz cores

 In which case we would not need to write concurrent programs
 When given the choice, if you can get by without concurrency,

you’re likely better off (until you can’t avoid concurrency anymore)
 i.e., in general no compiler will nicely take your sequential app and

magically transform it into an efficient multi-threaded app

So, Multi-Core = High Performance?

 A big question is: how much performance benefit
can we really get from concurrency?

 It’s a difficult question because the answer
 depends on the application
 depends on the computer
 depends on the language / operating system

 In some cases, it’s very easy to achieve great
performance via concurrency

 In others, it’s very difficult

 We’ll be exposed to this in this course

Take-away

 Concurrency is about structuring your
programs as sets of tasks

 Typically done for interactivity and/or for
performance

 Concurrency is supported by programming
languages, by OSes, and by the hardware

 Issues for programmers:
 Correctness (we’ll see this can be a tough one)
 Performance (sometimes easy, sometimes not)

Task-based Thinking
 From now on, you should begin writing code with concurrency in

mind (even if the code is not concurrent right away)
 You currently think of your programs as sets of classes/objects

 Or data structures and functions
 But now, you also have to think of your programs as sets of tasks

 And these tasks operate on the objects
 This requires a little bit of mental adjustment, and our

programming assignments will help making that adjustment
 You have been exposed to this a little bit in ICS332, which will help too

 Thinking of programs as “sets of tasks” will become second
nature soon enough

 And is very natural for many applications actually
 e.g., each tab in your Web browser is a task

 When I write a sequential program, I typically think of it as a
concurrent program that happens to have a single task

Conclusion

 In the next set of lecture notes, we’ll look
at processes and threads
 What they are (super quick ICS332 “review”)
 How we can use them to make an application

concurrent (beyond ICS332)

