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ICS432 
Concurrent and High-Performance  

Programming

What is 
Concurrency?



Disclaimer

 There is content in the two sets of lecture 
notes in this module that overlaps with 
ICS332 

 If you took ICS332 last semester, bear with 
us (or zone out) 

 But if you took it a long(er) time ago, 
experience shows this is useful!



Concurrency
 Definition: Execution of multiple “tasks” at the “same” time 
 You have mostly written non-concurrent, or sequential, programs 

 At any point, you could stop the program and say exactly which 
execution is being executed, what the calling sequence is, what 
the runtime stack looks like, etc. 

 And there is a single answer to all the above for any execution of 
your program 

 In a concurrent program, you design the program in terms of 
tasks, where each task as a “life of its own” 

 Each task has a specific job to do 
 Tasks may need to “talk” to each other 
 Tasks can be in different regions of the code or in the same region 

of the code a the same time 
 Tasks can be short-lived or last the whole program’s execution 

 A different way of thinking/programming	



A brief history of concurrency (1)

 First machines were used in “single-user mode” 
 I declare: “I am going to use the machine for 2PM till 

4PM” 
 I go in the special machine room and sit there for 2 

hours 
 I try the punch cards that I have prepared in advance 
 I find bugs 
 I debug 
 etc. 

 Extreme lack of productivity 
 During my “thinking time”, this multi-million $ machine 

does nothing 



A brief history of concurrency (2)

 Batch Processing! 
 Instead of reserving the machine for a lapse of 

time to do all my activities (including 
debugging),  I “submit” requests to a “queue” 

 The queue serves requests in order (possibly with 
priorities) 

 When my program fails and stops, somebody else 
gets the machine immediately 

 Great but: CPU idle during I/O! 
 And I/O takes foreeeeeever



A brief history of concurrency (3)

 Multi-programming (the 60’s) 
 Multiple programs reside in memory at once 
 Made possible due to increased memory size 
 Requires interrupts and memory protection 

 Time-sharing (the 70’s) 
 Multi-programming but rapid alternation between programs 
 Provides the illusion of programs all running simultaneously on 

the machine 
 This is all in ICS332, and is what we have today 

 Virtual memory, fast context switching, etc. 
 Eventually this has led to concurrency in user applications! 

 My application is “logically” multiple concurrent tasks 
 I can now implement it as concurrent tasks and the OS will run 

them simultaneously! 
 This is a main topic of this course



Concurrent Programs
 A program consists of multiple 

files/modules/classes/functions



Concurrent Programs
 A sequential program does this



Concurrent Programs
 A concurrent program does this 

 a blue task 
 a red task



Concurrent Programs
 or this 

 a blue task 
 a red task 
 a green task



Concurrent Programs
 Thinking about what a concurrent program does is more 

difficult than for a sequential program 
 One may have to keep a mental picture of what each task 

is doing at all time (we try not to) 
 Questions like “While task #1 is in function f where is task 

#2?” are often difficult (and we try not to have their answers 
matter so that we don’t have to ask them) 

 Two executions of the same program may not be identical 
 We’ll explain this in more details 

 As a result, concurrent programs are 
 Almost always more difficult to design for correctness 
 Almost always more difficult to read 
 Always more difficult to debug 

 So, why do we bother at all?



Concurrency for Interactivity
 One of the oldest uses for concurrency is to make programs 

more interactive 
 While a program is running and doing stuff, the user should 

still be able to interact with it 
 Example: 

 What if in your Web browser you couldn’t click “back” 
before the browser has finished loading the page you 
immediately realized is the wrong one? 

 What if in iTunes you couldn’t look at your play list while 
you’re playing a song because the program is busy 
playing the song? 

 One wants to avoid the “frozen because I am working” 
problem as much as possible 

 Let’s look at a made-up example…



Designing a Concurrent GUI
 A common application of concurrent 

programming is for designing Graphical User 
Interfaces (GUIs) 

 Example application 
 Say you want to write a program that renders 3-D 

objects on the screen 
 You have a clickable button to launch the rendering 
 But rendering takes a long time 
 You don’t want the GUI to appear “frozen” while 

rendering the objects 
 For instance, you want the “Quit” and “Cancel” 

buttons to still work



Concurrent GUI?
 One way to avoid the “frozen” problem without 

using concurrency is to write your code with 
breaking down a task into sub-tasks 
 Typically, I’ll write code fragments in C/C++-like 

pseudo-code or in Java, without declarations, etc.

void render(...) { 
   for (step=0; step<100; step++) { 
     this.doSomeRendering(...); 
     if (gui.cancelButton.clicked()) 
       break; 
   } 
}



That was (often) a bad idea
 It’s cumbersome: 

 What if you want to do 7 tasks? 
 Sprinkle “interaction checks” throughout your code 

will make is unreadable and annoying to maintain 
 It’s no always doable: 

 What if rendering is not breakable into multiple 
calls?? 

 Perhaps you call some library that you didn’t write 
and cannot modify 

 What if some tasks have some real-time requirements? 
 e.g., you want to have an animated symbol that 

changes every t milliseconds but a call to 
doSimpleRendering() takes longer than that? 



Task-based design

 Instead of thinking of your application as one 
task that has to juggle many things at once, 
you think of your application as a bunch of 
tasks that run concurrently 

 Each task does one thing and perhaps 
doesn’t even know that there are other tasks 

 Assuming that we have a programming 
language that allows us to define tasks we 
can rewrite our application…



Concurrent GUI
 In horrible pseudo-code:
renderer = new Task(render) 
mousewatcher = new Task(watchmouse) 

renderer.start();      
mousewatcher.start();  
renderer.wait_until_finished() 

Renderer::render() { 
  // do rendering on screen 
} 

Mousewatcher::watchmouse() { 
  // whenever mouse clicked, kill renderer 
}



Concurrent Tasks Abstraction
 Fortunately, our OSs support the concurrent 

tasks abstraction 
 After all, on our machines many programs can run 

simultaneously 
 So why not tasks within our programs?  

 This can be done by 
 A special library 
 A virtual machine like the JVM 
 The Operating System 
 A combination of the above 

 Almost all modern programming languages allow 
you to create “tasks” in your programs



“Simultaneous” tasks?

 Can we really have simultaneous 
concurrent tasks? 

 There are two kinds of concurrency: 
 True concurrency: two or more “things” 

happen at the same instant in time 
 False concurrency: only one thing happens at 

a time, but the illusion of concurrency is 
achieved because the OS performs rapid 
context switching



True/False Concurrency

 Consider a program that defines two 
concurrent tasks, T1 and T2 

 On a single core, only one task can use 
the CPU 
 The concurrent tasks use false concurrency 

 On a multi-core system, each task can be 
on a different core 
 The concurrent tasks use true concurrency



False Concurrency on One Core

timeon
e 
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oc

es
so

r

 False concurrency between the red task, the green 
task, and the blue task 

 The OS context-switches back and forth between 
the three tasks 

 Because this is very fast, we have the “illusion” of 
simultaneous execution



On Two Cores

time
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 True concurrency between the yellow task and the 
green task, the grey and the blue, etc.



True/False Concurrency
 The programmer shouldn’t have to care/know whether 

concurrency will be true or false 
 Besides the fact that true concurrency offers better performance 

than false concurrency 
 Typically, the programmer doesn’t know on which computer 

the program will run! 
 You have no idea how many cores your “customer” will have on 

their machines 
 A concurrent program with 10 tasks will work on a single-core 

processor, a quad-core processor, a 32-core processor, etc 
 Your job as a developer is to create tasks 

 e.g., the program could easily discover that the machine it’s running on 
has 8 cores, and thus decides to create 8 tasks 

 The job of the OS is to dispatch these tasks to the cores 
 e.g., the OS is smart enough to put each of the 8 tasks on its own core 

without you having to make those decisions



Performance!!!

 But wait, with true concurrency we can also 
go faster!!! 
 If you have to bake 2 cakes and you have 1 

oven it will take you 2 hours 
 But if you have 2 ovens that can be on at 

the same time, it will take you only 1 hour 
 This brings us to the second major reason 

why people want to use concurrency: 
compute stuff faster 

 To summarize we have two motivations: 
 concurrency for interactivity 
 concurrency for performance



Multi-core Processors
 There have always been different hardware resources 

to use concurrently to increase performance 
 e.g., the disk, the network, and the CPU can all be used at 

the same time because they are different pieces of 
hardware 

 But the last decades have seen the advent of multi-
core processors, which are now ubiquitous 

 Many programs have been made concurrent so as to 
utilize multiple cores concurrently 

 It’s become impossible to say “I am an employable 
software developer but I don’t deal with concurrency” 

 How come we have multi-core processors in the first 
place?



Moore’s Law

 In 1965, Gordon Moore (co-founder                        
of Intel) predicted that transistor                      
density of semiconductor chips                          
would double roughly every 24 months 

    (often “misquoted” as 18 months) 
 He was right 
 But, the law was often wrongly interpreted as: 

“Computers get twice as fast every 2 years” 
 This wrong interpretation was true for a while, but 

no longer...



50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.
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Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b]. 
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multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.
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One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM
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Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b]. 

This plateau 
was really, really 
bad news
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multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.
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This plateau 
was really, really 
bad news

This was the 
way to deal 
with it



Multi-core Chips
 Constructors cannot increase clock rate further 

 Power/heat issues 
 They bring you multi-core processors 

 Multiple “low” clock rate processors on a chip 
 It’s really a solution to a problem, not a cool new advance 

 Even though there are many cool/interesting things about multicore 
processors 

 Even though writing concurrent code is cool/interesting, as we’ll see 
in this course 

 But most users/programmers would rather have a 100GHz 
core than 50 2GHz cores 

 In which case we would not need to write concurrent programs 
 When given the choice, if you can get by without concurrency, 

you’re likely better off (until you can’t avoid concurrency anymore) 
 i.e., in general no compiler will nicely take your sequential app and 

magically transform it into an efficient multi-threaded app



So, Multi-Core = High Performance?

 A big question is: how much performance benefit 
can we really get from concurrency? 

 It’s a difficult question because the answer 
 depends on the application 
 depends on the computer 
 depends on the language / operating system 

 In some cases, it’s very easy to achieve great 
performance via concurrency 

 In others, it’s very difficult 

 We’ll be exposed to this in this course



Take-away

 Concurrency is about structuring your 
programs as sets of tasks 

 Typically done for interactivity and/or for 
performance 

 Concurrency is supported by programming 
languages, by OSes, and by the hardware 

 Issues for programmers: 
 Correctness (we’ll see this can be a tough one) 
 Performance (sometimes easy, sometimes not)



Task-based Thinking
 From now on, you should begin writing code with concurrency in 

mind (even if the code is not concurrent right away) 
 You currently think of your programs as sets of classes/objects 

 Or data structures and functions 
 But now, you also have to think of your programs as sets of tasks 

 And these tasks operate on the objects 
 This requires a little bit of mental adjustment, and our 

programming assignments will help making that adjustment 
 You have been exposed to this a little bit in ICS332, which will help too 

 Thinking of programs as “sets of tasks” will become second 
nature soon enough 

 And is very natural for many applications actually 
 e.g., each tab in your Web browser is a task 

 When I write a sequential program, I typically think of it as a 
concurrent program that happens to have a single task



Conclusion

 In the next set of lecture notes, we’ll look 
at processes and threads 
 What they are (super quick ICS332 “review”) 
 How we can use them to make an application 

concurrent (beyond ICS332)


