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Concurrent and High-Performance  

Programming

What is 
Concurrency?



Disclaimer

 There is content in the two sets of lecture 
notes in this module that overlaps with 
ICS332 

 If you took ICS332 last semester, bear with 
us (or zone out) 

 But if you took it a long(er) time ago, 
experience shows this is useful!



Concurrency
 Definition: Execution of multiple “tasks” at the “same” time 
 You have mostly written non-concurrent, or sequential, programs 

 At any point, you could stop the program and say exactly which 
execution is being executed, what the calling sequence is, what 
the runtime stack looks like, etc. 

 And there is a single answer to all the above for any execution of 
your program 

 In a concurrent program, you design the program in terms of 
tasks, where each task as a “life of its own” 

 Each task has a specific job to do 
 Tasks may need to “talk” to each other 
 Tasks can be in different regions of the code or in the same region 

of the code a the same time 
 Tasks can be short-lived or last the whole program’s execution 

 A different way of thinking/programming 



A brief history of concurrency (1)

 First machines were used in “single-user mode” 
 I declare: “I am going to use the machine for 2PM till 

4PM” 
 I go in the special machine room and sit there for 2 

hours 
 I try the punch cards that I have prepared in advance 
 I find bugs 
 I debug 
 etc. 

 Extreme lack of productivity 
 During my “thinking time”, this multi-million $ machine 

does nothing 



A brief history of concurrency (2)

 Batch Processing! 
 Instead of reserving the machine for a lapse of 

time to do all my activities (including 
debugging),  I “submit” requests to a “queue” 

 The queue serves requests in order (possibly with 
priorities) 

 When my program fails and stops, somebody else 
gets the machine immediately 

 Great but: CPU idle during I/O! 
 And I/O takes foreeeeeever



A brief history of concurrency (3)

 Multi-programming (the 60’s) 
 Multiple programs reside in memory at once 
 Made possible due to increased memory size 
 Requires interrupts and memory protection 

 Time-sharing (the 70’s) 
 Multi-programming but rapid alternation between programs 
 Provides the illusion of programs all running simultaneously on 

the machine 
 This is all in ICS332, and is what we have today 

 Virtual memory, fast context switching, etc. 
 Eventually this has led to concurrency in user applications! 

 My application is “logically” multiple concurrent tasks 
 I can now implement it as concurrent tasks and the OS will run 

them simultaneously! 
 This is a main topic of this course



Concurrent Programs
 A program consists of multiple 

files/modules/classes/functions



Concurrent Programs
 A sequential program does this



Concurrent Programs
 A concurrent program does this 

 a blue task 
 a red task



Concurrent Programs
 or this 

 a blue task 
 a red task 
 a green task



Concurrent Programs
 Thinking about what a concurrent program does is more 

difficult than for a sequential program 
 One may have to keep a mental picture of what each task 

is doing at all time (we try not to) 
 Questions like “While task #1 is in function f where is task 

#2?” are often difficult (and we try not to have their answers 
matter so that we don’t have to ask them) 

 Two executions of the same program may not be identical 
 We’ll explain this in more details 

 As a result, concurrent programs are 
 Almost always more difficult to design for correctness 
 Almost always more difficult to read 
 Always more difficult to debug 

 So, why do we bother at all?



Concurrency for Interactivity
 One of the oldest uses for concurrency is to make programs 

more interactive 
 While a program is running and doing stuff, the user should 

still be able to interact with it 
 Example: 

 What if in your Web browser you couldn’t click “back” 
before the browser has finished loading the page you 
immediately realized is the wrong one? 

 What if in iTunes you couldn’t look at your play list while 
you’re playing a song because the program is busy 
playing the song? 

 One wants to avoid the “frozen because I am working” 
problem as much as possible 

 Let’s look at a made-up example…



Designing a Concurrent GUI
 A common application of concurrent 

programming is for designing Graphical User 
Interfaces (GUIs) 

 Example application 
 Say you want to write a program that renders 3-D 

objects on the screen 
 You have a clickable button to launch the rendering 
 But rendering takes a long time 
 You don’t want the GUI to appear “frozen” while 

rendering the objects 
 For instance, you want the “Quit” and “Cancel” 

buttons to still work



Concurrent GUI?
 One way to avoid the “frozen” problem without 

using concurrency is to write your code with 
breaking down a task into sub-tasks 
 Typically, I’ll write code fragments in C/C++-like 

pseudo-code or in Java, without declarations, etc.

void render(...) { 
   for (step=0; step<100; step++) { 
     this.doSomeRendering(...); 
     if (gui.cancelButton.clicked()) 
       break; 
   } 
}



That was (often) a bad idea
 It’s cumbersome: 

 What if you want to do 7 tasks? 
 Sprinkle “interaction checks” throughout your code 

will make is unreadable and annoying to maintain 
 It’s no always doable: 

 What if rendering is not breakable into multiple 
calls?? 

 Perhaps you call some library that you didn’t write 
and cannot modify 

 What if some tasks have some real-time requirements? 
 e.g., you want to have an animated symbol that 

changes every t milliseconds but a call to 
doSimpleRendering() takes longer than that? 



Task-based design

 Instead of thinking of your application as one 
task that has to juggle many things at once, 
you think of your application as a bunch of 
tasks that run concurrently 

 Each task does one thing and perhaps 
doesn’t even know that there are other tasks 

 Assuming that we have a programming 
language that allows us to define tasks we 
can rewrite our application…



Concurrent GUI
 In horrible pseudo-code:
renderer = new Task(render) 
mousewatcher = new Task(watchmouse) 

renderer.start();      
mousewatcher.start();  
renderer.wait_until_finished() 

Renderer::render() { 
  // do rendering on screen 
} 

Mousewatcher::watchmouse() { 
  // whenever mouse clicked, kill renderer 
}



Concurrent Tasks Abstraction
 Fortunately, our OSs support the concurrent 

tasks abstraction 
 After all, on our machines many programs can run 

simultaneously 
 So why not tasks within our programs?  

 This can be done by 
 A special library 
 A virtual machine like the JVM 
 The Operating System 
 A combination of the above 

 Almost all modern programming languages allow 
you to create “tasks” in your programs



“Simultaneous” tasks?

 Can we really have simultaneous 
concurrent tasks? 

 There are two kinds of concurrency: 
 True concurrency: two or more “things” 

happen at the same instant in time 
 False concurrency: only one thing happens at 

a time, but the illusion of concurrency is 
achieved because the OS performs rapid 
context switching



True/False Concurrency

 Consider a program that defines two 
concurrent tasks, T1 and T2 

 On a single core, only one task can use 
the CPU 
 The concurrent tasks use false concurrency 

 On a multi-core system, each task can be 
on a different core 
 The concurrent tasks use true concurrency



False Concurrency on One Core

timeon
e 

pr
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 False concurrency between the red task, the green 
task, and the blue task 

 The OS context-switches back and forth between 
the three tasks 

 Because this is very fast, we have the “illusion” of 
simultaneous execution



On Two Cores
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 True concurrency between the yellow task and the 
green task, the grey and the blue, etc.



True/False Concurrency
 The programmer shouldn’t have to care/know whether 

concurrency will be true or false 
 Besides the fact that true concurrency offers better performance 

than false concurrency 
 Typically, the programmer doesn’t know on which computer 

the program will run! 
 You have no idea how many cores your “customer” will have on 

their machines 
 A concurrent program with 10 tasks will work on a single-core 

processor, a quad-core processor, a 32-core processor, etc 
 Your job as a developer is to create tasks 

 e.g., the program could easily discover that the machine it’s running on 
has 8 cores, and thus decides to create 8 tasks 

 The job of the OS is to dispatch these tasks to the cores 
 e.g., the OS is smart enough to put each of the 8 tasks on its own core 

without you having to make those decisions



Performance!!!

 But wait, with true concurrency we can also 
go faster!!! 
 If you have to bake 2 cakes and you have 1 

oven it will take you 2 hours 
 But if you have 2 ovens that can be on at 

the same time, it will take you only 1 hour 
 This brings us to the second major reason 

why people want to use concurrency: 
compute stuff faster 

 To summarize we have two motivations: 
 concurrency for interactivity 
 concurrency for performance



Multi-core Processors
 There have always been different hardware resources 

to use concurrently to increase performance 
 e.g., the disk, the network, and the CPU can all be used at 

the same time because they are different pieces of 
hardware 

 But the last decades have seen the advent of multi-
core processors, which are now ubiquitous 

 Many programs have been made concurrent so as to 
utilize multiple cores concurrently 

 It’s become impossible to say “I am an employable 
software developer but I don’t deal with concurrency” 

 How come we have multi-core processors in the first 
place?



Moore’s Law

 In 1965, Gordon Moore (co-founder                        
of Intel) predicted that transistor                      
density of semiconductor chips                          
would double roughly every 24 months 

    (often “misquoted” as 18 months) 
 He was right 
 But, the law was often wrongly interpreted as: 

“Computers get twice as fast every 2 years” 
 This wrong interpretation was true for a while, but 

no longer...



50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.
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Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b]. 
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multiplying its computing speed by 2.5, reaching a performance of 4500 additions
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One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM
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Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b]. 

This plateau 
was really, really 
bad news
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Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b]. 

This plateau 
was really, really 
bad news

This was the 
way to deal 
with it



Multi-core Chips
 Constructors cannot increase clock rate further 

 Power/heat issues 
 They bring you multi-core processors 

 Multiple “low” clock rate processors on a chip 
 It’s really a solution to a problem, not a cool new advance 

 Even though there are many cool/interesting things about multicore 
processors 

 Even though writing concurrent code is cool/interesting, as we’ll see 
in this course 

 But most users/programmers would rather have a 100GHz 
core than 50 2GHz cores 

 In which case we would not need to write concurrent programs 
 When given the choice, if you can get by without concurrency, 

you’re likely better off (until you can’t avoid concurrency anymore) 
 i.e., in general no compiler will nicely take your sequential app and 

magically transform it into an efficient multi-threaded app



So, Multi-Core = High Performance?

 A big question is: how much performance benefit 
can we really get from concurrency? 

 It’s a difficult question because the answer 
 depends on the application 
 depends on the computer 
 depends on the language / operating system 

 In some cases, it’s very easy to achieve great 
performance via concurrency 

 In others, it’s very difficult 

 We’ll be exposed to this in this course



Take-away

 Concurrency is about structuring your 
programs as sets of tasks 

 Typically done for interactivity and/or for 
performance 

 Concurrency is supported by programming 
languages, by OSes, and by the hardware 

 Issues for programmers: 
 Correctness (we’ll see this can be a tough one) 
 Performance (sometimes easy, sometimes not)



Task-based Thinking
 From now on, you should begin writing code with concurrency in 

mind (even if the code is not concurrent right away) 
 You currently think of your programs as sets of classes/objects 

 Or data structures and functions 
 But now, you also have to think of your programs as sets of tasks 

 And these tasks operate on the objects 
 This requires a little bit of mental adjustment, and our 

programming assignments will help making that adjustment 
 You have been exposed to this a little bit in ICS332, which will help too 

 Thinking of programs as “sets of tasks” will become second 
nature soon enough 

 And is very natural for many applications actually 
 e.g., each tab in your Web browser is a task 

 When I write a sequential program, I typically think of it as a 
concurrent program that happens to have a single task



Conclusion

 In the next set of lecture notes, we’ll look 
at processes and threads 
 What they are (super quick ICS332 “review”) 
 How we can use them to make an application 

concurrent (beyond ICS332)


