
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

What is
Concurrency?

Disclaimer

 There is content in the two sets of lecture
notes in this module that overlaps with
ICS332

 If you took ICS332 last semester, bear with
us (or zone out)

 But if you took it a long(er) time ago,
experience shows this is useful!

Concurrency
 Definition: Execution of multiple “tasks” at the “same” time
 You have mostly written non-concurrent, or sequential, programs

 At any point, you could stop the program and say exactly which
execution is being executed, what the calling sequence is, what
the runtime stack looks like, etc.

 And there is a single answer to all the above for any execution of
your program

 In a concurrent program, you design the program in terms of
tasks, where each task as a “life of its own”

 Each task has a specific job to do
 Tasks may need to “talk” to each other
 Tasks can be in different regions of the code or in the same region

of the code a the same time
 Tasks can be short-lived or last the whole program’s execution

 A different way of thinking/programming

A brief history of concurrency (1)

 First machines were used in “single-user mode”
 I declare: “I am going to use the machine for 2PM till

4PM”
 I go in the special machine room and sit there for 2

hours
 I try the punch cards that I have prepared in advance
 I find bugs
 I debug
 etc.

 Extreme lack of productivity
 During my “thinking time”, this multi-million $ machine

does nothing

A brief history of concurrency (2)

 Batch Processing!
 Instead of reserving the machine for a lapse of

time to do all my activities (including
debugging), I “submit” requests to a “queue”

 The queue serves requests in order (possibly with
priorities)

 When my program fails and stops, somebody else
gets the machine immediately

 Great but: CPU idle during I/O!
 And I/O takes foreeeeeever

A brief history of concurrency (3)

 Multi-programming (the 60’s)
 Multiple programs reside in memory at once
 Made possible due to increased memory size
 Requires interrupts and memory protection

 Time-sharing (the 70’s)
 Multi-programming but rapid alternation between programs
 Provides the illusion of programs all running simultaneously on

the machine
 This is all in ICS332, and is what we have today

 Virtual memory, fast context switching, etc.
 Eventually this has led to concurrency in user applications!

 My application is “logically” multiple concurrent tasks
 I can now implement it as concurrent tasks and the OS will run

them simultaneously!
 This is a main topic of this course

Concurrent Programs
 A program consists of multiple

files/modules/classes/functions

Concurrent Programs
 A sequential program does this

Concurrent Programs
 A concurrent program does this

 a blue task
 a red task

Concurrent Programs
 or this

 a blue task
 a red task
 a green task

Concurrent Programs
 Thinking about what a concurrent program does is more

difficult than for a sequential program
 One may have to keep a mental picture of what each task

is doing at all time (we try not to)
 Questions like “While task #1 is in function f where is task

#2?” are often difficult (and we try not to have their answers
matter so that we don’t have to ask them)

 Two executions of the same program may not be identical
 We’ll explain this in more details

 As a result, concurrent programs are
 Almost always more difficult to design for correctness
 Almost always more difficult to read
 Always more difficult to debug

 So, why do we bother at all?

Concurrency for Interactivity
 One of the oldest uses for concurrency is to make programs

more interactive
 While a program is running and doing stuff, the user should

still be able to interact with it
 Example:

 What if in your Web browser you couldn’t click “back”
before the browser has finished loading the page you
immediately realized is the wrong one?

 What if in iTunes you couldn’t look at your play list while
you’re playing a song because the program is busy
playing the song?

 One wants to avoid the “frozen because I am working”
problem as much as possible

 Let’s look at a made-up example…

Designing a Concurrent GUI
 A common application of concurrent

programming is for designing Graphical User
Interfaces (GUIs)

 Example application
 Say you want to write a program that renders 3-D

objects on the screen
 You have a clickable button to launch the rendering
 But rendering takes a long time
 You don’t want the GUI to appear “frozen” while

rendering the objects
 For instance, you want the “Quit” and “Cancel”

buttons to still work

Concurrent GUI?
 One way to avoid the “frozen” problem without

using concurrency is to write your code with
breaking down a task into sub-tasks
 Typically, I’ll write code fragments in C/C++-like

pseudo-code or in Java, without declarations, etc.

void render(...) {
 for (step=0; step<100; step++) {
 this.doSomeRendering(...);
 if (gui.cancelButton.clicked())
 break;
 }
}

That was (often) a bad idea
 It’s cumbersome:

 What if you want to do 7 tasks?
 Sprinkle “interaction checks” throughout your code

will make is unreadable and annoying to maintain
 It’s no always doable:

 What if rendering is not breakable into multiple
calls??

 Perhaps you call some library that you didn’t write
and cannot modify

 What if some tasks have some real-time requirements?
 e.g., you want to have an animated symbol that

changes every t milliseconds but a call to
doSimpleRendering() takes longer than that?

Task-based design

 Instead of thinking of your application as one
task that has to juggle many things at once,
you think of your application as a bunch of
tasks that run concurrently

 Each task does one thing and perhaps
doesn’t even know that there are other tasks

 Assuming that we have a programming
language that allows us to define tasks we
can rewrite our application…

Concurrent GUI
 In horrible pseudo-code:
renderer = new Task(render)
mousewatcher = new Task(watchmouse)

renderer.start();
mousewatcher.start();
renderer.wait_until_finished()

Renderer::render() {
 // do rendering on screen
}

Mousewatcher::watchmouse() {
 // whenever mouse clicked, kill renderer
}

Concurrent Tasks Abstraction
 Fortunately, our OSs support the concurrent

tasks abstraction
 After all, on our machines many programs can run

simultaneously
 So why not tasks within our programs?

 This can be done by
 A special library
 A virtual machine like the JVM
 The Operating System
 A combination of the above

 Almost all modern programming languages allow
you to create “tasks” in your programs

“Simultaneous” tasks?

 Can we really have simultaneous
concurrent tasks?

 There are two kinds of concurrency:
 True concurrency: two or more “things”

happen at the same instant in time
 False concurrency: only one thing happens at

a time, but the illusion of concurrency is
achieved because the OS performs rapid
context switching

True/False Concurrency

 Consider a program that defines two
concurrent tasks, T1 and T2

 On a single core, only one task can use
the CPU
 The concurrent tasks use false concurrency

 On a multi-core system, each task can be
on a different core
 The concurrent tasks use true concurrency

False Concurrency on One Core

timeon
e

pr
oc

es
so

r

 False concurrency between the red task, the green
task, and the blue task

 The OS context-switches back and forth between
the three tasks

 Because this is very fast, we have the “illusion” of
simultaneous execution

On Two Cores

time

timeon
e

co
re

on
e

co
re

 True concurrency between the yellow task and the
green task, the grey and the blue, etc.

True/False Concurrency
 The programmer shouldn’t have to care/know whether

concurrency will be true or false
 Besides the fact that true concurrency offers better performance

than false concurrency
 Typically, the programmer doesn’t know on which computer

the program will run!
 You have no idea how many cores your “customer” will have on

their machines
 A concurrent program with 10 tasks will work on a single-core

processor, a quad-core processor, a 32-core processor, etc
 Your job as a developer is to create tasks

 e.g., the program could easily discover that the machine it’s running on
has 8 cores, and thus decides to create 8 tasks

 The job of the OS is to dispatch these tasks to the cores
 e.g., the OS is smart enough to put each of the 8 tasks on its own core

without you having to make those decisions

Performance!!!

 But wait, with true concurrency we can also
go faster!!!
 If you have to bake 2 cakes and you have 1

oven it will take you 2 hours
 But if you have 2 ovens that can be on at

the same time, it will take you only 1 hour
 This brings us to the second major reason

why people want to use concurrency:
compute stuff faster

 To summarize we have two motivations:
 concurrency for interactivity
 concurrency for performance

Multi-core Processors
 There have always been different hardware resources

to use concurrently to increase performance
 e.g., the disk, the network, and the CPU can all be used at

the same time because they are different pieces of
hardware

 But the last decades have seen the advent of multi-
core processors, which are now ubiquitous

 Many programs have been made concurrent so as to
utilize multiple cores concurrently

 It’s become impossible to say “I am an employable
software developer but I don’t deal with concurrency”

 How come we have multi-core processors in the first
place?

Moore’s Law

 In 1965, Gordon Moore (co-founder
of Intel) predicted that transistor
density of semiconductor chips
would double roughly every 24 months

 (often “misquoted” as 18 months)
 He was right
 But, the law was often wrongly interpreted as:

“Computers get twice as fast every 2 years”
 This wrong interpretation was true for a while, but

no longer...

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

50-year Trend

multiplying its computing speed by 2.5, reaching a performance of 4500 additions
per second.

1.2 Exponential growth

In 1965, Gordon Moore, who will later become the CEO and co-founder of Intel,
predicted an exponential growth of the number of transistors in a chip [Moo65],
based on an extrapolation of the current pace of technological progress. He estimated
that the number of transistors was doubling every year:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the
rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.

Ten years later, Moore revised his forecast to a doubling every two year [Moo75].
This prediction, which revealed to be true, is now known as Moore’s law.

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●●●
●

●
●●

●
●

●
●
●

●

●

●

●

●

●

●●● ●●

●
●●

●
●●

●
●
●
●

●

●
●●●●●

●
●
●
●

●
●
●
●

●
●
●●●
●
●
●

●
●●●
●

●

●●

●

●
●

●

●
●●●

●●
●
●
● ●

●

●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

● ●●
●
●●●

●

●
●
● ●

●
●●●
●●

●

●
●
● ●

●● ●
●

●
● ●

●●●

●● ●
●

●
●●

●

●
●●

●

●●
●
●

●
●
●

●

●

●

●●

●

●●
●
●

●

●

●●
●

●●

●

●
●

● ●

● ●
● ●●

●

●

●

●
●●

●
●
●

●

●

●

●
●●

●

● ●
●
●●

●

●

●

●●●●
●
●

●●

●
●

●

●
●

●

●
●●●

●

●

●

●●●
●
●

●
●
●
●

●

●

●●
●●●

●
●

●
●

●●●
● ●

●
●
●●
●●

●
●
●
●●
●

●

●
●

●

●●
●

●●
●●

●
●

●●
● ●

●

●●●●
●●

●
●●
●

●

●
●
●
●

●

●

●
●●
●
●
●

●

● ●●
●

●●●
●

●
●● ●

●
●
●●
●●

●

●●

●
●
●●

●● ●
● ●●●● ●●

● ●

Predicted growth
(×2 every two years)

1e−01

1e+01

1e+03

1e+05

1e+07

1970 1980 1990 2000 2010 2020
Year

●

Cores (count)

Frequency (MHz)

Process (nm)

Transistors (thousands)

Figure 1.1.: Evolution of the processor characteristics between 1971 and 2020.
Plot inspired from the work of Pedro Bruel, generated with data from
Wikipedia [Wik21a; Wik21b].

One of the main contributions for this exponential growth of the number of transis-
tors is the exponential decrease of their size, as plotted in Figure 1.1. While the IBM

4 Chapter 1 Scientific Computing: a story

Plot inspired from the work of Pedro Bruel, generated with data from Wikipedia [Wik21a; Wik21b].

This plateau
was really, really
bad news

This was the
way to deal
with it

Multi-core Chips
 Constructors cannot increase clock rate further

 Power/heat issues
 They bring you multi-core processors

 Multiple “low” clock rate processors on a chip
 It’s really a solution to a problem, not a cool new advance

 Even though there are many cool/interesting things about multicore
processors

 Even though writing concurrent code is cool/interesting, as we’ll see
in this course

 But most users/programmers would rather have a 100GHz
core than 50 2GHz cores

 In which case we would not need to write concurrent programs
 When given the choice, if you can get by without concurrency,

you’re likely better off (until you can’t avoid concurrency anymore)
 i.e., in general no compiler will nicely take your sequential app and

magically transform it into an efficient multi-threaded app

So, Multi-Core = High Performance?

 A big question is: how much performance benefit
can we really get from concurrency?

 It’s a difficult question because the answer
 depends on the application
 depends on the computer
 depends on the language / operating system

 In some cases, it’s very easy to achieve great
performance via concurrency

 In others, it’s very difficult

 We’ll be exposed to this in this course

Take-away

 Concurrency is about structuring your
programs as sets of tasks

 Typically done for interactivity and/or for
performance

 Concurrency is supported by programming
languages, by OSes, and by the hardware

 Issues for programmers:
 Correctness (we’ll see this can be a tough one)
 Performance (sometimes easy, sometimes not)

Task-based Thinking
 From now on, you should begin writing code with concurrency in

mind (even if the code is not concurrent right away)
 You currently think of your programs as sets of classes/objects

 Or data structures and functions
 But now, you also have to think of your programs as sets of tasks

 And these tasks operate on the objects
 This requires a little bit of mental adjustment, and our

programming assignments will help making that adjustment
 You have been exposed to this a little bit in ICS332, which will help too

 Thinking of programs as “sets of tasks” will become second
nature soon enough

 And is very natural for many applications actually
 e.g., each tab in your Web browser is a task

 When I write a sequential program, I typically think of it as a
concurrent program that happens to have a single task

Conclusion

 In the next set of lecture notes, we’ll look
at processes and threads
 What they are (super quick ICS332 “review”)
 How we can use them to make an application

concurrent (beyond ICS332)

