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Concurrency with Tasks

 When developing a concurrent application 
one thinks of the application as a set of tasks 

 Different tasks can do different things, or can 
do the same things on different data 
 One  talks of “task parallelism” and “data 

parallelism” 
 Some tasks may need to talk to each other 

 e.g., wait for each other, say “go head” to each 
other, wake up each other. 

 Let’s take as an example a simple image 
analysis application…



Example Image Analysis App
 Consider an application that reads image files and 

“analyzes” the images 
 e.g., applies an ML algorithm to detect license plates 

 We have a SINGLE CORE and a SINGLE DISK 
 A sequential execution would look like this:
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 Our objective: use concurrency to improve performance 
 i.e., reduce overall execution time 

 Why is the above picture “not good” performance-wise?



Improving Performance
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 While an image is being read, the CPU is (mostly) idle 
 While an image is being processed, the disk is idle 

 This is not the best use of the hardware! 
 So let’s now think of the application as two tasks: 

 Task #1: Image reader 
 Task #2: Image analyzer  



Concurrency with Two Tasks
 Now the executions (could) look like this:
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 The cost of reading images is hidden after the first 
image has been read 

 This is called overlap of I/O and computation 
 The tasks need to communicate: The Reader task 

needs to tell the Analyzer task “I just read image #i, 
so you can go ahead an analyze it whenever” 



Memory Explosion?

 In this example, image reading takes less time 
than image analyzing 

 This can lead to a memory problem: only a limited 
number of images can be held in memory 
 If one tries to keep too many in memory, then the 

application will start swapping pages to disk! 
 See your virtual memory lectures (ICS332)
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Only One Image at a Time
 Solution #1: Read only one image ahead of time 
 Requires some synchronization between the two 

tasks (they need to “talk”, see later…)
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 Problem: If we have images of different sizes, then 
reading image #i+1 may take longer than analyzing 
image #i  
 i=3 above leads to idle time



Only N Images at a Time
 Solution #2: Read only N images ahead of time 

 Making sure that N images always fit in memory
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 In the above example, N = 3 (let’s check) 
 If images are very different, it could be difficult to 

determine the smallest N 
 Best bet: just keep at most X MBytes of image data in 

memory



I/O-intensive?
 What if analyzing takes less time than reading?

time

 The cost of analyzing images is hidden after the first one  
 Good news: One doesn’t have to know which operation takes 

less time ahead of time 
 Difficult to know: depends on the computer, to the analysis 

program, perhaps even on the image 
 Lesson: Just create your tasks and make sure memory 

doesn’t become a problem
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This is a “Pipeline”
 The previous application is called a 2-stage pipeline 

 You have a sequence of operations to do 
 Each operation can be done in two stages 
 While operation #1 is in stage #2, operation #2 is in stage #1 

 Typical real-life example: washer and dryer 
 While load #2 is in the dryer, load #3 is in the washer 

 Similar concept here, but in software 
 Things are great if both stages take the exact same time 

 Not the case for washer/dryer (typically drying takes longer) 
 When stages don’t take the same time, we can do things like 

hold up to N images in memory 
 Same thing with your laundry room, which has hopefully some 

capacity to hold some “waiting to be dried” loads 
 But If you have 1000 loads to do, you can’t just keep using the 

washer otherwise your laundry room will overflow with wet clothes 
 Just like our RAM with images



Pipeline Bottleneck
 Note that in our example, we go only as fast as the 

slower stage (reading or analyzing) 
 If your disk can deliver 10 images per second, it 

doesn’t matter that your core can analyze 100 
images per seconds: you can only feed them 10 
images per second in memory anyway 

 In this case we say that the disk is the bottleneck 
 If I were to give you a  faster core, that wouldn’t do you 

any good, so cores are not the bottleneck 
 If I were to give you a faster disk, that would do you 

some good, so the disk is the bottleneck 
 In my laundry room, the dryer is the bottleneck



No Extra Cost??

 In the laundry room, your washer and dryer 
can both run at full speed simultaneously 

 In software it’s not 100% true 
 A task that reads data from disk still needs 

to execute some instructions on the CPU 
 But they are not very frequent because the 

task spends most of its time waiting for the 
disk (small CPU bursts, large I/O bursts) 

 Furthermore, running more than one 
task at a time may have  overhead 

 The “interleaving” of instruction requires 
some extra work by the CPU, O/S: context 
switching (we assume a single core) 

 So we always lose a little bit
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Example Concurrent App
 The ideal picture looks like this:
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 The real execution time may be longer (still way 
better than the non-concurrent execution):



Where are we?

 We now have a pretty good idea of how one 
could design our image analysis application as 
two tasks 
 While achieving nice overlap of I/O and computation 
 And while avoiding memory explosion (even though 

that may cause us to have some CPU idle time  
depending of the images) 

 Let’s try to design an implementation using 
processes 

 First, let’s review what processes are…



Processes
 A process is a running program 
 The OS keeps track of running programs in a data 

structure called the process table 
 Each process is described as  

 A pid (process id: an integer) 
 A username (who started the process) 
 A state (running, blocked, ready, ...) 
 A program counter (points to the next instruction) 
 A stack (bookkeeping for function calls) 
 A set of file descriptors (open files, network connections,...) 
 A page table (way to track where in RAM the process’ 

address space is located) 
 The pid of the parent process 
 ...



Processes

 All modern OSes support multiple active 
processes at the same time 

 Each process goes through three main states 
 Ready: “I can run if the OS would let me” 
 Running: “I am running right now” 
 Blocked: “I can’t run right now because am waiting 

for the disk, the network, etc.” 
 The OS decides which ready process runs 

when and for how long 
 This decision impacts the performance and the 

responsiveness of the computer, and OSes have 
been designed to do this well 

 The decision is called scheduling



Processes and Memory
 Each process has its own address space: a set of 

memory locations that can be read from and 
written to 

 Virtual memory: the illusion that there is a large 
memory (perhaps larger than the physical memory), 
and that a process is the only one using it 

 This illusion is always maintained, but at the cost of 
degraded performance at times (swapping) 

 This is what makes it possible for developers to 
write programs and not care about the state of the 
computer when the program will be run 

 I write a program assuming a large address space 
and I don’t care what other programs will be running 
when my program is running



(UNIX) Process Creation?
 Each time you invoke a command in a Shell 

(which is itself a process), you create a new 
process 

 Or more appropriately, the Shell creates a new 
process on your behalf 

 So somewhere in the code of the Shell program, 
there is a place where processes are created 

 Processes are created using the fork system call, 
which can be called from C/C++



The Fork() System Call

 The fork system call creates a copy of a the 
process that calls it 
 In fact, fork calls “clone”, which is the real syscall 
 In particular the memory is copied 

 After the call, both processes are free to 
continue along following different execution 
paths in the program 

 fork() returns an integer 
 It returns the PID of the new process to the 

“parent” process 
 It returns 0 to the “child” process 

 Let’s see who remembers ICS332 stuff



The Fork() System Call
 What does this program print? 

	 	 int count = 0; 
	 	 if (fork() != 0) { 
	 	 	 while (count < 10) {  
	 	 	 	 count++; 
	 	 	 	 sleep(1); 
	 	 	 }	  
	 	 } else { 
	 	 	 sleep(5); 
	 	 	 printf(“%d\n”,count);  
	 	 } 

 Show of hands:  0, 4, 5, 6, 10, or something else?



The Fork() System Call
 What does this program print? 

	 	 int count = 0; 
	 	 if (fork() != 0) { 
	 	 	 while (count < 10) {  
	 	 	 	 count++; 
	 	 	 	 sleep(1); 
	 	 	 }	  
	 	 } else { 
	 	 	 sleep(5); 
	 	 	 printf(“%d\n”,count);  
	 	 } 

 Show of hands:  0, 4, 5, 6, 10, or something else? 
 Answer: 0



The Fork() System Call
 The two processes run on their own 
 The OS is in charge of deciding when they run 

 Typically in some round-robin fashion 

 The two processes have distinct address spaces 
 In our example, variables are not shared between the 

processes but each process has its own copy of each 
variable 

 It doesn’t matter than the parent updates its count 
variable, the child doesn’t have access to the parent’s 
memory space anyway 

 This is why the answer was “0”



Processes can Communicate

 This is called Inter Process Communication (IPC) 
 IPC comes in several shapes or form 

 IPC via files 
 IPC via pipes (see ICS332) 
 IPC via sockets (as if on a network) 
 IPC via shared message queues 
 … 

 So we have a way for process A  to send a  
message to process B 
 For our application: the Reader can tell the Analyzer 

“I have just read image #i”



Process-based Implementation
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 Two processes: 
P1: for image reading 
P2: for image analysis



Processes: No Go :(

 This doesn’t work:  
 P1 reads images into its address space 
 P2 cannot access P1’s address space! 
 Processes are designed not to share memory space 
 Your “washer” and your “dryer” are each in its own parallel 

universe 
 So we just cannot do a pipeline, end of  story :( 
 Can we do anything with processes?  Any ideas??
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Split the work in two…

 Without shared address spaces one could say: 
 I have N images to process 
 I am going to use 2 processes and each process will 

process N/2 images 
 Execution could look like this 

 Why is this not so great?

Process #1
Process #2



Split the work in two…

 Without shared address spaces one could say: 
 I have N images to process 
 I am going to use 2 processes and each process will 

process N/2 images 
 Execution could look like this 

 Why is this not so great? 
 CPU idle time! 
 Competition for resources!
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Process #2



Competition for resources :(
 Say that  

 all images are identical, and we have 4 of them 
 it takes 10 seconds to read one image from disk 
 it takes 10 seconds to analyze the image on a core 
 we have one disk and one core

Process #1
Process #2 20s

Total = 80s

 This is a very inefficient use of the resources 
 We go as slowly as without concurrency!!! 

 It would be better to organize the computation differently…

20s 20s
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20s 20s

20s



Avoiding competition
 Say that  

 all images are identical, and we have 4 of them 
 it takes 10 seconds to read one image from disk 
 it takes 10 seconds to analyze the image on a core 
 we have one disk and one core

Process #1
Process #2

Total = 50s 
(was 80s) 

 Just have Process #2 start with a: sleep(10); 
 No competition for resources at all 
 Perfect overlap of I/O and computation! 

10s 10s 10s 10s

10s 10s 10s 10s



Not always so easy
 If every operation takes 10 seconds, we’re good 
 But if not, things are not so great

Process #1

Process #2 sleep



Not always so easy
 If every operation takes 10 seconds, we’re good 
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Not always so easy
 If every operation takes 10 seconds, we’re good 
 But if not, things are not so great

Process #1

Process #2 sleep

CPU 
Competition

I/O 
Competition

 And therefore the above picture is not to scale:  All 
“competition areas” must be doubled in length 

 Worst case: we go almost as slow as sequential!



Avoid competition via communication

 The solution: have processes talk to each other 
 e.g., Process #1 says “I am done reading, go ahead 

and use the disk” 
 e.g., Process #2 says “I am starting computing, so 

please don’t compute right now” 
 Easy to do with IPC 
  Let’s see what our execution could look like if we 

have the processes communicate



Communicating Processes
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Communicating Processes
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 There is never any competition! 
 But there are times during which the disk is idle or the CPU 

is idle (the “gaps” above) 
 This cannot be avoided with the above I/O and computation 

times 
 Anybody sees what a problem might be?



Sadly, not so easy…

 The previous picture assumes a nice “ping pong” effect 
 But things can be much more complex 
 For instance: 

 Images are all different, and some are quick to 
analyze 

 Therefore, one process can overtake the other and 
need to read twice in a row 

 Our simple “you go; you go; ..” synchronization 
doesn’t work 

 So we need to come up with a more complex 
communication scheme: 

 “you go; but when I can go and you haven’t yet told 
me that you went, then never mind I’ll go…”



Even worse…

 Let’s say images are all different, with some easy to analyze 
and some hard to analyze 

 And let’s say it doesn’t depend on the image size, meaning that 
it’s always a surprise  whether an image is  “easy” or “hard” 

 We could be unlucky and give all the harder images to one 
process, and all the easier ones to the other! 

 One process will compute alone at the end, sequentially! 
 So our initially strategy “each process gets N/2 images to 

process” doesn’t work 
 This is called load imbalance 
 We would have to make synchronization more complicated, 

with a process “grabbing”  the next image dynamically and  
telling the other process which image that was 

 We could go down that route, but it’s getting really annoying 
 And  yet, we’ll do things like that later in the semester



Where  are we now?

 Using communicating processes has issues 
 1) The communication patterns could be more 

complex that the basic ping-pong 
 2) Load-balancing must be good 

 Coming up with a good strategy is an 
interesting problem 
 And many people have investigated approach for 

many scenarios  (including scenarios in which one 
must use processes, e.g., on different machines) 

 But, if we abandon processes altogether, we 
may be much better off…



Back to Sharing Memory

 What we really, really want is the above 
picture, i.e., what we started with 

 We want to share memory across processes  
 An image reader process 
 An image analyzer 
 The data is read in memory by the reader 

is used by the analyzer!
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Share Memory between Processes?

 This idea of sharing memory among processes 
goes completely against the notion of clean, 
separated address spaces provided by the OS 

 Virtual memory is all about separation, not sharing! 
 But, clearly it would be useful and would make 

programming concurrent applications much 
simpler 

 As a result, there are mechanisms to share 
memory between processes 

 Linux provides a “shared memory segment” 
abstraction 

 One process creates a zone of sharable memory 
 It then tells another process: here is a zone we can 

share



Shared Memory Segments
 The idea of shared memory segments is useful, 

but programming with them is very cumbersome 
 Many lines of code and bookkeeping 

 We won’t study them in this class, but ICS332 
may have discussed them 

 The same principles about concurrency apply, so if you 
have to use shared memory segments for some 
reason, it shouldn’t be very difficult after taking this 
class 

 Look at the man pages for shmget, shmat, shmdt, ... 
 Nowadays, we typically don’t use processes but 

instead use threads (“within” a process)



Threads
 Threads came about because of the need to write concurrent 

applications, that is the need for “tasks” that share memory 
 Threads can be thought of as processes that share a single 

address space 
 Threads are sometimes called “lightweight processes” 

 N processes have N page tables, N address spaces, N 
PIDs, ... 

 N threads together have 1 page table, 1 address space, 1 PID 
 Things that threads do not share: program counter and stack 

 N threads have N program counters 
 N threads have N stacks  

 Therefore, multiple threads can be executing different parts of 
the program “at the same time”, and have followed 
completely different calling sequences



Threads in a Process
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 Typical (but probably useless) representation



Threads in a Process

process
(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable



Threads vs. Processes

 Sharing memory with threads is straightforward 
 They were designed especially for this 

 But threads do not benefit from memory 
protection 

 Can cause nasty bugs, which  we  will see at length 

 Concurrent applications today are almost 
always written with threads 

 What about Keynote? 
 Let’s find its PID 
 Let’s call ps with the “M” option



Threads as Tasks

 Each task is a thread: 
 An image reader thread that loads images into the process’ address space 
 An image analyzer thread that analyzes images in the address space 

 These threads need to communicate: 
 The  analyzer has to wait for the reader to have read stuff in 
 The reader has to tell the analyzer that it has read something in 

 But now we don’t need IPC, we can just communicate in RAM (i.e., 
using variables!) 

 We will implement this shortly, in our JavaFX application 
  after we learn more about multi-threaded programming!
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Conclusion
 Most of the programs you use every day are 

multithreaded 
 In the next module we’ll review how to write multi-

threaded programs, in Java 
 A screencast of ICS332 material 
 And then a lecture on more in-depth material 

 Multi-threading is NOT new 
 Around for decades 
 Even part of ancient programming languages 

 IBM’s PL/I F, Modula, Ada, etc. 

 It’s just became crucial due to multi-core (and GPUs), and 
now we cannot escape it (hence this course) 

 Before the next lecture: Watch the “Java Threads” 
screencast


