
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Concurrency with
Processes/Threads

Concurrency with Tasks

 When developing a concurrent application
one thinks of the application as a set of tasks

 Different tasks can do different things, or can
do the same things on different data
 One talks of “task parallelism” and “data

parallelism”
 Some tasks may need to talk to each other

 e.g., wait for each other, say “go head” to each
other, wake up each other.

 Let’s take as an example a simple image
analysis application…

Example Image Analysis App
 Consider an application that reads image files and

“analyzes” the images
 e.g., applies an ML algorithm to detect license plates

 We have a SINGLE CORE and a SINGLE DISK
 A sequential execution would look like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .
time

 Our objective: use concurrency to improve performance
 i.e., reduce overall execution time

 Why is the above picture “not good” performance-wise?

Improving Performance
read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .
time

 While an image is being read, the CPU is (mostly) idle
 While an image is being processed, the disk is idle

 This is not the best use of the hardware!
 So let’s now think of the application as two tasks:

 Task #1: Image reader
 Task #2: Image analyzer

Concurrency with Two Tasks
 Now the executions (could) look like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

. . .

 The cost of reading images is hidden after the first
image has been read

 This is called overlap of I/O and computation
 The tasks need to communicate: The Reader task

needs to tell the Analyzer task “I just read image #i,
so you can go ahead an analyze it whenever”

Memory Explosion?

 In this example, image reading takes less time
than image analyzing

 This can lead to a memory problem: only a limited
number of images can be held in memory
 If one tries to keep too many in memory, then the

application will start swapping pages to disk!
 See your virtual memory lectures (ICS332)

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

. . .read
img4

read
img5

read
img6

analyze
img4

read
img7

read
img8

Only One Image at a Time
 Solution #1: Read only one image ahead of time
 Requires some synchronization between the two

tasks (they need to “talk”, see later…)

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 Problem: If we have images of different sizes, then
reading image #i+1 may take longer than analyzing
image #i
 i=3 above leads to idle time

Only N Images at a Time
 Solution #2: Read only N images ahead of time

 Making sure that N images always fit in memory

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 In the above example, N = 3 (let’s check)
 If images are very different, it could be difficult to

determine the smallest N
 Best bet: just keep at most X MBytes of image data in

memory

I/O-intensive?
 What if analyzing takes less time than reading?

time

 The cost of analyzing images is hidden after the first one
 Good news: One doesn’t have to know which operation takes

less time ahead of time
 Difficult to know: depends on the computer, to the analysis

program, perhaps even on the image
 Lesson: Just create your tasks and make sure memory

doesn’t become a problem

read
img1

analyze
img1

read
img2

analyze
img2
read
img3

analyze
img3

. . .
. . .

This is a “Pipeline”
 The previous application is called a 2-stage pipeline

 You have a sequence of operations to do
 Each operation can be done in two stages
 While operation #1 is in stage #2, operation #2 is in stage #1

 Typical real-life example: washer and dryer
 While load #2 is in the dryer, load #3 is in the washer

 Similar concept here, but in software
 Things are great if both stages take the exact same time

 Not the case for washer/dryer (typically drying takes longer)
 When stages don’t take the same time, we can do things like

hold up to N images in memory
 Same thing with your laundry room, which has hopefully some

capacity to hold some “waiting to be dried” loads
 But If you have 1000 loads to do, you can’t just keep using the

washer otherwise your laundry room will overflow with wet clothes
 Just like our RAM with images

Pipeline Bottleneck
 Note that in our example, we go only as fast as the

slower stage (reading or analyzing)
 If your disk can deliver 10 images per second, it

doesn’t matter that your core can analyze 100
images per seconds: you can only feed them 10
images per second in memory anyway

 In this case we say that the disk is the bottleneck
 If I were to give you a faster core, that wouldn’t do you

any good, so cores are not the bottleneck
 If I were to give you a faster disk, that would do you

some good, so the disk is the bottleneck
 In my laundry room, the dryer is the bottleneck

No Extra Cost??

 In the laundry room, your washer and dryer
can both run at full speed simultaneously

 In software it’s not 100% true
 A task that reads data from disk still needs

to execute some instructions on the CPU
 But they are not very frequent because the

task spends most of its time waiting for the
disk (small CPU bursts, large I/O bursts)

 Furthermore, running more than one
task at a time may have overhead

 The “interleaving” of instruction requires
some extra work by the CPU, O/S: context
switching (we assume a single core)

 So we always lose a little bit

analyze
img2

read
img3

analyze
img2

read
img3 extra

Example Concurrent App
 The ideal picture looks like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 The real execution time may be longer (still way
better than the non-concurrent execution):

Where are we?

 We now have a pretty good idea of how one
could design our image analysis application as
two tasks
 While achieving nice overlap of I/O and computation
 And while avoiding memory explosion (even though

that may cause us to have some CPU idle time
depending of the images)

 Let’s try to design an implementation using
processes

 First, let’s review what processes are…

Processes
 A process is a running program
 The OS keeps track of running programs in a data

structure called the process table
 Each process is described as

 A pid (process id: an integer)
 A username (who started the process)
 A state (running, blocked, ready, ...)
 A program counter (points to the next instruction)
 A stack (bookkeeping for function calls)
 A set of file descriptors (open files, network connections,...)
 A page table (way to track where in RAM the process’

address space is located)
 The pid of the parent process
 ...

Processes

 All modern OSes support multiple active
processes at the same time

 Each process goes through three main states
 Ready: “I can run if the OS would let me”
 Running: “I am running right now”
 Blocked: “I can’t run right now because am waiting

for the disk, the network, etc.”
 The OS decides which ready process runs

when and for how long
 This decision impacts the performance and the

responsiveness of the computer, and OSes have
been designed to do this well

 The decision is called scheduling

Processes and Memory
 Each process has its own address space: a set of

memory locations that can be read from and
written to

 Virtual memory: the illusion that there is a large
memory (perhaps larger than the physical memory),
and that a process is the only one using it

 This illusion is always maintained, but at the cost of
degraded performance at times (swapping)

 This is what makes it possible for developers to
write programs and not care about the state of the
computer when the program will be run

 I write a program assuming a large address space
and I don’t care what other programs will be running
when my program is running

(UNIX) Process Creation?
 Each time you invoke a command in a Shell

(which is itself a process), you create a new
process

 Or more appropriately, the Shell creates a new
process on your behalf

 So somewhere in the code of the Shell program,
there is a place where processes are created

 Processes are created using the fork system call,
which can be called from C/C++

The Fork() System Call

 The fork system call creates a copy of a the
process that calls it
 In fact, fork calls “clone”, which is the real syscall
 In particular the memory is copied

 After the call, both processes are free to
continue along following different execution
paths in the program

 fork() returns an integer
 It returns the PID of the new process to the

“parent” process
 It returns 0 to the “child” process

 Let’s see who remembers ICS332 stuff

The Fork() System Call
 What does this program print?

 int count = 0;
 if (fork() != 0) {
 while (count < 10) {
 count++;
 sleep(1);
 }
 } else {
 sleep(5);
 printf(“%d\n”,count);
 }

 Show of hands: 0, 4, 5, 6, 10, or something else?

The Fork() System Call
 What does this program print?

 int count = 0;
 if (fork() != 0) {
 while (count < 10) {
 count++;
 sleep(1);
 }
 } else {
 sleep(5);
 printf(“%d\n”,count);
 }

 Show of hands: 0, 4, 5, 6, 10, or something else?
 Answer: 0

The Fork() System Call
 The two processes run on their own
 The OS is in charge of deciding when they run

 Typically in some round-robin fashion

 The two processes have distinct address spaces
 In our example, variables are not shared between the

processes but each process has its own copy of each
variable

 It doesn’t matter than the parent updates its count
variable, the child doesn’t have access to the parent’s
memory space anyway

 This is why the answer was “0”

Processes can Communicate

 This is called Inter Process Communication (IPC)
 IPC comes in several shapes or form

 IPC via files
 IPC via pipes (see ICS332)
 IPC via sockets (as if on a network)
 IPC via shared message queues
 …

 So we have a way for process A to send a
message to process B
 For our application: the Reader can tell the Analyzer

“I have just read image #i”

Process-based Implementation

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 Two processes:
P1: for image reading
P2: for image analysis

Processes: No Go :(

 This doesn’t work:
 P1 reads images into its address space
 P2 cannot access P1’s address space!
 Processes are designed not to share memory space
 Your “washer” and your “dryer” are each in its own parallel

universe
 So we just cannot do a pipeline, end of story :(
 Can we do anything with processes? Any ideas??

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Split the work in two…

 Without shared address spaces one could say:
 I have N images to process
 I am going to use 2 processes and each process will

process N/2 images
 Execution could look like this

 Why is this not so great?

Process #1
Process #2

Split the work in two…

 Without shared address spaces one could say:
 I have N images to process
 I am going to use 2 processes and each process will

process N/2 images
 Execution could look like this

 Why is this not so great?
 CPU idle time!
 Competition for resources!

Process #1
Process #2

Competition for resources :(
 Say that

 all images are identical, and we have 4 of them
 it takes 10 seconds to read one image from disk
 it takes 10 seconds to analyze the image on a core
 we have one disk and one core

Process #1
Process #2 20s

Total = 80s

 This is a very inefficient use of the resources
 We go as slowly as without concurrency!!!

 It would be better to organize the computation differently…

20s 20s

20s 20s

20s 20s

20s

Avoiding competition
 Say that

 all images are identical, and we have 4 of them
 it takes 10 seconds to read one image from disk
 it takes 10 seconds to analyze the image on a core
 we have one disk and one core

Process #1
Process #2

Total = 50s
(was 80s)

 Just have Process #2 start with a: sleep(10);
 No competition for resources at all
 Perfect overlap of I/O and computation!

10s 10s 10s 10s

10s 10s 10s 10s

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

CPU
Competition

I/O
Competition

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

CPU
Competition

I/O
Competition

 And therefore the above picture is not to scale: All
“competition areas” must be doubled in length

 Worst case: we go almost as slow as sequential!

Avoid competition via communication

 The solution: have processes talk to each other
 e.g., Process #1 says “I am done reading, go ahead

and use the disk”
 e.g., Process #2 says “I am starting computing, so

please don’t compute right now”
 Easy to do with IPC
 Let’s see what our execution could look like if we

have the processes communicate

Communicating Processes
Process #1

Process #2

you can
compute

you can
readyou can

read

you can
compute

you can
compute

you can
read

Communicating Processes
Process #1

Process #2

you can
compute

you can
readyou can

read

you can
compute

you can
compute

you can
read

 There is never any competition!
 But there are times during which the disk is idle or the CPU

is idle (the “gaps” above)
 This cannot be avoided with the above I/O and computation

times
 Anybody sees what a problem might be?

Sadly, not so easy…

 The previous picture assumes a nice “ping pong” effect
 But things can be much more complex
 For instance:

 Images are all different, and some are quick to
analyze

 Therefore, one process can overtake the other and
need to read twice in a row

 Our simple “you go; you go; ..” synchronization
doesn’t work

 So we need to come up with a more complex
communication scheme:

 “you go; but when I can go and you haven’t yet told
me that you went, then never mind I’ll go…”

Even worse…

 Let’s say images are all different, with some easy to analyze
and some hard to analyze

 And let’s say it doesn’t depend on the image size, meaning that
it’s always a surprise whether an image is “easy” or “hard”

 We could be unlucky and give all the harder images to one
process, and all the easier ones to the other!

 One process will compute alone at the end, sequentially!
 So our initially strategy “each process gets N/2 images to

process” doesn’t work
 This is called load imbalance
 We would have to make synchronization more complicated,

with a process “grabbing” the next image dynamically and
telling the other process which image that was

 We could go down that route, but it’s getting really annoying
 And yet, we’ll do things like that later in the semester

Where are we now?

 Using communicating processes has issues
 1) The communication patterns could be more

complex that the basic ping-pong
 2) Load-balancing must be good

 Coming up with a good strategy is an
interesting problem
 And many people have investigated approach for

many scenarios (including scenarios in which one
must use processes, e.g., on different machines)

 But, if we abandon processes altogether, we
may be much better off…

Back to Sharing Memory

 What we really, really want is the above
picture, i.e., what we started with

 We want to share memory across processes
 An image reader process
 An image analyzer
 The data is read in memory by the reader

is used by the analyzer!

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Share Memory between Processes?

 This idea of sharing memory among processes
goes completely against the notion of clean,
separated address spaces provided by the OS

 Virtual memory is all about separation, not sharing!
 But, clearly it would be useful and would make

programming concurrent applications much
simpler

 As a result, there are mechanisms to share
memory between processes

 Linux provides a “shared memory segment”
abstraction

 One process creates a zone of sharable memory
 It then tells another process: here is a zone we can

share

Shared Memory Segments
 The idea of shared memory segments is useful,

but programming with them is very cumbersome
 Many lines of code and bookkeeping

 We won’t study them in this class, but ICS332
may have discussed them

 The same principles about concurrency apply, so if you
have to use shared memory segments for some
reason, it shouldn’t be very difficult after taking this
class

 Look at the man pages for shmget, shmat, shmdt, ...
 Nowadays, we typically don’t use processes but

instead use threads (“within” a process)

Threads
 Threads came about because of the need to write concurrent

applications, that is the need for “tasks” that share memory
 Threads can be thought of as processes that share a single

address space
 Threads are sometimes called “lightweight processes”

 N processes have N page tables, N address spaces, N
PIDs, ...

 N threads together have 1 page table, 1 address space, 1 PID
 Things that threads do not share: program counter and stack

 N threads have N program counters
 N threads have N stacks

 Therefore, multiple threads can be executing different parts of
the program “at the same time”, and have followed
completely different calling sequences

Threads in a Process

thread

process

 Typical (but probably useless) representation

Threads in a Process

process
(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable

Threads vs. Processes

 Sharing memory with threads is straightforward
 They were designed especially for this

 But threads do not benefit from memory
protection

 Can cause nasty bugs, which we will see at length

 Concurrent applications today are almost
always written with threads

 What about Keynote?
 Let’s find its PID
 Let’s call ps with the “M” option

Threads as Tasks

 Each task is a thread:
 An image reader thread that loads images into the process’ address space
 An image analyzer thread that analyzes images in the address space

 These threads need to communicate:
 The analyzer has to wait for the reader to have read stuff in
 The reader has to tell the analyzer that it has read something in

 But now we don’t need IPC, we can just communicate in RAM (i.e.,
using variables!)

 We will implement this shortly, in our JavaFX application
 after we learn more about multi-threaded programming!

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Conclusion
 Most of the programs you use every day are

multithreaded
 In the next module we’ll review how to write multi-

threaded programs, in Java
 A screencast of ICS332 material
 And then a lecture on more in-depth material

 Multi-threading is NOT new
 Around for decades
 Even part of ancient programming languages

 IBM’s PL/I F, Modula, Ada, etc.

 It’s just became crucial due to multi-core (and GPUs), and
now we cannot escape it (hence this course)

 Before the next lecture: Watch the “Java Threads”
screencast

