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Concurrency with Tasks

 When developing a concurrent application 
one thinks of the application as a set of tasks 

 Different tasks can do different things, or can 
do the same things on different data 
 One  talks of “task parallelism” and “data 

parallelism” 
 Some tasks may need to talk to each other 

 e.g., wait for each other, say “go head” to each 
other, wake up each other. 

 Let’s take as an example a simple image 
analysis application…



Example Image Analysis App
 Consider an application that reads image files and 

“analyzes” the images 
 e.g., applies an ML algorithm to detect license plates 

 We have a SINGLE CORE and a SINGLE DISK 
 A sequential execution would look like this:
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 Our objective: use concurrency to improve performance 
 i.e., reduce overall execution time 

 Why is the above picture “not good” performance-wise?



Improving Performance
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 While an image is being read, the CPU is (mostly) idle 
 While an image is being processed, the disk is idle 

 This is not the best use of the hardware! 
 So let’s now think of the application as two tasks: 

 Task #1: Image reader 
 Task #2: Image analyzer  



Concurrency with Two Tasks
 Now the executions (could) look like this:
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 The cost of reading images is hidden after the first 
image has been read 

 This is called overlap of I/O and computation 
 The tasks need to communicate: The Reader task 

needs to tell the Analyzer task “I just read image #i, 
so you can go ahead an analyze it whenever” 



Memory Explosion?

 In this example, image reading takes less time 
than image analyzing 

 This can lead to a memory problem: only a limited 
number of images can be held in memory 
 If one tries to keep too many in memory, then the 

application will start swapping pages to disk! 
 See your virtual memory lectures (ICS332)
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Only One Image at a Time
 Solution #1: Read only one image ahead of time 
 Requires some synchronization between the two 

tasks (they need to “talk”, see later…)
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 Problem: If we have images of different sizes, then 
reading image #i+1 may take longer than analyzing 
image #i  
 i=3 above leads to idle time



Only N Images at a Time
 Solution #2: Read only N images ahead of time 

 Making sure that N images always fit in memory
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 In the above example, N = 3 (let’s check) 
 If images are very different, it could be difficult to 

determine the smallest N 
 Best bet: just keep at most X MBytes of image data in 

memory



I/O-intensive?
 What if analyzing takes less time than reading?

time

 The cost of analyzing images is hidden after the first one  
 Good news: One doesn’t have to know which operation takes 

less time ahead of time 
 Difficult to know: depends on the computer, to the analysis 

program, perhaps even on the image 
 Lesson: Just create your tasks and make sure memory 

doesn’t become a problem
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This is a “Pipeline”
 The previous application is called a 2-stage pipeline 

 You have a sequence of operations to do 
 Each operation can be done in two stages 
 While operation #1 is in stage #2, operation #2 is in stage #1 

 Typical real-life example: washer and dryer 
 While load #2 is in the dryer, load #3 is in the washer 

 Similar concept here, but in software 
 Things are great if both stages take the exact same time 

 Not the case for washer/dryer (typically drying takes longer) 
 When stages don’t take the same time, we can do things like 

hold up to N images in memory 
 Same thing with your laundry room, which has hopefully some 

capacity to hold some “waiting to be dried” loads 
 But If you have 1000 loads to do, you can’t just keep using the 

washer otherwise your laundry room will overflow with wet clothes 
 Just like our RAM with images



Pipeline Bottleneck
 Note that in our example, we go only as fast as the 

slower stage (reading or analyzing) 
 If your disk can deliver 10 images per second, it 

doesn’t matter that your core can analyze 100 
images per seconds: you can only feed them 10 
images per second in memory anyway 

 In this case we say that the disk is the bottleneck 
 If I were to give you a  faster core, that wouldn’t do you 

any good, so cores are not the bottleneck 
 If I were to give you a faster disk, that would do you 

some good, so the disk is the bottleneck 
 In my laundry room, the dryer is the bottleneck



No Extra Cost??

 In the laundry room, your washer and dryer 
can both run at full speed simultaneously 

 In software it’s not 100% true 
 A task that reads data from disk still needs 

to execute some instructions on the CPU 
 But they are not very frequent because the 

task spends most of its time waiting for the 
disk (small CPU bursts, large I/O bursts) 

 Furthermore, running more than one 
task at a time may have  overhead 

 The “interleaving” of instruction requires 
some extra work by the CPU, O/S: context 
switching (we assume a single core) 

 So we always lose a little bit
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Example Concurrent App
 The ideal picture looks like this:
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 The real execution time may be longer (still way 
better than the non-concurrent execution):



Where are we?

 We now have a pretty good idea of how one 
could design our image analysis application as 
two tasks 
 While achieving nice overlap of I/O and computation 
 And while avoiding memory explosion (even though 

that may cause us to have some CPU idle time  
depending of the images) 

 Let’s try to design an implementation using 
processes 

 First, let’s review what processes are…



Processes
 A process is a running program 
 The OS keeps track of running programs in a data 

structure called the process table 
 Each process is described as  

 A pid (process id: an integer) 
 A username (who started the process) 
 A state (running, blocked, ready, ...) 
 A program counter (points to the next instruction) 
 A stack (bookkeeping for function calls) 
 A set of file descriptors (open files, network connections,...) 
 A page table (way to track where in RAM the process’ 

address space is located) 
 The pid of the parent process 
 ...



Processes

 All modern OSes support multiple active 
processes at the same time 

 Each process goes through three main states 
 Ready: “I can run if the OS would let me” 
 Running: “I am running right now” 
 Blocked: “I can’t run right now because am waiting 

for the disk, the network, etc.” 
 The OS decides which ready process runs 

when and for how long 
 This decision impacts the performance and the 

responsiveness of the computer, and OSes have 
been designed to do this well 

 The decision is called scheduling



Processes and Memory
 Each process has its own address space: a set of 

memory locations that can be read from and 
written to 

 Virtual memory: the illusion that there is a large 
memory (perhaps larger than the physical memory), 
and that a process is the only one using it 

 This illusion is always maintained, but at the cost of 
degraded performance at times (swapping) 

 This is what makes it possible for developers to 
write programs and not care about the state of the 
computer when the program will be run 

 I write a program assuming a large address space 
and I don’t care what other programs will be running 
when my program is running



(UNIX) Process Creation?
 Each time you invoke a command in a Shell 

(which is itself a process), you create a new 
process 

 Or more appropriately, the Shell creates a new 
process on your behalf 

 So somewhere in the code of the Shell program, 
there is a place where processes are created 

 Processes are created using the fork system call, 
which can be called from C/C++



The Fork() System Call

 The fork system call creates a copy of a the 
process that calls it 
 In fact, fork calls “clone”, which is the real syscall 
 In particular the memory is copied 

 After the call, both processes are free to 
continue along following different execution 
paths in the program 

 fork() returns an integer 
 It returns the PID of the new process to the 

“parent” process 
 It returns 0 to the “child” process 

 Let’s see who remembers ICS332 stuff



The Fork() System Call
 What does this program print? 

  int count = 0; 
  if (fork() != 0) { 
   while (count < 10) {  
    count++; 
    sleep(1); 
   }  
  } else { 
   sleep(5); 
   printf(“%d\n”,count);  
  } 

 Show of hands:  0, 4, 5, 6, 10, or something else?



The Fork() System Call
 What does this program print? 

  int count = 0; 
  if (fork() != 0) { 
   while (count < 10) {  
    count++; 
    sleep(1); 
   }  
  } else { 
   sleep(5); 
   printf(“%d\n”,count);  
  } 

 Show of hands:  0, 4, 5, 6, 10, or something else? 
 Answer: 0



The Fork() System Call
 The two processes run on their own 
 The OS is in charge of deciding when they run 

 Typically in some round-robin fashion 

 The two processes have distinct address spaces 
 In our example, variables are not shared between the 

processes but each process has its own copy of each 
variable 

 It doesn’t matter than the parent updates its count 
variable, the child doesn’t have access to the parent’s 
memory space anyway 

 This is why the answer was “0”



Processes can Communicate

 This is called Inter Process Communication (IPC) 
 IPC comes in several shapes or form 

 IPC via files 
 IPC via pipes (see ICS332) 
 IPC via sockets (as if on a network) 
 IPC via shared message queues 
 … 

 So we have a way for process A  to send a  
message to process B 
 For our application: the Reader can tell the Analyzer 

“I have just read image #i”



Process-based Implementation
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 Two processes: 
P1: for image reading 
P2: for image analysis



Processes: No Go :(

 This doesn’t work:  
 P1 reads images into its address space 
 P2 cannot access P1’s address space! 
 Processes are designed not to share memory space 
 Your “washer” and your “dryer” are each in its own parallel 

universe 
 So we just cannot do a pipeline, end of  story :( 
 Can we do anything with processes?  Any ideas??
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Split the work in two…

 Without shared address spaces one could say: 
 I have N images to process 
 I am going to use 2 processes and each process will 

process N/2 images 
 Execution could look like this 

 Why is this not so great?

Process #1
Process #2



Split the work in two…

 Without shared address spaces one could say: 
 I have N images to process 
 I am going to use 2 processes and each process will 

process N/2 images 
 Execution could look like this 

 Why is this not so great? 
 CPU idle time! 
 Competition for resources!

Process #1
Process #2



Competition for resources :(
 Say that  

 all images are identical, and we have 4 of them 
 it takes 10 seconds to read one image from disk 
 it takes 10 seconds to analyze the image on a core 
 we have one disk and one core

Process #1
Process #2 20s

Total = 80s

 This is a very inefficient use of the resources 
 We go as slowly as without concurrency!!! 

 It would be better to organize the computation differently…
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Avoiding competition
 Say that  

 all images are identical, and we have 4 of them 
 it takes 10 seconds to read one image from disk 
 it takes 10 seconds to analyze the image on a core 
 we have one disk and one core

Process #1
Process #2

Total = 50s 
(was 80s) 

 Just have Process #2 start with a: sleep(10); 
 No competition for resources at all 
 Perfect overlap of I/O and computation! 
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Not always so easy
 If every operation takes 10 seconds, we’re good 
 But if not, things are not so great

Process #1

Process #2 sleep



Not always so easy
 If every operation takes 10 seconds, we’re good 
 But if not, things are not so great
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Not always so easy
 If every operation takes 10 seconds, we’re good 
 But if not, things are not so great
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Process #2 sleep

CPU 
Competition

I/O 
Competition

 And therefore the above picture is not to scale:  All 
“competition areas” must be doubled in length 

 Worst case: we go almost as slow as sequential!



Avoid competition via communication

 The solution: have processes talk to each other 
 e.g., Process #1 says “I am done reading, go ahead 

and use the disk” 
 e.g., Process #2 says “I am starting computing, so 

please don’t compute right now” 
 Easy to do with IPC 
  Let’s see what our execution could look like if we 

have the processes communicate



Communicating Processes
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Communicating Processes
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 There is never any competition! 
 But there are times during which the disk is idle or the CPU 

is idle (the “gaps” above) 
 This cannot be avoided with the above I/O and computation 

times 
 Anybody sees what a problem might be?



Sadly, not so easy…

 The previous picture assumes a nice “ping pong” effect 
 But things can be much more complex 
 For instance: 

 Images are all different, and some are quick to 
analyze 

 Therefore, one process can overtake the other and 
need to read twice in a row 

 Our simple “you go; you go; ..” synchronization 
doesn’t work 

 So we need to come up with a more complex 
communication scheme: 

 “you go; but when I can go and you haven’t yet told 
me that you went, then never mind I’ll go…”



Even worse…

 Let’s say images are all different, with some easy to analyze 
and some hard to analyze 

 And let’s say it doesn’t depend on the image size, meaning that 
it’s always a surprise  whether an image is  “easy” or “hard” 

 We could be unlucky and give all the harder images to one 
process, and all the easier ones to the other! 

 One process will compute alone at the end, sequentially! 
 So our initially strategy “each process gets N/2 images to 

process” doesn’t work 
 This is called load imbalance 
 We would have to make synchronization more complicated, 

with a process “grabbing”  the next image dynamically and  
telling the other process which image that was 

 We could go down that route, but it’s getting really annoying 
 And  yet, we’ll do things like that later in the semester



Where  are we now?

 Using communicating processes has issues 
 1) The communication patterns could be more 

complex that the basic ping-pong 
 2) Load-balancing must be good 

 Coming up with a good strategy is an 
interesting problem 
 And many people have investigated approach for 

many scenarios  (including scenarios in which one 
must use processes, e.g., on different machines) 

 But, if we abandon processes altogether, we 
may be much better off…



Back to Sharing Memory

 What we really, really want is the above 
picture, i.e., what we started with 

 We want to share memory across processes  
 An image reader process 
 An image analyzer 
 The data is read in memory by the reader 

is used by the analyzer!
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Share Memory between Processes?

 This idea of sharing memory among processes 
goes completely against the notion of clean, 
separated address spaces provided by the OS 

 Virtual memory is all about separation, not sharing! 
 But, clearly it would be useful and would make 

programming concurrent applications much 
simpler 

 As a result, there are mechanisms to share 
memory between processes 

 Linux provides a “shared memory segment” 
abstraction 

 One process creates a zone of sharable memory 
 It then tells another process: here is a zone we can 

share



Shared Memory Segments
 The idea of shared memory segments is useful, 

but programming with them is very cumbersome 
 Many lines of code and bookkeeping 

 We won’t study them in this class, but ICS332 
may have discussed them 

 The same principles about concurrency apply, so if you 
have to use shared memory segments for some 
reason, it shouldn’t be very difficult after taking this 
class 

 Look at the man pages for shmget, shmat, shmdt, ... 
 Nowadays, we typically don’t use processes but 

instead use threads (“within” a process)



Threads
 Threads came about because of the need to write concurrent 

applications, that is the need for “tasks” that share memory 
 Threads can be thought of as processes that share a single 

address space 
 Threads are sometimes called “lightweight processes” 

 N processes have N page tables, N address spaces, N 
PIDs, ... 

 N threads together have 1 page table, 1 address space, 1 PID 
 Things that threads do not share: program counter and stack 

 N threads have N program counters 
 N threads have N stacks  

 Therefore, multiple threads can be executing different parts of 
the program “at the same time”, and have followed 
completely different calling sequences



Threads in a Process
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 Typical (but probably useless) representation



Threads in a Process
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Threads vs. Processes

 Sharing memory with threads is straightforward 
 They were designed especially for this 

 But threads do not benefit from memory 
protection 

 Can cause nasty bugs, which  we  will see at length 

 Concurrent applications today are almost 
always written with threads 

 What about Keynote? 
 Let’s find its PID 
 Let’s call ps with the “M” option



Threads as Tasks

 Each task is a thread: 
 An image reader thread that loads images into the process’ address space 
 An image analyzer thread that analyzes images in the address space 

 These threads need to communicate: 
 The  analyzer has to wait for the reader to have read stuff in 
 The reader has to tell the analyzer that it has read something in 

 But now we don’t need IPC, we can just communicate in RAM (i.e., 
using variables!) 

 We will implement this shortly, in our JavaFX application 
  after we learn more about multi-threaded programming!
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Conclusion
 Most of the programs you use every day are 

multithreaded 
 In the next module we’ll review how to write multi-

threaded programs, in Java 
 A screencast of ICS332 material 
 And then a lecture on more in-depth material 

 Multi-threading is NOT new 
 Around for decades 
 Even part of ancient programming languages 

 IBM’s PL/I F, Modula, Ada, etc. 

 It’s just became crucial due to multi-core (and GPUs), and 
now we cannot escape it (hence this course) 

 Before the next lecture: Watch the “Java Threads” 
screencast


