Concurrency with

Processes/Threads

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

" J
Concurrency with Tasks

® \When developing a concurrent application
one thinks of the application as a set of tasks

m Different tasks can do different things, or can
do the same things on different data

One talks of “task parallelism” and “data
parallelism”

B Some tasks may need to talk to each other

e.g., wait for each other, say “go head” to each
other, wake up each other.

B | et's take as an example a simple image
analysis application...

"
Example Image Analysis App

m Consider an application that reads image files and
“analyzes” the images

® e.g., applies an ML algorithm to detect license plates
® \We have a SINGLE CORE and a SINGLE DISK
m A sequential execution would look like this:

analyze analyze analyze Ce e
img1 img2 img3
time ”
® Our objective: use concurrency to improve performance

® |.e., reduce overall execution time
® \Why is the above picture “not good” performance-wise?

"

Improving Performance

time

®m \While an image is being read, the CPU is (mostly) idle
® \While an image is being processed, the disk is idle

® This is not the best use of the hardware!

®m So let’s now think of the application as two tasks:
© Task #1: Image reader
© Task #2: Image analyzer

"
Concurrency with Two Tasks

® Now the executions (could) look like this:

analyze analyze analyze
img1 img2 img3

time

® The cost of reading images is hidden after the first
image has been read

B This is called overlap of /O and computation

® The tasks need to communicate: The Reader task
needs to tell the Analyzer task °l just read image #i,
SO you can go ahead an analyze it whenever”

"

Memory Explosion?

time

® |n this example, image reading takes less time
than image analyzing

® This can lead to a memory problem: only a limited
number of images can be held in memory
2 If one tries to keep too many in memory, then the

application will start swapping pages to disk!
m See your virtual memory lectures (ICS332)

"
Only One Image at a Time

m Solution #1: Read only one image ahead of time

®m Requires some synchronization between the two
tasks (they need to “talk”, see later...)

time

®m Problem: If we have images of different sizes, then
reading image #i+1 may take longer than analyzing
image #i
1I=3 above leads to idle time

"
Only N Images at a Time

m Solution #2: Read only N images ahead of time
Making sure that N images always fit in memory

S
>

time

® |n the above example, N = 3 (let’s check)
® |[f images are very different, it could be difficult to

determine the smallest N

Best bet: just keep at most X MBytes of image data in
memory

" A
1/0-intensive?

® \What if analyzing takes less time than reading?

S

>

time

® The cost of analyzing images is hidden after the first one

B Good news: One doesn’t have to know which operation takes
less time ahead of time

Difficult to know: depends on the computer, to the analysis
program, perhaps even on the image

®m | esson: Just create your tasks and make sure memory
doesn’t become a problem

" J——
This is a “Pipeline”

®m The previous application is called a 2-stage pipeline

You have a sequence of operations to do

Each operation can be done in two stages

While operation #1 is in stage #2, operation #2 is in stage #1
m Typical real-life example: washer and dryer

= While load #2 is in the dryer, load #3 is in the washer

® Similar concept here, but in software

Things are great if both stages take the exact same time

= Not the case for washer/dryer (typically drying takes longer)

When stages don't take the same time, we can do things like
hold up to N images in memory

Same thing with your laundry room, which has hopefully some
capacity to hold some “waiting to be dried” loads

= But If you have 1000 loads to do, you can'’t just keep using the
washer otherwise your laundry room will overflow with wet clothes

= Just like our RAM with images

" J
Pipeline Bottleneck

® Note that in our example, we go only as fast as the
slower stage (reading or analyzing)

® |f your disk can deliver 10 images per second, it
doesn’t matter that your core can analyze 100
Images per seconds: you can only feed them 10
Images per second in memory anyway

m |n this case we say that the disk is the bottleneck

If | were to give you a faster core, that wouldn’t do you
any good, so cores are not the bottleneck

If | were to give you a faster disk, that would do you
some good, so the disk is the bottleneck

® |n my laundry room, the dryer is the bottleneck

" A
No Extra Cost??

analyze

® |n the laundry room, your washer and dryer img2

can both run at full speed simultaneously
m |n software it’'s not 100% true

m A task that reads data from disk still needs
to execute some instructions on the CPU

But they are not very frequent because the
task spends most of its time waiting for the
disk (small CPU bursts, large I/O bursts)
® Furthermore, running more than one
task at a time may have overhead

The “interleaving” of instruction requires apalyze
some extra work by the CPU, O/S: context img2
switching (we assume a single core)

® S0 we always lose a little bit

extra

"

Example Concurrent App

® The ideal picture looks like this:

time

® The real execution time may be longer (still way
better than the non-concurrent execution):

time

" A
Where are we?

® \We now have a pretty good idea of how one
could design our image analysis application as
two tasks
While achieving nice overlap of /O and computation

And while avoiding memory explosion (even though
that may cause us to have some CPU idle time
depending of the images)

m |et’s try to design an implementation using
processes

m First, let’s review what processes are...

" A
Processes

B A process is a running program

® The OS keeps track of running programs in a data
structure called the process table
® Each process is described as
A pid (process id: an integer)
A username (who started the process)
A state (running, blocked, ready, ...)
A program counter (points to the next instruction)
A stack (bookkeeping for function calls)
A set of file descriptors (open files, network connections,...)

A page table (way to track where in RAM the process’
address space is located)

The pid of the parent process

" A
Processes

® All modern OSes support multiple active
processes at the same time
®m Each process goes through three main states
Ready: “l can run if the OS would let me”
Running: “I am running right now”
Blocked: “I can’t run right now because am waiting
for the disk, the network, etc.”
® The OS decides which ready process runs
when and for how long

This decision impacts the performance and the
responsiveness of the computer, and OSes have
been designed to do this well

The decision is called scheduling

"
Processes and Memory

B Each process has its own address space: a set of
memory locations that can be read from and
written to

® \irtual memory: the illusion that there is a large
memory (perhaps larger than the physical memory),
and that a process is the only one using it

® This illusion is always maintained, but at the cost of
degraded performance at times (swapping)

® This is what makes it possible for developers to
write programs and not care about the state of the
computer when the program will be run

| write a program assuming a large address space
and | don’t care what other programs will be running
when my program is running

" JE
(UNIX) Process Creation?

®m Each time you invoke a command in a Shell
(which is itself a process), you create a new
process

® Or more appropriately, the Shell creates a new
process on your behalf

® So somewhere in the code of the Shell program,
there is a place where processes are created

® Processes are created using the fork system call,
which can be called from C/C++

" J
The Fork() System Call

m The fork system call creates a copy of a the
process that calls it

In fact, fork calls “clone”, which is the real syscall
In particular the memory is copied
m After the call, both processes are free to
continue along following different execution
paths in the program
® fork() returns an integer

It returns the PID of the new process to the
“parent” process

It returns O to the “child” process
m | et's see who remembers ICS332 stuff

"
The Fork() System Call

® \What does this program print?

int count = 0O;

if (fork() '= 0) {
while (count < 10) {
count++;
sleep (1) ;
}
} else {
sleep (5) ;

printf (“$d\n”,count) ;

®m Show of hands: 0, 4, 5, 6, 10, or something else?

"
The Fork() System Call

® \What does this program print?

int count = 0O;

if (fork() '= 0) {
while (count < 10) {
count++;
sleep (1) ;
}
} else {
sleep (5) ;

printf (“$d\n”,count) ;

®m Show of hands: 0, 4, 5, 6, 10, or something else?
m Answer: O

"
The Fork() System Call

® The two processes run on their own
® The OS is in charge of deciding when they run
Typically in some round-robin fashion

B The two processes have distinct address spaces

In our example, variables are not shared between the
processes but each process has its own copy of each
variable

It doesn’t matter than the parent updates its count
variable, the child doesn’t have access to the parent’s
memory space anyway

This is why the answer was “0”

" A
Processes can Commmunicate

® This is called Inter Process Communication (IPC)

® |PC comes in several shapes or form
IPC via files
IPC via pipes (see ICS332)
|IPC via sockets (as if on a network)
IPC via shared message queues

®m S0 we have a way for process A to send a
message to process B

For our application: the Reader can tell the Analyzer
‘I have just read image #i”

"

Process-based Implementation

time

®m TwoO processes:
“P1: for image reading
“P2: for image analysis

"

Processes: No Go :(

time

® This doesn’t work:
® P1 reads images into its address space
m P2 cannot access P1’s address space!
m Processes are designed not to share memory space

® Your “washer” and your “dryer” are each in its own parallel
universe

® S0 we just cannot do a pipeline, end of story :(
® Can we do anything with processes? Any ideas??

" A
Split the work in two...

m \Without shared address spaces one could say:
| have N images to process

| am going to use 2 processes and each process will
process N/2 images

B Execution could look like this

Process #1 [N []

Process #2 [N I I

® \Why is this not so great?

" A
Split the work in two...

m \Without shared address spaces one could say:
| have N images to process

| am going to use 2 processes and each process will
process N/2 images

B Execution could look like this

Process #1 [[]

Process #2 [— E—

® \Why is this not so great?
CPU idle time!
Competition for resources!

"
Competition for resources :(

m Say that

all images are identical, and we have 4 of them

it takes 10 seconds to read one image from disk

it takes 10 seconds to analyze the image on a core
we have one disk and one core

Process #1 [20s [120s 205 205]

Total = 80s
Process #2 [[20s [720s 20 205

® This is a very inefficient use of the resources
We go as slowly as without concurrency!!!
® |t would be better to organize the computation differently...

"
Avoiding competition

m Say that

all images are identical, and we have 4 of them

it takes 10 seconds to read one image from disk

it takes 10 seconds to analyze the image on a core
we have one disk and one core

Process #1 [10s[10s[10s [10s]] Total = 50s
Process #2 [10s [10s [10s [10s] (was 80s)

m Just have Process #2 start with a: sleep(10);
® No competition for resources at all
m Perfect overlap of I/0 and computation!

"
Not always so easy

m |f every operation takes 10 seconds, we're good
m But if not, things are not so great

Process #1 [T T
Process #2 sleep T T

"
Not always so easy

m |f every operation takes 10 seconds, we're good
m But if not, things are not so great

Process #1 [S s
Process #2 seer [N

CPU /0
Competition Competition

"
Not always so easy

® |f every operation takes 10 seconds, we're good
®m But if not, things are not so great

Process #1 [| T

Process #2 sieep [T I S

CPU /0
Competition Competition

® And therefore the above picture is not to scale: All
“competition areas” must be doubled in length

m Worst case: we go almost as slow as sequential!

Avoid competition via communication

® The solution: have processes talk to each other

e.g., Process #1 says “| am done reading, go ahead
and use the disk”

e.g., Process #2 says “| am starting computing, so
please don’t compute right now”

m Easy to do with IPC

m | et’'s see what our execution could look like if we
have the processes communicate

" JEEE——
Communicating Processes

Process#1 [l T A_ []

you can
you can read
read
you can you can you can you can
read compute compute compute

Process #2 l- l&

" JEE
Communicating Processes

Process #1 [[]
T A
you can
you can read
read
you can you can you can you can
read compute compute compute
‘l’ \ 4
Process #2]

® There is never any competition!

® But there are times during which the disk is idle or the CPU
is idle (the “gaps” above)

® This cannot be avoided with the above I/O and computation
times

® Anybody sees what a problem might be?

Sadly, not so easy...

® The previous picture assumes a nice “ping pong” effect
® But things can be much more complex
® For instance:

Images are all different, and some are quick to
analyze

Therefore, one process can overtake the other and
need to read twice in a row

Our simple “you go; you go; ..” synchronization
doesn’t work

® S0 we need to come up with a more complex
communication scheme:

“you go; but when | can go and you haven't yet told
me that you went, then never mind I'll go...”

" JEE—
Even worse...

m | et’'s say images are all different, with some easy to analyze
and some hard to analyze

®m And let’s say it doesn’t depend on the image size, meaning that
it's always a surprise whether an image is “easy” or “hard”

m \We could be unlucky and give all the harder images to one
process, and all the easier ones to the other!

One process will compute alone at the end, sequentially!

So our initially strategy “each process gets N/2 images to
process” doesn’t work

®m This is called load imbalance

m \We would have to make synchronization more complicated,
with a process “grabbing” the next image dynamically and
telling the other process which image that was

m \We could go down that route, but it's getting really annoying
And vyet, we'll do things like that later in the semester

" A
Where are we now?

® Using communicating processes has issues

1) The communication patterns could be more
complex that the basic ping-pong

2) Load-balancing must be good

B Coming up with a good strategy is an
interesting problem
And many people have investigated approach for
many scenarios (including scenarios in which one
must use processes, e.g., on different machines)
® But, if we abandon processes altogether, we
may be much better off...

"
Back to Sharing Memory

time

®m \What we really, really want is the above
picture, i.e., what we started with

® \We want to share memory across processes
An image reader process
An image analyzer

The data is read in memory by the reader
IS used by the analyzer!

"
Share Memory between Processes?

® This idea of sharing memory among processes
goes completely against the notion of clean,
separated address spaces provided by the OS

Virtual memory is all about separation, not sharing!
m But, clearly it would be useful and would make
programming concurrent applications much
simpler
m As a result, there are mechanisms to share
memory between processes
® Linux provides a “shared memory segment”

abstraction
One process creates a zone of sharable memory

It then tells another process: here is a zone we can
share

" J
Shared Memory Segments

® The idea of shared memory segments is useful,
but programming with them is very cumbersome
Many lines of code and bookkeeping

® \We won't study them in this class, but ICS332
may have discussed them

The same principles about concurrency apply, so if you
have to use shared memory segments for some

reason, it shouldn’t be very difficult after taking this
class

Look at the man pages for shmget, shmat, shmdt, ...

®m Nowadays, we typically don’t use processes but
instead use threads (“within” a process)

" A
Threads

B Threads came about because of the need to write concurrent
applications, that is the need for “tasks” that share memory

® Threads can be thought of as processes that share a single
address space

® Threads are sometimes called “lightweight processes”

N processes have N page tables, N address spaces, N
PIDs, ...

N threads together have 1 page table, 1 address space, 1 PID
® Things that threads do not share: program counter and stack

N threads have N program counters

N threads have N stacks

® Therefore, multiple threads can be executing different parts of
the program “at the same time”, and have followed
completely different calling sequences

'_
Threads in a Process

® Typical (but probably useless) representation

thread

process

" A
Threads in a Process

global variable

= (shared) address space

(shared) code

process

" A
Threads vs. Processes

® Sharing memory with threads is straightforward
They were designed especially for this

m But threads do not benefit from memory
protection

Can cause nasty bugs, which we will see at length

m Concurrent applications today are almost
always written with threads

® \What about Keynote?

Let’s find its PID
Let’s call ps with the “M” option

"

Threads as Tasks

S

>

time

m Each task is a thread:
“ An image reader thread that loads images into the process’ address space
“ An image analyzer thread that analyzes images in the address space
® These threads need to communicate:
~ The analyzer has to wait for the reader to have read stuff in
“ The reader has to tell the analyzer that it has read something in

m But now we don’t need IPC, we can just communicate in RAM (i.e.,
using variables!)

® \We will implement this shortly, in our JavaF X application
=~ after we learn more about multi-threaded programming!

" A
Conclusion

® Most of the programs you use every day are
multithreaded

® |In the next module we’ll review how to write multi-
threaded programs, in Java
A screencast of ICS332 material
And then a lecture on more in-depth material
® Multi-threading is NOT new
Around for decades

Even part of ancient programming languages
m |[BM’s PL/I F, Modula, Ada, etc.

® |[t's just became crucial due to multi-core (and GPUs), and
now we cannot escape it (hence this course)

m Before the next lecture: \Watch the “Java Threads”
screencast

