
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Concurrency with
Processes/Threads

Concurrency with Tasks

 When developing a concurrent application
one thinks of the application as a set of tasks

 Different tasks can do different things, or can
do the same things on different data
 One talks of “task parallelism” and “data

parallelism”
 Some tasks may need to talk to each other

 e.g., wait for each other, say “go head” to each
other, wake up each other.

 Let’s take as an example a simple image
analysis application…

Example Image Analysis App
 Consider an application that reads image files and

“analyzes” the images
 e.g., applies an ML algorithm to detect license plates

 We have a SINGLE CORE and a SINGLE DISK
 A sequential execution would look like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .
time

 Our objective: use concurrency to improve performance
 i.e., reduce overall execution time

 Why is the above picture “not good” performance-wise?

Improving Performance
read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .
time

 While an image is being read, the CPU is (mostly) idle
 While an image is being processed, the disk is idle

 This is not the best use of the hardware!
 So let’s now think of the application as two tasks:

 Task #1: Image reader
 Task #2: Image analyzer

Concurrency with Two Tasks
 Now the executions (could) look like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

. . .

 The cost of reading images is hidden after the first
image has been read

 This is called overlap of I/O and computation
 The tasks need to communicate: The Reader task

needs to tell the Analyzer task “I just read image #i,
so you can go ahead an analyze it whenever”

Memory Explosion?

 In this example, image reading takes less time
than image analyzing

 This can lead to a memory problem: only a limited
number of images can be held in memory
 If one tries to keep too many in memory, then the

application will start swapping pages to disk!
 See your virtual memory lectures (ICS332)

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

. . .read
img4

read
img5

read
img6

analyze
img4

read
img7

read
img8

Only One Image at a Time
 Solution #1: Read only one image ahead of time
 Requires some synchronization between the two

tasks (they need to “talk”, see later…)

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 Problem: If we have images of different sizes, then
reading image #i+1 may take longer than analyzing
image #i
 i=3 above leads to idle time

Only N Images at a Time
 Solution #2: Read only N images ahead of time

 Making sure that N images always fit in memory

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 In the above example, N = 3 (let’s check)
 If images are very different, it could be difficult to

determine the smallest N
 Best bet: just keep at most X MBytes of image data in

memory

I/O-intensive?
 What if analyzing takes less time than reading?

time

 The cost of analyzing images is hidden after the first one
 Good news: One doesn’t have to know which operation takes

less time ahead of time
 Difficult to know: depends on the computer, to the analysis

program, perhaps even on the image
 Lesson: Just create your tasks and make sure memory

doesn’t become a problem

read
img1

analyze
img1

read
img2

analyze
img2
read
img3

analyze
img3

. . .
. . .

This is a “Pipeline”
 The previous application is called a 2-stage pipeline

 You have a sequence of operations to do
 Each operation can be done in two stages
 While operation #1 is in stage #2, operation #2 is in stage #1

 Typical real-life example: washer and dryer
 While load #2 is in the dryer, load #3 is in the washer

 Similar concept here, but in software
 Things are great if both stages take the exact same time

 Not the case for washer/dryer (typically drying takes longer)
 When stages don’t take the same time, we can do things like

hold up to N images in memory
 Same thing with your laundry room, which has hopefully some

capacity to hold some “waiting to be dried” loads
 But If you have 1000 loads to do, you can’t just keep using the

washer otherwise your laundry room will overflow with wet clothes
 Just like our RAM with images

Pipeline Bottleneck
 Note that in our example, we go only as fast as the

slower stage (reading or analyzing)
 If your disk can deliver 10 images per second, it

doesn’t matter that your core can analyze 100
images per seconds: you can only feed them 10
images per second in memory anyway

 In this case we say that the disk is the bottleneck
 If I were to give you a faster core, that wouldn’t do you

any good, so cores are not the bottleneck
 If I were to give you a faster disk, that would do you

some good, so the disk is the bottleneck
 In my laundry room, the dryer is the bottleneck

No Extra Cost??

 In the laundry room, your washer and dryer
can both run at full speed simultaneously

 In software it’s not 100% true
 A task that reads data from disk still needs

to execute some instructions on the CPU
 But they are not very frequent because the

task spends most of its time waiting for the
disk (small CPU bursts, large I/O bursts)

 Furthermore, running more than one
task at a time may have overhead

 The “interleaving” of instruction requires
some extra work by the CPU, O/S: context
switching (we assume a single core)

 So we always lose a little bit

analyze
img2

read
img3

analyze
img2

read
img3 extra

Example Concurrent App
 The ideal picture looks like this:

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 The real execution time may be longer (still way
better than the non-concurrent execution):

Where are we?

 We now have a pretty good idea of how one
could design our image analysis application as
two tasks
 While achieving nice overlap of I/O and computation
 And while avoiding memory explosion (even though

that may cause us to have some CPU idle time
depending of the images)

 Let’s try to design an implementation using
processes

 First, let’s review what processes are…

Processes
 A process is a running program
 The OS keeps track of running programs in a data

structure called the process table
 Each process is described as

 A pid (process id: an integer)
 A username (who started the process)
 A state (running, blocked, ready, ...)
 A program counter (points to the next instruction)
 A stack (bookkeeping for function calls)
 A set of file descriptors (open files, network connections,...)
 A page table (way to track where in RAM the process’

address space is located)
 The pid of the parent process
 ...

Processes

 All modern OSes support multiple active
processes at the same time

 Each process goes through three main states
 Ready: “I can run if the OS would let me”
 Running: “I am running right now”
 Blocked: “I can’t run right now because am waiting

for the disk, the network, etc.”
 The OS decides which ready process runs

when and for how long
 This decision impacts the performance and the

responsiveness of the computer, and OSes have
been designed to do this well

 The decision is called scheduling

Processes and Memory
 Each process has its own address space: a set of

memory locations that can be read from and
written to

 Virtual memory: the illusion that there is a large
memory (perhaps larger than the physical memory),
and that a process is the only one using it

 This illusion is always maintained, but at the cost of
degraded performance at times (swapping)

 This is what makes it possible for developers to
write programs and not care about the state of the
computer when the program will be run

 I write a program assuming a large address space
and I don’t care what other programs will be running
when my program is running

(UNIX) Process Creation?
 Each time you invoke a command in a Shell

(which is itself a process), you create a new
process

 Or more appropriately, the Shell creates a new
process on your behalf

 So somewhere in the code of the Shell program,
there is a place where processes are created

 Processes are created using the fork system call,
which can be called from C/C++

The Fork() System Call

 The fork system call creates a copy of a the
process that calls it
 In fact, fork calls “clone”, which is the real syscall
 In particular the memory is copied

 After the call, both processes are free to
continue along following different execution
paths in the program

 fork() returns an integer
 It returns the PID of the new process to the

“parent” process
 It returns 0 to the “child” process

 Let’s see who remembers ICS332 stuff

The Fork() System Call
 What does this program print?

	 	 int count = 0;
	 	 if (fork() != 0) {
	 	 	 while (count < 10) {
	 	 	 	 count++;
	 	 	 	 sleep(1);
	 	 	 }	
	 	 } else {
	 	 	 sleep(5);
	 	 	 printf(“%d\n”,count);
	 	 }

 Show of hands: 0, 4, 5, 6, 10, or something else?

The Fork() System Call
 What does this program print?

	 	 int count = 0;
	 	 if (fork() != 0) {
	 	 	 while (count < 10) {
	 	 	 	 count++;
	 	 	 	 sleep(1);
	 	 	 }	
	 	 } else {
	 	 	 sleep(5);
	 	 	 printf(“%d\n”,count);
	 	 }

 Show of hands: 0, 4, 5, 6, 10, or something else?
 Answer: 0

The Fork() System Call
 The two processes run on their own
 The OS is in charge of deciding when they run

 Typically in some round-robin fashion

 The two processes have distinct address spaces
 In our example, variables are not shared between the

processes but each process has its own copy of each
variable

 It doesn’t matter than the parent updates its count
variable, the child doesn’t have access to the parent’s
memory space anyway

 This is why the answer was “0”

Processes can Communicate

 This is called Inter Process Communication (IPC)
 IPC comes in several shapes or form

 IPC via files
 IPC via pipes (see ICS332)
 IPC via sockets (as if on a network)
 IPC via shared message queues
 …

 So we have a way for process A to send a
message to process B
 For our application: the Reader can tell the Analyzer

“I have just read image #i”

Process-based Implementation

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

 Two processes:
P1: for image reading
P2: for image analysis

Processes: No Go :(

 This doesn’t work:
 P1 reads images into its address space
 P2 cannot access P1’s address space!
 Processes are designed not to share memory space
 Your “washer” and your “dryer” are each in its own parallel

universe
 So we just cannot do a pipeline, end of story :(
 Can we do anything with processes? Any ideas??

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Split the work in two…

 Without shared address spaces one could say:
 I have N images to process
 I am going to use 2 processes and each process will

process N/2 images
 Execution could look like this

 Why is this not so great?

Process #1
Process #2

Split the work in two…

 Without shared address spaces one could say:
 I have N images to process
 I am going to use 2 processes and each process will

process N/2 images
 Execution could look like this

 Why is this not so great?
 CPU idle time!
 Competition for resources!

Process #1
Process #2

Competition for resources :(
 Say that

 all images are identical, and we have 4 of them
 it takes 10 seconds to read one image from disk
 it takes 10 seconds to analyze the image on a core
 we have one disk and one core

Process #1
Process #2 20s

Total = 80s

 This is a very inefficient use of the resources
 We go as slowly as without concurrency!!!

 It would be better to organize the computation differently…

20s 20s

20s 20s

20s 20s

20s

Avoiding competition
 Say that

 all images are identical, and we have 4 of them
 it takes 10 seconds to read one image from disk
 it takes 10 seconds to analyze the image on a core
 we have one disk and one core

Process #1
Process #2

Total = 50s
(was 80s)

 Just have Process #2 start with a: sleep(10);
 No competition for resources at all
 Perfect overlap of I/O and computation!

10s 10s 10s 10s

10s 10s 10s 10s

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

CPU
Competition

I/O
Competition

Not always so easy
 If every operation takes 10 seconds, we’re good
 But if not, things are not so great

Process #1

Process #2 sleep

CPU
Competition

I/O
Competition

 And therefore the above picture is not to scale: All
“competition areas” must be doubled in length

 Worst case: we go almost as slow as sequential!

Avoid competition via communication

 The solution: have processes talk to each other
 e.g., Process #1 says “I am done reading, go ahead

and use the disk”
 e.g., Process #2 says “I am starting computing, so

please don’t compute right now”
 Easy to do with IPC
 Let’s see what our execution could look like if we

have the processes communicate

Communicating Processes
Process #1

Process #2

you can
compute

you can
readyou can

read

you can
compute

you can
compute

you can
read

Communicating Processes
Process #1

Process #2

you can
compute

you can
readyou can

read

you can
compute

you can
compute

you can
read

 There is never any competition!
 But there are times during which the disk is idle or the CPU

is idle (the “gaps” above)
 This cannot be avoided with the above I/O and computation

times
 Anybody sees what a problem might be?

Sadly, not so easy…

 The previous picture assumes a nice “ping pong” effect
 But things can be much more complex
 For instance:

 Images are all different, and some are quick to
analyze

 Therefore, one process can overtake the other and
need to read twice in a row

 Our simple “you go; you go; ..” synchronization
doesn’t work

 So we need to come up with a more complex
communication scheme:

 “you go; but when I can go and you haven’t yet told
me that you went, then never mind I’ll go…”

Even worse…

 Let’s say images are all different, with some easy to analyze
and some hard to analyze

 And let’s say it doesn’t depend on the image size, meaning that
it’s always a surprise whether an image is “easy” or “hard”

 We could be unlucky and give all the harder images to one
process, and all the easier ones to the other!

 One process will compute alone at the end, sequentially!
 So our initially strategy “each process gets N/2 images to

process” doesn’t work
 This is called load imbalance
 We would have to make synchronization more complicated,

with a process “grabbing” the next image dynamically and
telling the other process which image that was

 We could go down that route, but it’s getting really annoying
 And yet, we’ll do things like that later in the semester

Where are we now?

 Using communicating processes has issues
 1) The communication patterns could be more

complex that the basic ping-pong
 2) Load-balancing must be good

 Coming up with a good strategy is an
interesting problem
 And many people have investigated approach for

many scenarios (including scenarios in which one
must use processes, e.g., on different machines)

 But, if we abandon processes altogether, we
may be much better off…

Back to Sharing Memory

 What we really, really want is the above
picture, i.e., what we started with

 We want to share memory across processes
 An image reader process
 An image analyzer
 The data is read in memory by the reader

is used by the analyzer!

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Share Memory between Processes?

 This idea of sharing memory among processes
goes completely against the notion of clean,
separated address spaces provided by the OS

 Virtual memory is all about separation, not sharing!
 But, clearly it would be useful and would make

programming concurrent applications much
simpler

 As a result, there are mechanisms to share
memory between processes

 Linux provides a “shared memory segment”
abstraction

 One process creates a zone of sharable memory
 It then tells another process: here is a zone we can

share

Shared Memory Segments
 The idea of shared memory segments is useful,

but programming with them is very cumbersome
 Many lines of code and bookkeeping

 We won’t study them in this class, but ICS332
may have discussed them

 The same principles about concurrency apply, so if you
have to use shared memory segments for some
reason, it shouldn’t be very difficult after taking this
class

 Look at the man pages for shmget, shmat, shmdt, ...
 Nowadays, we typically don’t use processes but

instead use threads (“within” a process)

Threads
 Threads came about because of the need to write concurrent

applications, that is the need for “tasks” that share memory
 Threads can be thought of as processes that share a single

address space
 Threads are sometimes called “lightweight processes”

 N processes have N page tables, N address spaces, N
PIDs, ...

 N threads together have 1 page table, 1 address space, 1 PID
 Things that threads do not share: program counter and stack

 N threads have N program counters
 N threads have N stacks

 Therefore, multiple threads can be executing different parts of
the program “at the same time”, and have followed
completely different calling sequences

Threads in a Process

thread

process

 Typical (but probably useless) representation

Threads in a Process

process
(shared) code

(shared) address space

program counter

st
ac

k

program counter

st
ac

k

program counter

st
ac

k

method f method g

global variable

Threads vs. Processes

 Sharing memory with threads is straightforward
 They were designed especially for this

 But threads do not benefit from memory
protection

 Can cause nasty bugs, which we will see at length

 Concurrent applications today are almost
always written with threads

 What about Keynote?
 Let’s find its PID
 Let’s call ps with the “M” option

Threads as Tasks

 Each task is a thread:
 An image reader thread that loads images into the process’ address space
 An image analyzer thread that analyzes images in the address space

 These threads need to communicate:
 The analyzer has to wait for the reader to have read stuff in
 The reader has to tell the analyzer that it has read something in

 But now we don’t need IPC, we can just communicate in RAM (i.e.,
using variables!)

 We will implement this shortly, in our JavaFX application
 after we learn more about multi-threaded programming!

read
img1

analyze
img1

read
img2

analyze
img2

read
img3

analyze
img3

. . .

time

read
img4

read
img5

analyze
img4

Conclusion
 Most of the programs you use every day are

multithreaded
 In the next module we’ll review how to write multi-

threaded programs, in Java
 A screencast of ICS332 material
 And then a lecture on more in-depth material

 Multi-threading is NOT new
 Around for decades
 Even part of ancient programming languages

 IBM’s PL/I F, Modula, Ada, etc.

 It’s just became crucial due to multi-core (and GPUs), and
now we cannot escape it (hence this course)

 Before the next lecture: Watch the “Java Threads”
screencast

