
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Condition Variables

Back to the Queue Example
 Let’s take another look at our queue of

integers implementation, which has two
methods: insert() and remove()

 We have two kinds of threads
Producers: put integers into the queue
Consumers: remove integers from the

queue
 Let’s look at our previous implementation,

which uses locks to avoid race
conditions, assuming a non-thread-safe
queue implementation

// consumer
 …
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 process(x);
 …

// producer
 …
 x = generate();
 lock(mutex);
 insert(queue, x);
 unlock(mutex);
 …

Simple Solution
queue_t queue;
lock_t mutex;

 Typically the producers and consumers do the above
repeatedly, in some loop

Producer/Consumer
 The producer/consumer model is very common

and very useful
 A producer: a threads that repeatedly

“generates” items and puts them into some data
structure

 A consumer: a thread that repeatedly gets
items from a data structure and “processes”
them

 A data structure (often called the “producer-
consumer buffer”) that allows the above to
happen correctly for any number of producers
and consumers

Producer/Consumer

 The code two slides ago is not a true
producer/consumer implementation: The
consumer should WAIT for items to be put
in the queue whenever the queue is empty

 Let’s say that remove() returns -1 when
the queue is empty (could throw an
exception, etc.)

 Then we could attempt to implement a true
producer/consumer as follows….

Producer/Consumer

// consumer
 …
 while (1) {
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 if (x == -1) continue;
 process(x);
 break;
 }

// producer
 …
 x = generate();
 lock(mutex);
 insert(queue, x);
 unlock(mutex);

queue_t queue;
lock_t mutex;

Producer/Consumer

// consumer
 …
 while (1) {
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 if (x == -1) continue;
 process(x);
 break;
 }

// producer
 …
 x = generate();
 lock(mutex);
 insert(queue, x);
 unlock(mutex);

queue_t queue;
lock_t mutex;

What’s not great
about this?

Busy Wait
 Our implementation has a busy wait (it “spins”)
 The Consumer keeps trying to remove an item

while the queue is empty, which burns/wastes
CPU cycles
 Just like a spinlock for a long critical section

 Something useful could be done with the CPU
instead of having it just “spin”

Typically, many processes/threads could benefit
from being scheduled for their time quanta

 Furthermore, busy waiting increases heat and
power consumption, which are crucial issues

 Bottom line: busy waits are at best frowned
upon by developers, and typically prohibited

 Let’s try avoiding repeated calls to remove()…

Using a Blocking Lock???

 We use a (re-entrant and blocking) lock called “empty”
 Initially in the locked state

 The Consumer blocks until the producer calls unlock(),
and does not call unlock() unless it just emptied the
queue

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

Using a Blocking Lock???

 Most people don’t like the above solution
(and you will never see it used), for good
reasons…

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

Using a Blocking Lock???

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

 Problem #1: This assumes that a thread can call
unlock() on a lock without having called lock() on it

 This is often not supported
 And is known to be fraught with peril anyway from a

software maintenance/debugging perspective

Using a Blocking Lock???

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

 Problem #2: Readability suffers because some locks
are used for mutual exclusion, and some locks are
used for communication, and yet they look the same

 Even though some disagree (see upcoming Semaphore
lecture notes)

Using a Blocking Lock Lock???

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

 Problem #3: It is very hard to generalize this
use of locks to more complicated programs
 The “I lock / you unlock” handoff is known to be

very difficult to get right, especially with more than
2 threads and more complex patterns

Using a Blocking Lock???

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(empty);
 unlock(mutex);
 …

// consumer
 …
 lock(empty);
 lock(mutex);
 x = remove(queue);
 if (queue.size != 0)
 unlock(empty);
 unlock(mutex);
 …

queue_t queue;
lock_t mutex;
blocking_lock_t empty(LOCKED);

Bottom-line:
Using locks for communication is no good!

We need another abstraction

So what do we do now?
 What we need is

 A way for a thread to wait for “an event” without spinning
 A way for a thread to signal that “the event” has happened

 Such wait and signal functionalities can be easily
implemented with help from the OS

 The OS can simply move the threads between the READY
and the BLOCKED states at will

 There is a troubling similarity with blocking locks, which gets
a lot of people confused

 If you want to avoid philosophical doubt just remember:
locks are for mutual exclusion, while here we’re talking
about inter-thread communication

 And yes, for blocking locks (not spinlocks!), the
implementation happens to be almost the same

Condition Variables
 The basic abstraction for thread

communication is a condition variable (not a
great name for it)

 A condition variable supports three operations:
 wait(): the thread placing this call goes to

sleep (put to sleep by the O/S, i.e., no longer
using the CPU)

 signal(): when this call is placed, one of the
sleeping threads, if any, wakes up

 broadcast(): when this call is placed, ALL
the sleeping threads, if any, wake up

Condition Variables
 A good way to think of a condition variable is a queue of

blocked threads
 Which is really how the OS implements it anyway
 A thread gets context-switched out and its PCB is

placed in the condition variable’s queue
 It will eventually make its way back to the Ready Queue

 Important: when thread A calls signal on a condition
variable on which thread B is waiting, thread B doesn’t
run immediately at all!

 First, thread A gets to finish its time quantum
 Then, all the threads in the Ready Queue ahead of

thread B get to do their time quanta
 Then, finally, thread B gets to do its time quantum

 Let’s look at our producer/consumer with condition
variables…

Producer/Consumer?
// consumer
 …
 if (queue.size == 0) {
 wait(cond);
 }
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

queue_t queue;
lock_t mutex;
cond_t cond;

Producer/Consumer?
// consumer
 …
 if (queue.size == 0) {
 wait(cond);
 }
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

queue_t queue;
lock_t mutex;
cond_t cond;

 Unfortunately, this doesn’t work with 2 consumers
 i.e., a consumer might call remove() on an empty queue

 Anybody sees why?

Producer/Consumer?
// consumer
 …
 if (queue.size == 0) {
 wait(cond);
 }
 lock(mutex);
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

queue_t queue;
lock_t mutex;
cond_t cond;

 Problem with two consumers: race condition on queue.size because
“testing” following by “doing” is not atomic!
 The queue has one element in it
 Both consumers see the queue as non-empty
 They both move on to the critical section one after the other
 The second one ends up calling remove on an empty queue

This is a Common Bug
 We have seen this several times already: the action of

“testing and then setting” is not atomic in code written as:
if (some condition) { do_something }

 Back in 1993, 6 cancer patients were overdosed with
chemotherapy medicine and died (the “Therac-25”
incident)

 From an investigation:
 “It is clear from the AECL documentation on the modifications

that the software allows concurrent access to shared memory
that there is no real synchronization aside from data that are
stored in shared variables and that the test and set for such
variables are not indivisible operations. Race conditions
resulting from this implementation of multitasking
played an important part in the accidents.”

http://sunnyday.mit.edu/papers/therac.ps

Strict Producer/Consumer
 In our example, having a consumer call remove() on an

empty queue once is probably not a big deal and we could
live with it

 But for other applications it may not be a good idea
 the consumer does an update of a database
 the consumer does a write to disk
 the consumer sends/receives data from the network to answer

customer transactions for on-line reservations
 .…

 So in a true Producer/Consumer model, a consumer must
never be awakened and consume when the queue is empty

 We need to remove the race condition on the previous slide
 Question: how do we remove race conditions?
 Answer: with a lock!

Wait/Signal // consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond);
 }
 x = remove(queue);
 unlock(mutex);
 …
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

 We just moved the statement “lock(mutex)” before the
queue size check

 But now we have a new problem...anybody sees it?
 Hint: think of what happens if the consumer starts first

moved up

Wait/Signal // consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond);
 }
 x = remove(queue);
 unlock(mutex);
 …
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

moved up

 We now have a new problem: Deadlock
 The consumer acquires the lock first and waits
 The producer can never put anything in the queue!

 This is a classic deadlock, but not due to calls to lock/
unlock being misplaced
 Not the same as the classic “lock(lock1); lock(lock2)” and

“lock(lock2); lock(lock1);” deadlock bug

Cond. Variables and Locks
 We face a conundrum

 If we put the lock() after the wait() we have a race condition
 If we put the lock() before the wait() we have a deadlock

 What we really want is the following behavior:
 If a thread holds a lock and calls wait(), then it, somehow, releases the

lock while it’s blocked!
 Then, when it wakes up, it, somehow, re-acquires the lock

 Real-life Metaphor:
 Your family has one car, and the key’s on the kitchen counter whenever

the car is not in use
 You grab the key to go pick up your friend
 You then grab your phone and wait for your friend to text you their location
 In the meantime, no other family member can use the car!
 “grabbing your phone” should FORCE you to “put the keys back on the

counter”, the same way “waiting for a condition variable” forces you to
“release the lock”

Cond. Variables and Locks
 We face a conundrum

 If we put the lock() after the wait() we have a race condition
 If we put the lock() before the wait() we have a deadlock

 What we really want is the following behavior:
 If a thread holds a lock and calls wait(), then it, somehow, releases the lock

while it’s blocked!
 Then, when it wakes up, it, somehow, re-acquires the lock

 Real-life Metaphor:
 Your family has one car, and the key’s on the kitchen counter whenever the car

is not in use
 You grab the key to go pick up your friend and get into the car
 Then you check whether your friend has texted you their location, and they

haven’t yet….
 So you wait in the car, and in the meantime, no other family member can use

the car!
 “grabbing your phone” should FORCE you to “put the keys back on the counter”,

the same way “waiting for a condition variable” forces you to “release the lock”

Cond. Variables and Locks
 Luckily we’re not in real life but in computer life, so we can just

write the code to do what we want :)
 We modify the API as follows: wait(cond, lock)

 cond: what to “wait on”
 lock: what to release and re-acquire
 wait() can only be called if the lock is acquired

 Pseudo-code of wait():
void wait(cond_t c, lock_t m) {
 . . .
 unlock(m); // release the lock
 some_syscall(); // ask the OS to put me to sleep
 lock(m); // re-acquire the lock
 . . .
 return;
}

 No thread can block WHILE holding the lock

Wait/Signal

 A consumer thread calls lock() before checking the size,
and if it gets into the if, then wait() releases the lock and will
reacquires it whenever the thread gets scheduled again

// consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

Wait/Signal // consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

 A consumer thread calls lock() before checking the size,
and if it gets into the if, then wait() releases the lock and will
reacquires it whenever the thread gets scheduled again

 There is still something wrong...anybody sees it?
 Hint: A problem with two consumers...

 It’s subtle but very well-known

Wait/Signal // consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

 There could be a remove on an empty queue!!
 A consumer gets the lock, the queue is empty, the consumer releases the

lock and goes to sleep
 The producer puts an element in the queue and gets context-switched out

right before it calls signal()
 A second consumer shows up, sees the queue as non-empty, and calls

remove
 The producer resumes, and calls signal(), putting the 1st consumer back

into the ready queue
 The first consumer wakes up and calls remove() on empty queue!

How can we fix this?

 The problem is that the producer calls signal()
not immediately after putting an item in the
queue

 Therefore, the blocked consumer wakes up after
another consumer has had time to grab the item
that was “intended” for the blocked consumer

 So, perhaps we can put the call to signal() inside
the critical section???
 Even though It seemed natural to first unlock the lock,

and then call signal, since after all the first thing the
consumer will have to do after waking up is reacquire
the lock

// consumer
 …
 lock(mutex);
 if (queue.size == 0) {
 wait(cond, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 signal(cond);
 unlock(mutex);
 …

Moving signal()?

 Above we’ve moved the call to signal() before the call to unlock()
 But calling signal just puts the consumer back on the ready queue,

and the consumer doesn’t necessarily run right now
 In fact, another consumer that’s was on the ready queue will run first!
 So this does not fix anything

 In fact, it’s possible that calling unlock() and then signal() could be a
bit more efficient (shorter critical section)

So, how can we fix this?????

 It doesn’t matter where we call signal()
 The problem remains: as a consumer I might be

awakened because the queue is not empty, but
by the time I run on the CPU the queue could
have become empty!

 This is called a “spurious wake-up”
 Real-life metaphor: You’re in a coffee who and you

asked the barista to come wake you up when the
bathroom is free, but by the time you get to the
bathroom somebody has gotten in it in the meantime

 The way to avoid spurious wake-ups for
producer-consumer is to use a while loop!

A while loop!

 Solution: Use a while loop instead of an if statement
 If a consumer is awakened but the queue is in fact empty

(because another consumer has already consumed the last
element in the queue), it will loop, check again, and wait again

 Basically, don’t trust the “wake up you’re good to go” blindly,
always double check that you’re really good to go
 Because while you were sleeping, all kinds of stuff could

have happened

// consumer
 …
 lock(mutex);
 while (queue.size == 0) {
 wait(cond, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 …

// producer
 …
 lock(mutex);
 insert(queue, generate());
 unlock(mutex);
 signal(cond);
 …

Finally!!!
 So, now we have a clean implementation of the producer-

consumer with locks and condition variables
 The pattern in the previous program is a classic and can be

reused in many applications
 Always combine condition variables with locks
 Always do a while loop around a wait() (unless you really

know there is a single consumer)
 Note how difficult it is to reason about concurrency
 This is why we always very much hope that we can re-use

a known pattern, e.g., producer/consumer
 Getting creative with concurrency can be appealing, but

is often fraught with peril
 If you can make your program be producer-consumer-like,

do it

A Bounded Queue

 The typical producer-consumer model uses a
bounded queue: there cannot be more than N
elements in the queue
 Producers may wait because the queue is full
 Consumers may wait because the queue is

empty

 Let’s look at how one can write this program…

Wait/Signal

 // consumer
 …
 lock(mutex);
 while (queue.size == 0) {
 wait(cond_not_empty, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 signal(cond_not_full);
 …

 // producer
 …
 lock(mutex);
 while(queue.size >= N) {
 wait(cond_not_full, mutex);
 }
 insert(queue, generate());
 unlock(mutex);
 signal(cond_not_empty);
 …

queue_t queue;
lock_t mutex;
cond_t cond_not_empty, cond_not_full;

Wait/Signal

 // consumer
 …
 lock(mutex);
 while (queue.size == 0) {
 wait(cond_not_empty, mutex);
 }
 x = remove(queue);
 unlock(mutex);
 signal(cond_not_full);
 …

 // producer
 …
 lock(mutex);
 while(queue.size >= N) {
 wait(cond_not_full, mutex);
 }
 insert(queue, generate());
 unlock(mutex);
 signal(cond_not_empty);
 …

queue_t queue;
lock_t mutex;
cond_t cond_not_empty, cond_not_full;

 Note that picking good names for the locks and
the condition variable is key to program readability

A Barrier
 Say you want to have threads wait for each other at

some point in the code
 Once a thread first reaches some point in the code, then

it blocks until all the other threads reach that same point
 This is called a “barrier”
 How can we implement this with locks and condition

variables?
 One easy option: keep track of how many threads

have arrived at the barrier so far
 If I am not the last one, increment the count and block
 If I am the last one, unblock everybody

 Let’s try to come up with pseudo-code together
before we look at the solution…

Example: Barrier

void barrier() {
 lock(mutex);
 count++;
 if (count == num_threads) {
 broadcast(cond);
 } else {
 wait(cond, mutex);
 }
 unlock(mutex);
}

int count = 0;
lock_t mutex;
cond_t cond;

Conclusion
 At this point, we have everything we need to

write concurrent programs
 Locks for mutual exclusion

 Spin, blocking, hybrid
 Condition variables for thread synchronization and/

or communication without busy loops
 Next up: Doing condition variables in Java
 In the meantime, let’s look at Homework

Assignment #5 (individual, pencil-and-
paper)…

