Conditions

Variables In Java

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

"
Condition Variable in Objects?

® Remember that in Java every Object has inside it a
“hidden” lock?

m \Well, in Java every Object has inside it a “hidden”
condition variable as well!

® Technically we say that Java implements monitors
® A concept proposed in the 70s (popularized by Hoare)
® A monitor is an abstract data type in which

All methods are in mutual exclusion

There is a hidden condition variable

® The idea was to make concurrency easier (don’t have to
declare locks and condition variables, never forget to
unlock)

It's really more about software engineering than
anything else

" A
Java Condition Variables

® Each Java monitor encapsulates one condition
variable

m Operations on the condition variable are:

notify(); Il a.k.a. signal()
notifyAll(); // a.k.a. broadcast()
wait(); Il releases the lock, waits, and re-

acquires the lock
These are methods that EVERY object has
Always to be used inside a synchronized method
® Since condition variables and locks are intertwined,
as we saw in the previous set of lecture notes

m | et’'s look at a simple example...

"
Example

public class MyThread extends Thread {

public void run() {
while (true) {
synchronized(this) {
this.wait();
}
System.out.printin(“Awakened”);
}
}
}

MyThread thread = new
MyThread();
thread.start();

while (true) {
Thread.sleep(1000);
synchronized (thread) {
thread.notify();

}
}

"
Example

public class MyThread extends Thread {
MyThread thread = new

MyThread();

public void run
(01 thread.start();

while (true) {

synchronized(this) { while (true) {

this.wait();
) Thread.sleep(1000);
System.out.println “Awakened”); synchronized (thread) {
) thread.notify{
} }
}

}

same lock because
same Obiject

" JE
Example

public class MyThread extends Thread {
MyThread thread = new

MyThread();

public void run
0 { thread.start();

while (true) {

synchronized(this) { while (true) {

this.wait();
) Thread.sleep(1000);
System.aut.printin “Awakened”); synchronized (}hread) {
) thread.notify.
} }
} }
same lock because same cond because

same Object same Object

Example

public class MyThread extends Thread {

public void run() {
while (true) {
synchronized(this)
this.wait();
} * o
System.du, Erintln(“A\ﬁakened”);

}} 0.. Q‘
} ¢ .

MyThread thread = new
MyThread();
thread.start();

while (true) {
Thread.sleep(1000);
synchronized (this) {
this.notify();

" J—_—
Example: A barrier

® |n the previous set of lecture notes we saw
now to implement a barrier in pseudo-code

B Remember: it's about threads waiting for
each other until N threads have “reached”
(i.e., called) the barrier

m | et's develop a barrier live in Java...
Before we look at the solution on the next slide

" J——
Example: A barrier

public class Barrier {
private int maxNumThreads;
private int numCalls = 0;

public Barrier(int numThreads) {
this.maxNumThreads = numThreads;

}
public synchronized void call() {
numCalls++;
if (numCalls == maxNumThreads) {
this.notifyAll();
numCalls = O;
} else {
try {
this.wait();
} catch (InterruptedException ignore) { }
}
}

"
java.util.concurrent.CyclicBarrier

® Turns out, the barrier abstraction is so useful
that Java provides it in the
java.util.concurrent package

m |t's called CyclicBarrier

Cyclic because it can be re-used, like the one
iImplemented in the previous slide

® |t provides a few useful features
e.g., a way to call the barrier with a timeout

"
Flashback to the Blocking Lock!

m At the beginning of the previous set of lecture notes we
tried using a blocking lock for communication purposes

| gave some arguments to say it was conceptually a bad idea
(which you have to trust me on a bit)

And then we said “here are condition variables”

® But | also said that, strangely, the implementation of a
blocking lock really ressembles that of a condition
variables

m Just for kicks, let's implement, in Java, a blocking lock
using the (hidden) spinlock and a condition variable inside
a BlockingLock object

m |et's do it live (an implementation is on the Web site, likely
100% similar to what we're about to write)
It's basically a super-simple barrier!

" J
Abstraction but Less Flexibility

®m Each Java Object has one lock and one condition variable in it

® |n the previous set of lecture notes we have seen a Producer/
Consumer implementation that uses one lock and TWO
condition variables “associated” to the same lock

® Therefore, you simply cannot do this using only synchronized,
wait, and notify
® You have to go brute-force:

Using the same condition variable for all events
Always call notifyAll()

e.g., If a Producer puts an item in the buffer, it will wake up ALL
threads

® This is not very efficient (imagine waking up 1000 threads for
whom the event is irrelevant!)

The curse of high-level “easy” abstractions

" J
Abstraction: good or bad?

® Java tries to hide concurrency by using monitors

®m However, to truly understand how things work, many
think it's useful to actually think of locks and condition
variables underneath the abstractions

® And also, the previous slides shows that abstraction
can be unwieldy

m For locks, we have seen that
java.util.concurrent provides Lock classes

m |t also provides a method to create condition variables

B Because a condition variable must be associated to a
lock, this method is part of the Lock interface

B | et's see an example....

"
java.util.concurrent Conditions

Lock lock = new ReentrantLock();
Condition cond = lock.newCondition();

lock.lock(); lock.lock();

try { try {
cond.signal(); cond.await();

} finally { } finally {
lock.unlock(); lock.unlock();

} }

® Note that in all code fragments shown in these slides,
| do not show the try-catch for InterruptedException

" JE
Pausing/Resuming Java Threads

m |n the Java Thread module we talked about
deferred thread cancelation

How to stop a thread using a volatile boolean

B Now that we have condition variables we can
learn how to pause (and resume) a Java
Thread

m Just like Thread.stop(), Thread.pause() and
Thread.resume() have been deprecated for a
long time

® And so we need deferred thread pausing
® Do do this, we use a condition variable

" J
Pausing/Resuming Java Threads

®m Approach:
The thread has a volatile variable

The thread periodically checks whether the
variable is set to true

If isSuspended is true, the thread blocks by
calling wait()

The thread can be unsuspended by setting the
variable to false and calling notify()

m | et's see this in Java...
Using the built-in condition variable in a monitor

" S
Pausable Java Thread Example

public class PausableThread extends Thread ({
private volatile boolean isPaused = false;

public void pause () ({
this.isPaused = true;

}

public void unPause () { Thread t = new
this.isPaused = false; PausableThread () ;
this.notify () ; t.start();
} ...
t.pause() ;

public void run() { ...
while (true) { t.unPause() ;

while (isPaused) {
try {
this.wait();
} catch (InterruptedException e) { }

}
}
}
}

" S
Pausable Java Thread Example

public class PausableThread extends Thread ({
private volatile boolean isPaused = false;

public void pause () ({
this.isPaused = true;

}

public void unPause () {

this.isPaused = false; § Thjg code will not compile
this.notify () ; b . .
} i because notify() and wait()
public void zun() { ; need_to be called from _‘
while (true) { ¢ synchronized methods/blocks! §

while (isPaused) {

try {
this.wait();

} catch (InterruptedException e) { }

}

}
}
}

"
Pausable Java Thread Example

public class PausableThread extends Thread ({

private boolean isPaused = false; [And nOW, we Nno

public synchronized void pause() { |0nger need the

} this.isPaused = true; VOlatlle'

public synchronized void unPause() { To be 100% sure
this.isPaused = false; we make the

N pause() method

synchronized

public synchronized void checkPaused() ({

while (isPaused) { leely paranoid
try { '
this.wait() ; since the memory
} catch (InterruptedException e) { } fence instructions
} will be called by
}
unPause() and
public void run() { checkPaused()
while (true) {
oo See Locks module
P g “
, checkansedl) (“How to use Locks

} in Java”)
}

" JE
More complicated example

B Say a thread is doing, in an infinite loop:
print “hello”
sleep for 10 seconds

®m \We want to make this thread pausable

® The difficulty: we also want to pause the
sleep!

m |et's try to implement this live...
It could get a bit dicey...
| put an implementation on the course’s site

" A
Conclusion

m At this point, we know how to do the two fundamental
things for concurrency in Java:

Mutual exclusion with locks: synchronized
Communication with condition variables: wait/notify

® \We know to do this using Java monitors, or using
classes in java.util.concurrent

® \We know how to stop/pause/resume a Java Thread

m | et’s look at Homework Assignment #6...

