
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Conditions
Variables in Java

Condition Variable in Objects?
 Remember that in Java every Object has inside it a

“hidden” lock?
 Well, in Java every Object has inside it a “hidden”

condition variable as well!
 Technically we say that Java implements monitors
 A concept proposed in the 70s (popularized by Hoare)
 A monitor is an abstract data type in which

 All methods are in mutual exclusion
 There is a hidden condition variable

 The idea was to make concurrency easier (don’t have to
declare locks and condition variables, never forget to
unlock)

 It’s really more about software engineering than
anything else

Java Condition Variables
 Each Java monitor encapsulates one condition

variable

 Operations on the condition variable are:
 notify(); // a.k.a. signal()
 notifyAll(); // a.k.a. broadcast()
 wait(); // releases the lock, waits, and re-

acquires the lock
 These are methods that EVERY object has
 Always to be used inside a synchronized method

 Since condition variables and locks are intertwined,
as we saw in the previous set of lecture notes

 Let’s look at a simple example…

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

same lock because
same Object

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

same lock because
same Object

same cond because
same Object

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (this) {
 this.notify();
 }
}

HORRIBLE BUG
Different Object

Not the same “this”

Example: A barrier

 In the previous set of lecture notes we saw
how to implement a barrier in pseudo-code

 Remember: it’s about threads waiting for
each other until N threads have “reached”
(i.e., called) the barrier

 Let’s develop a barrier live in Java…
 Before we look at the solution on the next slide

Example: A barrier
 public class Barrier {
 private int maxNumThreads;
 private int numCalls = 0;

 public Barrier(int numThreads) {
 this.maxNumThreads = numThreads;
 }

 public synchronized void call() {
 numCalls++;
 if (numCalls == maxNumThreads) {
 this.notifyAll();
 numCalls = 0;
 } else {
 try {
 this.wait();
 } catch (InterruptedException ignore) { }
 }
 }
 }

java.util.concurrent.CyclicBarrier

 Turns out, the barrier abstraction is so useful
that Java provides it in the
java.util.concurrent package

 It’s called CyclicBarrier
 Cyclic because it can be re-used, like the one

implemented in the previous slide
 It provides a few useful features

 e.g., a way to call the barrier with a timeout

Flashback to the Blocking Lock!
 At the beginning of the previous set of lecture notes we

tried using a blocking lock for communication purposes
 I gave some arguments to say it was conceptually a bad idea

(which you have to trust me on a bit)
 And then we said “here are condition variables”

 But I also said that, strangely, the implementation of a
blocking lock really ressembles that of a condition
variables

 Just for kicks, let’s implement, in Java, a blocking lock
using the (hidden) spinlock and a condition variable inside
a BlockingLock object

 Let’s do it live (an implementation is on the Web site, likely
100% similar to what we’re about to write)

 It’s basically a super-simple barrier!

Abstraction but Less Flexibility
 Each Java Object has one lock and one condition variable in it
 In the previous set of lecture notes we have seen a Producer/

Consumer implementation that uses one lock and TWO
condition variables “associated” to the same lock

 Therefore, you simply cannot do this using only synchronized,
wait, and notify

 You have to go brute-force:
 Using the same condition variable for all events
 Always call notifyAll()
 e.g., If a Producer puts an item in the buffer, it will wake up ALL

threads
 This is not very efficient (imagine waking up 1000 threads for

whom the event is irrelevant!)
 The curse of high-level “easy” abstractions

Abstraction: good or bad?
 Java tries to hide concurrency by using monitors
 However, to truly understand how things work, many

think it’s useful to actually think of locks and condition
variables underneath the abstractions

 And also, the previous slides shows that abstraction
can be unwieldy

 For locks, we have seen that
java.util.concurrent provides Lock classes

 It also provides a method to create condition variables
 Because a condition variable must be associated to a

lock, this method is part of the Lock interface
 Let’s see an example….

java.util.concurrent Conditions
Lock lock = new ReentrantLock();
Condition cond = lock.newCondition();

…
lock.lock();
try {

cond.signal();
} finally {
 lock.unlock();
}
…

…
lock.lock();
try {

cond.await();
} finally {
 lock.unlock();
}
…

 Note that in all code fragments shown in these slides,
I do not show the try-catch for InterruptedException

Pausing/Resuming Java Threads

 In the Java Thread module we talked about
deferred thread cancelation
 How to stop a thread using a volatile boolean

 Now that we have condition variables we can
learn how to pause (and resume) a Java
Thread

 Just like Thread.stop(), Thread.pause() and
Thread.resume() have been deprecated for a
long time

 And so we need deferred thread pausing
 Do do this, we use a condition variable

Pausing/Resuming Java Threads

 Approach:
 The thread has a volatile variable
 The thread periodically checks whether the

variable is set to true
 If isSuspended is true, the thread blocks by

calling wait()
 The thread can be unsuspended by setting the

variable to false and calling notify()
 Let’s see this in Java…

 Using the built-in condition variable in a monitor

Pausable Java Thread Example
public class PausableThread extends Thread {
private volatile boolean isPaused = false;

public void pause() {
 this.isPaused = true;
}

public void unPause() {
 this.isPaused = false;
 this.notify();
}

public void run() {
 while(true) {
 . . .
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 }

 }
}

Thread t = new
 PausableThread();
t.start();
. . .
t.pause();
. . .
t.unPause();
. . .

public class PausableThread extends Thread {
private volatile boolean isPaused = false;

public void pause() {
 this.isPaused = true;
}

public void unPause() {
 this.isPaused = false;
 this.notify();
}

public void run() {
 while(true) {
 . . .
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 }

 }
}

Pausable Java Thread Example

Thread t = new
 pausableThread();
t.start();
. . .
t.pause();
. . .
t.unPause();
. . .

This code will not compile
because notify() and wait()

need to be called from
synchronized methods/blocks!

Pausable Java Thread Example
public class PausableThread extends Thread {

private boolean isPaused = false;

public synchronized void pause() {
 this.isPaused = true;
}

public synchronized void unPause() {
 this.isPaused = false;
 this.notify();
}

public synchronized void checkPaused() {
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }

 }

public void run() {
 while(true) {
 . . .
 checkPaused();
 }
 }
}

 And now, we no
longer need the
volatile!
 To be 100% sure

we make the
pause() method
synchronized

 Likely paranoid
since the memory
fence instructions
will be called by
unPause() and
checkPaused()

 See Locks module
(“How to use Locks
in Java”)

More complicated example

 Say a thread is doing, in an infinite loop:
 print “hello”
 sleep for 10 seconds

 We want to make this thread pausable
 The difficulty: we also want to pause the

sleep!

 Let’s try to implement this live…
 It could get a bit dicey…
 I put an implementation on the course’s site

Conclusion
 At this point, we know how to do the two fundamental

things for concurrency in Java:
 Mutual exclusion with locks: synchronized
 Communication with condition variables: wait/notify

 We know to do this using Java monitors, or using
classes in java.util.concurrent

 We know how to stop/pause/resume a Java Thread

 Let’s look at Homework Assignment #6…

