
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Conditions
Variables in Java

Condition Variable in Objects?
 Remember that in Java every Object has inside it a

“hidden” lock?
 Well, in Java every Object has inside it a “hidden”

condition variable as well!
 Technically we say that Java implements monitors
 A concept proposed in the 70s (popularized by Hoare)
 A monitor is an abstract data type in which

 All methods are in mutual exclusion
 There is a hidden condition variable

 The idea was to make concurrency easier (don’t have to
declare locks and condition variables, never forget to
unlock)

 It’s really more about software engineering than
anything else

Java Condition Variables
 Each Java monitor encapsulates one condition

variable

 Operations on the condition variable are:
 notify(); 	 // a.k.a. signal()
 notifyAll(); // a.k.a. broadcast()
 wait(); // releases the lock, waits, and re-

acquires the lock
 These are methods that EVERY object has
 Always to be used inside a synchronized method

 Since condition variables and locks are intertwined,
as we saw in the previous set of lecture notes

 Let’s look at a simple example…

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

same lock because
same Object

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (thread) {
 thread.notify();
 }
}

same lock because
same Object

same cond because
same Object

Example

public class MyThread extends Thread {

 public void run() {
 while (true) {
 synchronized(this) {
 this.wait();
 }
 System.out.println(“Awakened”);
 }
 }
}

. . .

MyThread thread = new
MyThread();
thread.start();

while (true) {
 Thread.sleep(1000);
 synchronized (this) {
 this.notify();
 }
}

HORRIBLE BUG
Different Object

Not the same “this”

Example: A barrier

 In the previous set of lecture notes we saw
how to implement a barrier in pseudo-code

 Remember: it’s about threads waiting for
each other until N threads have “reached”
(i.e., called) the barrier

 Let’s develop a barrier live in Java…
 Before we look at the solution on the next slide

Example: A barrier
 public class Barrier {
 private int maxNumThreads;
 private int numCalls = 0;

 public Barrier(int numThreads) {
 this.maxNumThreads = numThreads;
 }

 public synchronized void call() {
 numCalls++;
 if (numCalls == maxNumThreads) {
 this.notifyAll();
 numCalls = 0;
 } else {
 try {
 this.wait();
 } catch (InterruptedException ignore) { }
 }
 }
 }

java.util.concurrent.CyclicBarrier

 Turns out, the barrier abstraction is so useful
that Java provides it in the
java.util.concurrent package

 It’s called CyclicBarrier
 Cyclic because it can be re-used, like the one

implemented in the previous slide
 It provides a few useful features

 e.g., a way to call the barrier with a timeout

Flashback to the Blocking Lock!
 At the beginning of the previous set of lecture notes we

tried using a blocking lock for communication purposes
 I gave some arguments to say it was conceptually a bad idea

(which you have to trust me on a bit)
 And then we said “here are condition variables”

 But I also said that, strangely, the implementation of a
blocking lock really ressembles that of a condition
variables

 Just for kicks, let’s implement, in Java, a blocking lock
using the (hidden) spinlock and a condition variable inside
a BlockingLock object

 Let’s do it live (an implementation is on the Web site, likely
100% similar to what we’re about to write)

 It’s basically a super-simple barrier!

Abstraction but Less Flexibility
 Each Java Object has one lock and one condition variable in it
 In the previous set of lecture notes we have seen a Producer/

Consumer implementation that uses one lock and TWO
condition variables “associated” to the same lock

 Therefore, you simply cannot do this using only synchronized,
wait, and notify

 You have to go brute-force:
 Using the same condition variable for all events
 Always call notifyAll()
 e.g., If a Producer puts an item in the buffer, it will wake up ALL

threads
 This is not very efficient (imagine waking up 1000 threads for

whom the event is irrelevant!)
 The curse of high-level “easy” abstractions

Abstraction: good or bad?
 Java tries to hide concurrency by using monitors
 However, to truly understand how things work, many

think it’s useful to actually think of locks and condition
variables underneath the abstractions

 And also, the previous slides shows that abstraction
can be unwieldy

 For locks, we have seen that
java.util.concurrent provides Lock classes

 It also provides a method to create condition variables
 Because a condition variable must be associated to a

lock, this method is part of the Lock interface
 Let’s see an example….

java.util.concurrent Conditions
Lock lock = new ReentrantLock();
Condition cond = lock.newCondition();

…
lock.lock();
try {

cond.signal();
} finally {
 lock.unlock();
}
…

…
lock.lock();
try {

cond.await();
} finally {
 lock.unlock();
}
…

 Note that in all code fragments shown in these slides,
I do not show the try-catch for InterruptedException

Pausing/Resuming Java Threads

 In the Java Thread module we talked about
deferred thread cancelation
 How to stop a thread using a volatile boolean

 Now that we have condition variables we can
learn how to pause (and resume) a Java
Thread

 Just like Thread.stop(), Thread.pause() and
Thread.resume() have been deprecated for a
long time

 And so we need deferred thread pausing
 Do do this, we use a condition variable

Pausing/Resuming Java Threads

 Approach:
 The thread has a volatile variable
 The thread periodically checks whether the

variable is set to true
 If isSuspended is true, the thread blocks by

calling wait()
 The thread can be unsuspended by setting the

variable to false and calling notify()
 Let’s see this in Java…

 Using the built-in condition variable in a monitor

Pausable Java Thread Example
public class PausableThread extends Thread {
private volatile boolean isPaused = false;

public void pause() {
 this.isPaused = true;
}

public void unPause() {
 this.isPaused = false;
 this.notify();
}

public void run() {
 while(true) {
 . . .
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 }

 }
}

Thread t = new
	 PausableThread();
t.start();
. . .
t.pause();
. . .
t.unPause();
. . .

public class PausableThread extends Thread {
private volatile boolean isPaused = false;

public void pause() {
 this.isPaused = true;
}

public void unPause() {
 this.isPaused = false;
 this.notify();
}

public void run() {
 while(true) {
 . . .
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }
 }

 }
}

Pausable Java Thread Example

Thread t = new
	 pausableThread();
t.start();
. . .
t.pause();
. . .
t.unPause();
. . .

This code will not compile
because notify() and wait()

need to be called from
synchronized methods/blocks!

Pausable Java Thread Example
public class PausableThread extends Thread {

private boolean isPaused = false;

public synchronized void pause() {
 this.isPaused = true;
}

public synchronized void unPause() {
 this.isPaused = false;
 this.notify();
}

public synchronized void checkPaused() {
 while (isPaused) {
 try {
 this.wait();
 } catch (InterruptedException e) { }
 }

 }

public void run() {
 while(true) {
 . . .
 checkPaused();
 }
 }
}

 And now, we no
longer need the
volatile!
 To be 100% sure

we make the
pause() method
synchronized

 Likely paranoid
since the memory
fence instructions
will be called by
unPause() and
checkPaused()

 See Locks module
(“How to use Locks
in Java”)

More complicated example

 Say a thread is doing, in an infinite loop:
 print “hello”
 sleep for 10 seconds

 We want to make this thread pausable
 The difficulty: we also want to pause the

sleep!

 Let’s try to implement this live…
 It could get a bit dicey…
 I put an implementation on the course’s site

Conclusion
 At this point, we know how to do the two fundamental

things for concurrency in Java:
 Mutual exclusion with locks: synchronized
 Communication with condition variables: wait/notify

 We know to do this using Java monitors, or using
classes in java.util.concurrent

 We know how to stop/pause/resume a Java Thread

 Let’s look at Homework Assignment #6…

