

ICS432 **Concurrent and High-Performance Programming**

Henri Casanova (henric@hawaii.edu)

Task Parallelism

- In our image processing application (release 1.4), each processing thread works on a different image
- \blacksquare This was the only thing we could do really, since the BufferedImageOp.filter() method is not multi-threaded
- What we did is called task parallelism
	- \Box Each thread does a different thing, or the same thing but on different data objects (in our case, an image)
- \blacksquare But what if a user wants to use the app to process a single large image???
	- \Box Which could take a long time (e.g., oil filter)
- Our app uses a single core for the computation, meaning the user's other cores are "wasted"

Data Parallelism

- We need to have multiple threads work on the same image!
- **This is typically called data parallelism**
	- \Box Threads apply the same exact computation to different elements within a dataset
	- \Box e.g., different threads apply the same computation to the pixels of the same image
- The distinction between task and data parallelism is a bit blurry
	- \Box If we consider a set of images to be our datasets, then having each thread working on an image can be construed as data parallelism
	- \Box But typically, one uses the term data parallelism when each thread applies computation to small/scalar items (pixels, array elements, etc.)
- Both kinds of parallelism can occur within the same application

Stencil Applications

- Many useful applications can benefit from data parallelism
- A classical example is stencil applications
- An application operates on some "domain" (basically an array), and updates each element based on the value of neighboring elements
	- \Box Perhaps multiple times in sequence

■ Let's see this on a picture for a 2-D domain...

Blurring effect Blurring effect

- $d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1]) / 4$
- $d[i][i] = (d[i][i] + d[i-1][i] + d[i+1][i] + d[i][i+1]) / 4$

 $d[i][j] = (d[i][j] + d[i-1][j] + d[i][j-1] + d[i][j+1]) / 4$

- $d[i][j] = (d[i][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 4$
- $d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 5$

Stencil Application Basics

Create two domains

(i.e., two arrays in memory)

Store some initial values in D1

Compute values in D2 based on values in D1

D₂ holds values at iteration 1

D2

Compute values in D1 based on values in D2

D1 holds values at iteration 2

and so on...

Stencil Applications Galore

- Many useful computations are stencil applications
- Computational fluid dynamics, convolution filters for image processing, physics, deep learning, etc.

Multi-threaded Stencil Apps

- Because all element updates are independent of each other, a stencil application is easy to parallelize using multiple threads
- Split the domain into "slabs" and have each thread compute elements in on of these slabs

Synchronize all threads (barrier) before moving on to the next iteration

- There are advantages / drawbacks to different domain decomposition schemes
- Some of them may boost performance □ Due to "locality" (stay tuned)
- Some of them are more difficult to implement than others
	- □ You have to write code to figure out "If I am thread #i, am I in charge of element (x,y) ?"
		- Could be trivial discrete math (e.g., horizontal slabs)
		- Could be very complicated (e.g., gerrymandering)

SPMD: Single Program Multiple Data

Threads have an ID and based on their IDs they should know what to compute

 \Box This is all implemented by the programmer

■ For instance, if we have two threads work on an array of N elements, we could write the thread code as:

```
for (int i=0; i < N; i++) { 
  if (i \; 8 \; 2 == my id) {
     // Do the work for iteration i 
   } 
}
```
 This is called Single Program Multiple Data (SPMD): all threads run the same program but they take different execution paths in it based on their IDs

Simple Thread Synchronization

- **There is no need for critical section**
	- □ Because all elements can be computed independently, and no two threads ever update the same memory location
	- \Box All threads can just work on their piece of the domain without any lock, and wait for each other before proceeding to the next iteration (if any)
- This is good news for performance, since critical sections are parallelism killers, and thus performance killers

Concurrent vs. Parallel Programs

- Typically one draws the distinction between concurrent and parallel programs
- Concurrent program: We don't know what each thread will do ahead of time, but we know it will be correct because we implemented appropriate critical sections
- Parallel program: We know what each thread will do ahead of time, so we may be able to avoid using critical sections completely, which is better for performance
- We could implement a stencil application using concurrent computing
	- \Box e.g., using producer-consumer by which threads answer the "what element should I process next?" question by grabbing the element (i.e., it's coordinates) from a producer-consumer buffer
- But it is not a good idea performance-wise if we can avoid it

Load Balancing

- \blacksquare In all the previous example, we have assumed that all element computations are identical
	- \Box Each element of the domain is processed using the same number of arithmetic operations
- This is often the case, but not always
- **Let's look at a textbook example in which it** is not the case…

The Mandelbrot Set

■ You've all seen it:

 \blacksquare It's a textbook example of a stencil application in which not all elements are equal. Let's see why….

$$
\Box Z_0 = 0
$$

$$
Z_{n+1} = Z_n^2 + c
$$

- If the series converges, paint the pixel at point c black
- If the series diverges, paint the pixel at point c white
- **Determining convergence is typically more expensive than determining** divergence (for Mandelbrot)
- So a thread that has more black pixels to process has more work to do!

$$
Z_0 = 0
$$

$$
Z_{n+1} = Z_n^2 + c
$$

- If the series converges, paint the pixel at point c black
- If the series diverges, paint the pixel at point c white
- Determining convergence is typically more expensive than determining divergence (for Mandelbrot)
- So a thread that has more black pixels to process has more work to do!

$$
Z_0 = 0
$$

$$
Z_{n+1} = Z_n^2 + c
$$

- If the series converges, paint the pixel at point c black
- If the series diverges, paint the pixel at point c white
- Determining convergence is typically more expensive than determining divergence (for Mandelbrot)
- So a thread that has more black pixels to process has more work to do!

$$
Z_0 = 0
$$

$$
Z_{n+1} = Z_n^2 + c
$$

- If the series converges, paint the pixel at point c black
- If the series diverges, paint the pixel at point c white
- Determining convergence is typically more expensive than determining divergence (for Mandelbrot)
- So a thread that has more black pixels to process has more work to do!

Better Load Balancing

- Problem: how can we achieve good load balancing across the threads?
- Key idea:
	- Decompose the domain into many "small" pieces (many more than threads)
	- \Box Have threads compute in producer-consumer fashion

- \Box Some "pieces" are cheap, some are expensive
- \Box So if a thread grabs an expensive one, it won't come back for more work for a while
- \Box In the meantime other threads can compute many small pieces

As a Concurrent Program

- We can implement this as a concurrent (not technically "parallel") program
- We can just store the index of the next piece to be computed in a variable
	- \Box It's easy to have a total order of the pieces to compute (e.g., left to right, top to bottom)
- Then each time a thread is done with what it was doing (or at the very beginning), it atomically reads the index and adds one to it
	- \Box Say we have 4 threads, they will right away grab pieces 0, 1, 2, and 3. Then whichever thread is done first will grab piece 4, and so on…
- **This will be great for load-balancing, as we won't have an** "unlucky" thread that would get a lot of black pixels to compute
- It is basically a specialized producer-consumer scheme!

Load-Balancing and Overhead

- We now have a choice to make: how big/small should the pieces be?
- If we make tons of tiny pieces:
	- □ Great for load-balancing
	- \Box But high overhead (i.e., threads enter the critical section a lot)
- If we make a few large pieces:
	- Great for overhead
	- \Box Bad for load-balancing (i.e., one threads could be "unlucky" and finish well after the others)
- Depending on the use case, one should use differently sized pieces
	- □ But very small (i.e., one pixel) or very large (i.e., a quarter of the pixels) is likely always a bad idea

Let's put this in practice

- All the image transformation in our app are sequential and our image app does only task parallelism
- This is great, but not always sufficient □ Think of one large image with an expensive filter! ■ So let's add a new filter to our app and make
	- it data-parallel!

■ Let's look at Homework #9…

Quantifying Parallel Performance

- Achieving good parallel performance is not easy
- But we should have simple metrics to quantifying it
- **There are two key metrics: Parallel Speedup** and Parallel Efficiency
	- □ Speedup: the acceleration compared to a 1-core execution
	- □ Parallel Efficiency: how much bang (i.e., speedup) you get for your buck (i.e., cores)
- Let's define these precisely...

Parallel Speedup

- Let $T(n)$ be the execution time with n cores
- \blacksquare S(n), the parallel speedup achieved when running on n cores, is defined as:

$$
S(n) = \frac{T(1)}{T(n)}
$$

- Very simple metric that takes a value between 1 (no speedup!) and n (perfect, linear speedup)
- **Typically we experience sublinear speedup, i.e.,** $S(n) < n$ ■ e.g., we rarely go 10 times faster with 10 cores

Parallel Efficiency

- A high speedup is good, but we need to quantify how far it is from being ideal
- \blacksquare Here comes in Parallel Efficiency, $E(n)$, defined as:

 $E(n)$ = S(n) n

■ E(n) has value between 0 and 1 (often seen as a percentage)

- Example: If with 10 cores the speedup is 4, then $E(10) = 0.4$ (or 40%)
	- This is means I am "wasting" 60% of my cores
	- If I didn't, the speedup would be 10 and the efficiency would be 100%

In-Class Exercise #1

■ Consider a parallel program that runs in 1 hour on a single core of a computer. The program's execution on 6 cores has 80% parallel efficiency. What is the program's execution time when running on 6 cores?

In-Class Exercise #1 (Solution)

- Consider a parallel program that runs in 1 hour on a single core of a computer. The program's execution on 6 cores has 80% parallel efficiency. What is the program's execution time when running on 6 cores?
- \blacksquare E(6) = S(6) / 6 = 0.8
- \blacksquare Therefore, $S(6) = 4.8$
- Therefore, $T(1) / T(6) = 4.8$
- Since $T(1) = 1$ hour, $T(6) = 1/4.8$ hours (-0.20) hours, or 12.5 minutes)

In-Class Exercise #2

■ A parallel program has a speedup of 1.6 when running on 2 cores, and runs 10 minutes faster when running on 3 cores than when running on 2 cores. Give a formula for $T(1)$ as a function of $T(3)$

In-Class Exercise #2 (Solution)

- A parallel program has a speedup of 1.6 when running on 2 cores, and runs 10 minutes faster when running on 3 cores than when running on 2 cores. Give a formula for $T(1)$ as a function of $T(3)$
- \blacksquare T(1) / T(2) = 1.6
- \blacksquare T(3) = T(2) 10
- \blacksquare So T(3) = T(1)/1.6 10
- **meaning that** $T(1) = 1.6 * (T(3) + 10)$

Exposing Data Parallelism

- What we often need to do, and what you'll do in Homework #9, is to "expose" data parallelism
	- \Box i.e., identify which part of the code can be made data parallel
- In our homework assignment it's trivial because our image filter is very simple
- But it's not always the case that the entire code can be made data-parallel

 \Box And in fact, in our app, the I/O is not parallelized

- So often we are faced with situations in which we have to leave part of the code unparallelized
- \blacksquare The longer is spent in the non-parallelized part of the execution, the worse it is to parallel speedup and parallel efficiency

EduWrench Module

- You may have taken a course from me in the past in which we used simulation
- Based on those (I think, successful) experiences, I did received funding to create more simulation-driven pedagogic content
- All material is at [https://eduwrench.org](http://eduwrench.org)

 \Box Feel free to browse that site

■ For now, let's use it to learn our last key dataparallelism concept…

Data Parallelism and Amdahl's Law

Let's do the following:

- □ We all go to<http://eduwrench.org> right now
- \Box Sign in using our @hawaii.edu account
- □ Go to: MODULES::Multi-Core Computing and click on the Data Parallelism tab

■ Then:

- \Box I go through some of the intro material with you
- \Box You then use the simulation to answer three practice questions
- \Box I then go through the Amdahl's Law content

■ And Then:

- \Box At home, you review this content and go through the remaining content and do practice questions on your own
- □ You then do a short pencil and paper Homework Assignment

What about Sorting?

- In an Algorithms course you learn about sorting
- What about multi-threaded sorting?

Sorting an Array with Threads

- Consider an array of n elements to sort
- Let's say you have a machine with 2 cores
- One approach is to split the array in two among two threads
	- \Box Each sorting can be done in O(n log n)
	- \Box Then merging is in $O(n)$
	- \Box Therefore, if the array is large, on should get close to a speedup of 2 because the sorting (which is done in parallel) is the dominant operation
		- But we know by Amdahl law that for non-huge arrays we could really be hurt by the sequential merge
		- And a log n factor isn't a lot
- Note that we do not need any mutual exclusion here, because we're sorting disjoint pieces of the array
	- \Box This is typically called "parallel" computing rather than "concurrent" computing

Sorting with Threads

6 3 2 9 1 4 8 7 5 0

each worker thread "gets" its half of the array

6 3 2 9 1 4 8 7 5 0

each worker thread sorts its half in place

1 2 3 6 9 0 4 5 7 8

the master thread merges the array (perhaps in place)

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

What about using more threads?

- What about using more threads to exploit more processors/cores?
- \blacksquare One possibility: cut the array in T pieces, where T is the number of threads
- **Drawbacks:**
	- Merging becomes more complicated
	- □ And it has higher complexity

Using 4 threads

done

Any hope for parallel performance?

- Let n be the size of the array, and p the number of processors
	- Assume p divides n
- **The complexity of the merging is** approximately O(n log n), which is not good
- Amdahl's law tells us that even a small sequential part can be bad
- And in this case it may not even be that small at all
- So let's parallelize it!

Multi-threaded merging?

- One solution is to write a multi-threaded merge routine that does the merges in parallel
	- \Box takes as input A, n, and p.

 \square uses p threads

- This is not very elegant because
	- \Box One creates p threads to do the sorting
	- □ We wait until everything is sorted
	- \Box We terminate the p threads
	- \Box We create p new threads to do the merging
- A more elegant implementation is to do the partial sorting and partial merging all at the same time recursively

Recursive multi-threading

- Create a function that does the sorting of one array by
	- \Box creating two threads to do partial sorting
	- \Box doing the merging
- \blacksquare The threads doing the partial sorting call this function, and thus can create threads themselves

Implementations

- The course web site points to a Makefile and several implementations in C using Pthreads:
	- □ Sequential
	- □ Parallel sort and sequential merge
	- □ Parallel sort and parallel merge
	- □ Recursive parallel "sort and merge"
- Let's look at the code and run the Makefile….

Sorting Performance?

- More threads is good
	- \Box The more threads the better we can use multiple cores
- More threads is bad:
	- \Box The more threads the more merging operations
		- But merging happens hopefully concurrently
	- \Box The more threads the more "thread overhead"
- What about Load Balancing?
	- \Box It is possible that the left branch of the tree, i.e., the left half of the array is more difficult to sort than the right half
	- \Box But since many threads are created recursively, as long as we have P threads we can keep a P-core machine busy

 \Box Therefore more threads is good:

- The number of threads is controlled by the depth of the tree, and in our case by the "base case size"
- There is probably a best "base case size", which should be determined experimentally

Parallel Sorting is not Easy

- As we know, a common performance bottleneck is the memory
- \blacksquare The more computation the better, i.e., the higher the computational complexity the better
- **Parallelizing an O(n) computation with O(n) memory** accesses can only yield minor benefits

 \Box Unless the constant hidden in the O is large

- **Parallelizing a** $O(n^5)$ **computation should be** "easier", in the sense that there should be more opportunity to utilize the core's computing power without being killed by the memory bottleneck
- **Efficient parallel sorting is actually a well recognized** difficult problem with a large literature

Conclusion

- Data parallelism can be applied to many applications, and in particular stencil applications
- Achieving good data-parallelism performance on multi-core machines is not alway easy
	- □ e.g., tension between overhead and load-balancing
- GPUs are really good at data parallelism
- We already looked at Homework #9 ■ Let's look at Homework #10…