
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Data Parallelism

Task Parallelism
 In our image processing application (release 1.4),

each processing thread works on a different image
 This was the only thing we could do really, since the

BufferedImageOp.filter() method is not multi-threaded
 What we did is called task parallelism

 Each thread does a different thing, or the same thing but
on different data objects (in our case, an image)

 But what if a user wants to use the app to process a
single large image???
 Which could take a long time (e.g., oil filter)

 Our app uses a single core for the computation,
meaning the user’s other cores are “wasted”

Data Parallelism
 We need to have multiple threads work on the same image!
 This is typically called data parallelism

 Threads apply the same exact computation to different elements
within a dataset

 e.g., different threads apply the same computation to the pixels of
the same image

 The distinction between task and data parallelism is a bit
blurry

 If we consider a set of images to be our datasets, then having each
thread working on an image can be construed as data parallelism

 But typically, one uses the term data parallelism when each thread
applies computation to small/scalar items (pixels, array elements,
etc.)

 Both kinds of parallelism can occur within the same
application

Stencil Applications

 Many useful applications can benefit from
data parallelism

 A classical example is stencil applications
 An application operates on some “domain”

(basically an array), and updates each
element based on the value of neighboring
elements
 Perhaps multiple times in sequence

 Let’s see this on a picture for a 2-D domain…

Stencil Application Basics
2-D domain Example stencil shapes

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 5

d[i][j] = (d[i][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i][j-1] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1]) / 4

B
lu

rr
in

g
ef

fe
ct

Stencil Application Basics

D1

D2

Create two domains

(i.e., two arrays in
memory)

Stencil Application Basics

D1

D2

Store some initial
values in D1

Stencil Application Basics

D1

D2

Compute values
in D2 based on
values in D1

D2 holds values
at iteration 1

Stencil Application Basics

D1

D2

Compute values
in D1 based on
values in D2

D1 holds values
at iteration 2

and so on...

Stencil Applications Galore
 Many useful computations are stencil applications
 Computational fluid dynamics, convolution filters

for image processing, physics, deep learning, etc.

Multi-threaded Stencil Apps
 Because all element updates are independent of each

other, a stencil application is easy to parallelize using
multiple threads

 Split the domain into “slabs” and have each thread
compute elements in on of these slabs

 Synchronize all threads (barrier) before moving on to the next iteration

thread
#0

thread
#1

thread
#2

thread
#3

 4 cores
 24x14 domain
 each thread

processes a
6x14 slab

Domain Decomposition
 There are many options for “domain decomposition”,

i.e., dividing the work among threads

14 is not divisible by
4, so load balance is
not perfect!

Domain Decomposition
 There are many options for “domain decomposition”,

i.e., dividing the work among threads

Domain Decomposition
 There are many options for “domain decomposition”,

i.e., dividing the work among threads

Doesn't have
to be “regular”

Domain Decomposition
 There are many options for “domain decomposition”,

i.e., dividing the work among threads

or even
“contiguous”

Thread #0

Domain Decomposition
 There are many options for “domain decomposition”,

i.e., dividing the work among threads

or either!Thread #0

Domain Decomposition

 There are advantages / drawbacks to
different domain decomposition schemes

 Some of them may boost performance
 Due to “locality” (stay tuned)

 Some of them are more difficult to implement
than others
 You have to write code to figure out “If I am

thread #i, am I in charge of element (x,y)?”
 Could be trivial discrete math (e.g., horizontal slabs)
 Could be very complicated (e.g., gerrymandering)

SPMD: Single Program Multiple Data

 Threads have an ID and based on their IDs they should
know what to compute

 This is all implemented by the programmer
 For instance, if we have two threads work on an array of

N elements, we could write the thread code as:
for (int i=0; i < N; i++) {

 if (i % 2 == my_id) {

 // Do the work for iteration i

 }

}

 This is called Single Program Multiple Data (SPMD):
all threads run the same program but they take
different execution paths in it based on their IDs

Simple Thread Synchronization

 There is no need for critical section
 Because all elements can be computed

independently, and no two threads ever update
the same memory location

 All threads can just work on their piece of the
domain without any lock, and wait for each other
before proceeding to the next iteration (if any)

 This is good news for performance, since
critical sections are parallelism killers, and
thus performance killers

Concurrent vs. Parallel Programs

 Typically one draws the distinction between concurrent and
parallel programs

 Concurrent program: We don’t know what each thread will
do ahead of time, but we know it will be correct because we
implemented appropriate critical sections

 Parallel program: We know what each thread will do ahead
of time, so we may be able to avoid using critical sections
completely, which is better for performance

 We could implement a stencil application using concurrent
computing

 e.g., using producer-consumer by which threads answer the
“what element should I process next?” question by grabbing the
element (i.e., it’s coordinates) from a producer-consumer buffer

 But it is not a good idea performance-wise if we can avoid it

Load Balancing
 In all the previous example, we have

assumed that all element computations
are identical
 Each element of the domain is processed

using the same number of arithmetic
operations

 This is often the case, but not always
 Let’s look at a textbook example in which it

is not the case…

 You’ve all seen it:

 It’s a textbook example of a stencil
application in which not all elements are
equal. Let’s see why….

The Mandelbrot Set

Mandelbrot Set Definition
 For each complex number c, define the series

 Z0 = 0
 Zn+1= Zn

2 + c
 If the series converges, paint the pixel at point c black
 If the series diverges, paint the pixel at point c white
 Determining convergence is typically more expensive than determining

divergence (for Mandelbrot)
 So a thread that has more black pixels to process has more work to do!

Mandelbrot Set Definition
 For each complex number c, define the series

 Z0 = 0
 Zn+1= Zn

2 + c
 If the series converges, paint the pixel at point c black
 If the series diverges, paint the pixel at point c white
 Determining convergence is typically more expensive than determining

divergence (for Mandelbrot)
 So a thread that has more black pixels to process has more work to do!

very little work
a lot of work

Mandelbrot Set Definition
 For each complex number c, define the series

 Z0 = 0
 Zn+1= Zn

2 + c
 If the series converges, paint the pixel at point c black
 If the series diverges, paint the pixel at point c white
 Determining convergence is typically more expensive than determining

divergence (for Mandelbrot)
 So a thread that has more black pixels to process has more work to do!

very little work
a lot of work

Mandelbrot Set Definition
 For each complex number c, define the series

 Z0 = 0
 Zn+1= Zn

2 + c
 If the series converges, paint the pixel at point c black
 If the series diverges, paint the pixel at point c white
 Determining convergence is typically more expensive than determining

divergence (for Mandelbrot)
 So a thread that has more black pixels to process has more work to do!

very little work
a lot of work

Better Load Balancing
 Problem: how can we achieve good load balancing

across the threads?
 Key idea:

 Decompose the domain into many “small” pieces (many more
than threads)

 Have threads compute in producer-consumer fashion

 Some “pieces” are cheap, some
are expensive

 So if a thread grabs an expensive
one, it won’t come back for more
work for a while

 In the meantime other threads can
compute many small pieces

As a Concurrent Program
 We can implement this as a concurrent (not technically

“parallel”) program
 We can just store the index of the next piece to be computed

in a variable
 It’s easy to have a total order of the pieces to compute (e.g., left to

right, top to bottom)
 Then each time a thread is done with what it was doing (or at

the very beginning), it atomically reads the index and adds
one to it

 Say we have 4 threads, they will right away grab pieces 0, 1, 2, and
3. Then whichever thread is done first will grab piece 4, and so on…

 This will be great for load-balancing, as we won’t have an
“unlucky” thread that would get a lot of black pixels to compute

 It is basically a specialized producer-consumer scheme!

Load-Balancing and Overhead
 We now have a choice to make: how big/small should

the pieces be?
 If we make tons of tiny pieces:

 Great for load-balancing
 But high overhead (i.e., threads enter the critical section a lot)

 If we make a few large pieces:
 Great for overhead
 Bad for load-balancing (i.e., one threads could be “unlucky”

and finish well after the others)
 Depending on the use case, one should use differently

sized pieces
 But very small (i.e., one pixel) or very large (i.e., a quarter of

the pixels) is likely always a bad idea

Let’s put this in practice

 All the image transformation in our app are
sequential and our image app does only task
parallelism

 This is great, but not always sufficient
 Think of one large image with an expensive filter!

 So let’s add a new filter to our app and make
it data-parallel!

 Let’s look at Homework #9…

Quantifying Parallel Performance

 Achieving good parallel performance is not
easy

 But we should have simple metrics to
quantifying it

 There are two key metrics: Parallel Speedup
and Parallel Efficiency
 Speedup: the acceleration compared to a 1-core

execution
 Parallel Efficiency: how much bang (i.e.,

speedup) you get for your buck (i.e., cores)
 Let’s define these precisely…

Parallel Speedup
 Let T(n) be the execution time with n cores
 S(n), the parallel speedup achieved when running

on n cores, is defined as:

S(n) =
T(1)

T(n)

 Very simple metric that takes a value between 1 (no
speedup!) and n (perfect, linear speedup)

 Typically we experience sublinear speedup, i.e., S(n) < n
 e.g., we rarely go 10 times faster with 10 cores

Parallel Efficiency
 A high speedup is good, but we need to quantify

how far it is from being ideal
 Here comes in Parallel Efficiency, E(n), defined as:

E(n) =
S(n)

n
 E(n) has value between 0 and 1 (often seen as a percentage)
 Example: If with 10 cores the speedup is 4, then E(10) = 0.4

(or 40%)
 This is means I am “wasting” 60% of my cores
 If I didn’t, the speedup would be 10 and the efficiency

would be 100%

In-Class Exercise #1

 Consider a parallel program that runs in 1
hour on a single core of a computer. The
program’s execution on 6 cores has 80%
parallel efficiency. What is the program’s
execution time when running on 6 cores?

In-Class Exercise #1 (Solution)
 Consider a parallel program that runs in 1 hour on a

single core of a computer. The program’s execution on
6 cores has 80% parallel efficiency. What is the
program’s execution time when running on 6 cores?

 E(6) = S(6) / 6 = 0.8
 Therefore, S(6) = 4.8
 Therefore, T(1) / T(6) = 4.8
 Since T(1) = 1 hour, T(6) = 1/4.8 hours (~0.20

hours, or 12.5 minutes)

In-Class Exercise #2

 A parallel program has a speedup of 1.6
when running on 2 cores, and runs 10
minutes faster when running on 3 cores than
when running on 2 cores. Give a formula for
T(1) as a function of T(3)

In-Class Exercise #2 (Solution)
 A parallel program has a speedup of 1.6 when

running on 2 cores, and runs 10 minutes faster
when running on 3 cores than when running on 2
cores. Give a formula for T(1) as a function of T(3)

 T(1) / T(2) = 1.6
 T(3) = T(2) - 10
 So T(3) = T(1)/1.6 - 10
 meaning that T(1) = 1.6 * (T(3) + 10)

Exposing Data Parallelism
 What we often need to do, and what you’ll do in

Homework #9, is to “expose” data parallelism
 i.e., identify which part of the code can be made data parallel

 In our homework assignment it’s trivial because our
image filter is very simple

 But it’s not always the case that the entire code can be
made data-parallel

 And in fact, in our app, the I/O is not parallelized
 So often we are faced with situations in which we have

to leave part of the code unparallelized
 The longer is spent in the non-parallelized part of the

execution, the worse it is to parallel speedup and
parallel efficiency

EduWrench Module

 You may have taken a course from me in the
past in which we used simulation

 Based on those (I think, successful)
experiences, I did received funding to create
more simulation-driven pedagogic content

 All material is at https://eduwrench.org
 Feel free to browse that site

 For now, let’s use it to learn our last key data-
parallelism concept…

http://eduwrench.org

Data Parallelism and Amdahl’s Law

 Let’s do the following:
 We all go to http://eduwrench.org right now
 Sign in using our @hawaii.edu account
 Go to: MODULES::Multi-Core Computing and click on the Data

Parallelism tab
 Then:

 I go through some of the intro material with you
 You then use the simulation to answer three practice questions
 I then go through the Amdahl’s Law content

 And Then:
 At home, you review this content and go through the remaining

content and do practice questions on your own
 You then do a short pencil and paper Homework Assignment

http://eduwrench.org

What about Sorting?

 In an Algorithms course you learn about
sorting

 What about multi-threaded sorting?

Sorting an Array with Threads
 Consider an array of n elements to sort
 Let’s say you have a machine with 2 cores
 One approach is to split the array in two among two

threads
 Each sorting can be done in O(n log n)
 Then merging is in O(n)
 Therefore, if the array is large, on should get close to a

speedup of 2 because the sorting (which is done in
parallel) is the dominant operation

 But we know by Amdahl law that for non-huge arrays we
could really be hurt by the sequential merge

 And a log n factor isn’t a lot
 Note that we do not need any mutual exclusion here, because

we’re sorting disjoint pieces of the array
 This is typically called “parallel” computing rather than

“concurrent” computing

6 3 2 9 1 4 8 7 5 0

Sorting with Threads
6 3 2 9 1 4 8 7 5 0

1 2 3 6 9 0 4 5 7 8

each worker thread “gets” its half of the array

each worker thread sorts its half in place

the master thread merges the array (perhaps in place)

0 1 2 3 4 5 6 7 8 9

What about using more threads?

 What about using more threads to exploit
more processors/cores?

 One possibility: cut the array in T pieces,
where T is the number of threads

 Drawbacks:
 Merging becomes more complicated
 And it has higher complexity

Using 4 threads

each worker thread sorts its part of the array in place

master thread merges the first and second piece

master thread merges the third and fourth piece

master thread merges the first and second piece

done

Any hope for parallel performance?

 Let n be the size of the array, and p the
number of processors
 Assume p divides n

 The complexity of the merging is
approximately O(n log n), which is not
good

 Amdahl’s law tells us that even a small
sequential part can be bad

 And in this case it may not even be that
small at all

 So let’s parallelize it!

Multi-threaded merging?
 One solution is to write a multi-threaded merge

routine that does the merges in parallel
 takes as input A, n, and p.
 uses p threads

 This is not very elegant because
 One creates p threads to do the sorting
 We wait until everything is sorted
 We terminate the p threads
 We create p new threads to do the merging

 A more elegant implementation is to do the partial
sorting and partial merging all at the same time
recursively

Recursive multi-threading
 Create a function that does the sorting of one

array by
 creating two threads to do partial sorting
 doing the merging

 The threads doing the partial sorting call this
function, and thus can create threads
themselves

1

32

5 6 74

a binary tree of
threads!!

Implementations

 The course web site points to a Makefile and
several implementations in C using Pthreads:
 Sequential
 Parallel sort and sequential merge
 Parallel sort and parallel merge
 Recursive parallel “sort and merge”

 Let’s look at the code and run the Makefile….

Sorting Performance?
 More threads is good

 The more threads the better we can use multiple cores
 More threads is bad:

 The more threads the more merging operations
 But merging happens hopefully concurrently

 The more threads the more “thread overhead”
 What about Load Balancing?

 It is possible that the left branch of the tree, i.e., the left half of
the array is more difficult to sort than the right half

 But since many threads are created recursively, as long as we
have P threads we can keep a P-core machine busy

 Therefore more threads is good:
 The number of threads is controlled by the depth of the tree,

and in our case by the “base case size”
 There is probably a best “base case size”, which should be

determined experimentally

Parallel Sorting is not Easy
 As we know, a common performance bottleneck is

the memory
 The more computation the better, i.e., the higher the

computational complexity the better
 Parallelizing an O(n) computation with O(n) memory

accesses can only yield minor benefits
 Unless the constant hidden in the O is large

 Parallelizing a O(n5) computation should be
“easier”, in the sense that there should be more
opportunity to utilize the core’s computing power
without being killed by the memory bottleneck

 Efficient parallel sorting is actually a well recognized
difficult problem with a large literature

Conclusion

 Data parallelism can be applied to many
applications, and in particular stencil
applications

 Achieving good data-parallelism performance
on multi-core machines is not alway easy
 e.g., tension between overhead and load-balancing

 GPUs are really good at data parallelism

 We already looked at Homework #9
 Let’s look at Homework #10…

