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Task Parallelism
 In our image processing  application (release 1.4), 

each processing thread works on a different image 
 This was the only thing we could do really, since the 

BufferedImageOp.filter() method is not multi-threaded 
 What we did is called task parallelism 

 Each thread does a different thing, or the same thing but 
on different data objects (in our case, an image) 

 But what if a user wants to use the app to process a 
single large image??? 
 Which could take a long time (e.g., oil filter) 

 Our app uses a single core for the computation, 
meaning the user’s other cores are “wasted”



Data Parallelism
 We need to have multiple threads work on the same image! 
 This is typically called data parallelism 

 Threads apply the same exact computation to different elements 
within a dataset 

 e.g., different threads apply the same computation to the pixels of 
the same image  

 The distinction between task and data parallelism is a bit 
blurry 

 If we consider a set of images to be our datasets, then having each 
thread working on an image can be construed as data parallelism 

 But typically, one uses the term data parallelism when each thread 
applies computation to small/scalar items (pixels, array elements, 
etc.) 

 Both kinds of parallelism can occur within the same 
application



Stencil Applications

 Many useful applications can benefit from 
data parallelism 

 A classical example is stencil applications 
 An application operates on some “domain” 

(basically an array), and updates each 
element based on the value of neighboring 
elements 
 Perhaps multiple times in sequence 

 Let’s see this on a picture for a 2-D domain…



Stencil Application Basics
2-D domain Example stencil shapes

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 5

d[i][j] = (d[i][j] + d[i+1][j] + d[i][j-1] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i][j-1] + d[i][j+1]) / 4

d[i][j] = (d[i][j] + d[i-1][j] + d[i+1][j] + d[i][j-1] ) / 4
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Stencil Application Basics

D1

D2

Create two domains 

(i.e., two arrays in 
memory)



Stencil Application Basics

D1

D2

Store some initial 
values in D1



Stencil Application Basics

D1

D2

Compute values 
in D2 based on 
values in D1 

D2 holds values 
at iteration 1



Stencil Application Basics

D1

D2

Compute values 
in D1 based on 
values in D2 

D1 holds values 
at iteration 2 

and so on...



Stencil Applications Galore
 Many useful computations are stencil applications 
 Computational fluid dynamics, convolution filters 

for image processing, physics, deep learning, etc.



Multi-threaded Stencil Apps
 Because all element updates are independent of each 

other, a stencil application is easy to parallelize using 
multiple threads 

 Split the domain into “slabs” and have each thread 
compute elements in on of these slabs

 Synchronize all threads (barrier) before moving on to the next iteration

thread 
#0

thread 
#1

thread 
#2

thread 
#3

 4 cores 
 24x14 domain 
 each thread 

processes a 
6x14 slab



Domain Decomposition
 There are many options for “domain decomposition”, 

i.e., dividing the work among threads

14 is not divisible by 
4, so load balance is 
not perfect!
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Domain Decomposition
 There are many options for “domain decomposition”, 

i.e., dividing the work among threads

Doesn't have 
to be “regular”



Domain Decomposition
 There are many options for “domain decomposition”, 

i.e., dividing the work among threads

or even 
“contiguous”

Thread  #0



Domain Decomposition
 There are many options for “domain decomposition”, 

i.e., dividing the work among threads

or either!Thread  #0



Domain Decomposition

 There are advantages / drawbacks to 
different domain decomposition schemes 

 Some of them may boost performance 
 Due to “locality” (stay tuned) 

 Some of them are more difficult to implement 
than others 
 You have to write code to figure out “If I am 

thread #i, am I in charge of element (x,y)?” 
 Could be trivial discrete math (e.g., horizontal slabs) 
 Could be very complicated (e.g., gerrymandering)



SPMD: Single Program Multiple Data

 Threads have an ID and based on their IDs they should 
know what to compute 

 This is all implemented by the programmer 
 For instance, if we have two threads work on an array of 

N elements, we could write the thread code as:
for (int i=0; i < N; i++) { 

  if  (i % 2 == my_id) { 

    // Do the work for iteration i 

  } 

}

 This is called Single Program Multiple Data (SPMD): 
all threads run the same program but they take 
different execution paths in it based on their IDs



Simple Thread Synchronization

 There is no need for critical section 
 Because all elements can be computed 

independently, and no two threads ever update 
the same memory location 

 All threads can just work on their piece of the 
domain without any lock, and wait for each other 
before proceeding to the next iteration (if any) 

 This is good news for performance, since 
critical sections are parallelism killers, and 
thus performance killers



Concurrent vs. Parallel Programs

 Typically one draws the distinction between concurrent and 
parallel programs 

 Concurrent program: We don’t know what each thread will 
do ahead of time, but we know it will be correct because we 
implemented appropriate critical sections 

 Parallel program: We know what each thread will do ahead 
of time, so we may be able to avoid using critical sections 
completely, which is better for performance 

 We could implement a stencil application using concurrent 
computing 

 e.g., using producer-consumer by which threads answer the 
“what element should I process next?” question by grabbing the 
element (i.e., it’s coordinates) from a producer-consumer buffer 

 But it is not a good idea performance-wise if we can avoid it



Load Balancing
 In all the previous example, we have 

assumed that all element computations 
are identical 
 Each element of the domain is processed 

using the same number of arithmetic 
operations 

 This is often the case, but not always 
 Let’s look at a textbook example in which it 

is not the case…



 You’ve all seen it:

 It’s a textbook example of a stencil 
application in which not all elements are 
equal. Let’s see why….

The Mandelbrot Set



Mandelbrot Set Definition
 For each complex number c, define the series 

 Z0 = 0 
 Zn+1= Zn

2 + c 
 If the series converges, paint the pixel at point c black 
 If the series diverges, paint the pixel at point c white 
 Determining convergence is typically more expensive than determining 

divergence (for Mandelbrot) 
 So a thread that has more black pixels to process has more work to do!
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Better Load Balancing
 Problem: how can we achieve good load balancing 

across the threads? 
 Key idea: 

 Decompose the domain into many “small” pieces (many more 
than threads) 

 Have threads compute in producer-consumer fashion

 Some “pieces” are cheap, some 
are expensive 

 So if a thread grabs an expensive 
one, it won’t come back for more 
work for a while 

 In the meantime other threads can 
compute many small pieces



As a Concurrent Program
 We can implement this as a concurrent (not technically 

“parallel”) program 
 We can just store the index of the next piece to be computed 

in a variable 
 It’s easy to have a total order of the pieces to compute (e.g., left to 

right, top to bottom) 
 Then each time a thread is done with what it was doing (or at 

the very beginning), it atomically reads the index and adds 
one to it 

 Say we have 4 threads, they will right away grab pieces 0, 1, 2, and 
3. Then whichever thread is done first will grab piece 4, and so on… 

 This will be great for load-balancing, as we won’t have an 
“unlucky” thread that would get a lot of black pixels to compute 

 It is basically a specialized producer-consumer scheme!



Load-Balancing and Overhead
 We now have a choice to make: how big/small should 

the pieces be? 
 If we make tons of tiny pieces: 

 Great for load-balancing 
 But high overhead (i.e., threads enter the critical section a lot) 

 If we make a few large pieces: 
 Great for overhead 
 Bad for load-balancing (i.e., one threads could be “unlucky” 

and finish well after the others) 
 Depending on the use case, one should use differently  

sized pieces 
 But very small (i.e., one pixel) or very large (i.e., a quarter of 

the pixels) is likely always a bad idea



Let’s put this in practice

 All the image transformation in our app are 
sequential and our image app does only task 
parallelism 

 This is great, but not always sufficient 
 Think of one large image with an expensive filter! 

 So let’s add a new filter to our app and make 
it data-parallel! 

 Let’s look at Homework #9…



Quantifying Parallel Performance

 Achieving good parallel performance is not 
easy 

 But we should have simple metrics to 
quantifying it 

 There are two key metrics: Parallel Speedup 
and Parallel Efficiency 
 Speedup: the acceleration compared to a 1-core 

execution 
 Parallel Efficiency: how much bang (i.e., 

speedup) you get for your buck (i.e., cores) 
 Let’s define these precisely…



Parallel Speedup
 Let T(n) be the execution time with n cores 
 S(n), the parallel speedup achieved when running 

on n cores, is defined as:

S(n) = 
T(1)

T(n)

 Very simple metric that takes a value between 1 (no 
speedup!) and n (perfect, linear speedup) 

 Typically we experience sublinear speedup, i.e., S(n) < n 
 e.g., we rarely go 10 times faster with 10 cores



Parallel Efficiency
 A high speedup is good, but we need to quantify 

how far it is from being ideal 
 Here comes in Parallel Efficiency, E(n), defined as:

E(n) = 
S(n)

n
 E(n) has value between 0 and 1 (often seen as a percentage) 
 Example: If with 10 cores the speedup is 4, then E(10) = 0.4 

(or 40%) 
 This is means I am “wasting” 60% of my cores 
 If I didn’t, the speedup would be 10 and the efficiency 

would be 100%



In-Class Exercise #1

 Consider a parallel program that runs in 1 
hour on a single core of a computer. The 
program’s execution on 6 cores has 80% 
parallel efficiency. What is the program’s 
execution time when running on 6 cores?



In-Class Exercise #1 (Solution)
 Consider a parallel program that runs in 1 hour on a 

single core of a computer. The program’s execution on 
6 cores has 80% parallel efficiency. What is the 
program’s execution time when running on 6 cores? 

 E(6) = S(6) / 6 = 0.8 
 Therefore, S(6) = 4.8 
 Therefore, T(1) / T(6) = 4.8 
 Since T(1) = 1 hour, T(6) = 1/4.8 hours (~0.20 

hours, or 12.5 minutes)



In-Class Exercise #2

 A parallel program has a speedup of 1.6 
when running on 2 cores, and runs 10 
minutes faster when running on 3 cores than 
when running on 2 cores. Give a formula for 
T(1) as a function of T(3)



In-Class Exercise #2 (Solution)
 A parallel program has a speedup of 1.6 when 

running on 2 cores, and runs 10 minutes faster 
when running on 3 cores than when running on 2 
cores. Give a formula for T(1) as a function of T(3) 

 T(1) / T(2) = 1.6 
 T(3) = T(2) - 10 
 So T(3) = T(1)/1.6 - 10 
 meaning that T(1) = 1.6 * (T(3) + 10)



Exposing Data Parallelism
 What we often need to do, and what you’ll do in 

Homework #9, is to “expose” data parallelism 
 i.e., identify which part of the code can be made data parallel 

 In our homework assignment it’s trivial because our 
image filter is very simple 

 But it’s not always the case that the entire code can be 
made data-parallel 

 And in fact, in our app, the I/O is not parallelized 
 So often we are faced with situations in which we have 

to leave part of the code unparallelized 
 The longer is spent in the non-parallelized part of the 

execution, the worse it is to parallel speedup and 
parallel efficiency



EduWrench Module

 You may have taken a course from me in the 
past in which we used simulation 

 Based on those (I think, successful) 
experiences, I did received funding to create 
more simulation-driven pedagogic content 

 All material is at https://eduwrench.org 
 Feel free to browse that site 

 For now, let’s use it to learn our last key data-
parallelism concept…

http://eduwrench.org


Data Parallelism and Amdahl’s Law

 Let’s do the following: 
 We all go to http://eduwrench.org right now 
 Sign in using our @hawaii.edu account 
 Go to: MODULES::Multi-Core Computing and click on the Data 

Parallelism tab 
 Then: 

 I go through some of the intro material with you 
 You then use the simulation to answer three practice questions 
 I then go through the Amdahl’s Law content  

 And Then: 
 At home, you review this content and go through the remaining 

content and do practice questions on your own 
 You then do a short pencil and paper Homework Assignment

http://eduwrench.org


What about Sorting?

 In an Algorithms course you learn about 
sorting 

 What about multi-threaded sorting?



Sorting an Array with Threads
 Consider an array of n elements to sort 
 Let’s say you have a machine with 2 cores 
 One approach is to split the array in two among two 

threads 
 Each sorting can be done in O(n log n) 
 Then merging is in O(n) 
 Therefore, if the array is large, on should get close to a 

speedup of 2 because the sorting (which is done in 
parallel) is the dominant operation 

 But we know by Amdahl law that for non-huge arrays we 
could really be hurt by the sequential merge 

 And a log n factor isn’t a lot 
 Note that we do not need any mutual exclusion here, because 

we’re sorting disjoint pieces of the array 
 This is typically called “parallel” computing rather than 

“concurrent” computing



6 3 2 9 1 4 8 7 5 0

Sorting with Threads
6 3 2 9 1 4 8 7 5 0

1 2 3 6 9 0 4 5 7 8

each worker thread “gets” its half of the array

each worker thread sorts its half in place

the master thread merges the array (perhaps in place)

0 1 2 3 4 5 6 7 8 9



What about using more threads?

 What about using more threads to exploit 
more processors/cores? 

 One possibility: cut the array in T pieces, 
where T is the number of threads 

 Drawbacks:  
 Merging becomes more complicated 
 And it has higher complexity



Using 4 threads

each worker thread sorts its part of the array in place

master thread merges the first and second piece

master thread merges the third and fourth piece

master thread merges the first and second piece

done



Any hope for parallel performance?

 Let n be the size of the array, and p the 
number of processors 
 Assume p divides n 

 The complexity of the merging is 
approximately O(n log n), which is not 
good 

 Amdahl’s law tells us that even a small 
sequential part can be bad 

 And in this case it may not even be that 
small at all 

 So let’s parallelize it! 



Multi-threaded merging?
 One solution is to write a multi-threaded merge 

routine that does the merges in parallel 
 takes as input A, n, and p. 
 uses p threads 

 This is not very elegant because 
 One creates p threads to do the sorting 
 We wait until everything is sorted 
 We terminate the p threads 
 We create p new threads to do the merging 

 A more elegant implementation is to do the partial 
sorting and partial merging all at the same time 
recursively



Recursive multi-threading
 Create a function that does the sorting of one 

array by 
 creating two threads to do partial sorting 
 doing the merging 

 The threads doing the partial sorting call this 
function, and thus can create threads 
themselves

1

32

5 6 74

a binary tree of 
threads!!



Implementations

 The course web site points to a Makefile and 
several implementations in C using Pthreads: 
 Sequential 
 Parallel sort  and sequential merge 
 Parallel sort and parallel merge 
 Recursive parallel “sort and merge” 

 Let’s look at the code and run the Makefile….



Sorting Performance?
 More threads is good 

 The more threads the better we can use multiple cores 
 More threads is bad: 

 The more threads the more merging operations 
 But merging happens hopefully concurrently  

 The more threads the more “thread overhead” 
 What about Load Balancing? 

 It is possible that the left branch of the tree, i.e., the left half of 
the array is more difficult to sort than the right half 

 But since many threads are created recursively, as long as we 
have P threads we can keep a P-core machine busy 

 Therefore more threads is good:  
 The number of threads is controlled by the depth of the tree, 

and in our case by the “base case size” 
 There is probably a best “base case size”, which should be 

determined experimentally



Parallel Sorting is not Easy
 As we know, a common performance bottleneck is 

the memory 
 The more computation the better, i.e., the higher the 

computational complexity the better 
 Parallelizing an O(n) computation with O(n) memory 

accesses can only yield minor benefits 
 Unless the constant hidden in the O is large 

 Parallelizing a O(n5) computation should be 
“easier”, in the sense that there should be more 
opportunity to utilize the core’s computing power 
without being killed by the memory bottleneck 

 Efficient parallel sorting is actually a well recognized 
difficult problem with a large literature



Conclusion

 Data parallelism can be applied to many 
applications, and in particular stencil 
applications 

 Achieving good data-parallelism performance 
on multi-core machines is not alway easy 
 e.g., tension between overhead and load-balancing 

 GPUs are really good at data parallelism 

 We already looked at Homework #9 
 Let’s look at Homework #10…


