
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Final Review

What to expect

 The final exam is non-cumulative
 But of course having knowledge of pre-

midterm material is needed (you can’t forget
what a lock is, etc.)

 Questions will be about post-midterm material
 Speedup/Efficiency
 Shared-memory programming
 OpenMP
 Programming for performance and locality
 Lockfree programming

Sequential Program Optimization

 Make sure you go through the lecture
notes and that you understand why some
of the optimizations work
 Loop unrolling
 Array reference removals
 Constant propagation
 What can a profiler do for you?
 etc.

 Any we should review now?

The Memory Bottleneck
 We have slow memories so our CPUs are not

fully utilized for typical programs
 Therefore we came up with the concept of a

cache: a small amount of memory that’s “close”
to the CPU
 Therefore it’s fast and affordable

 When a CPU references a byte in memory:
 This byte and all of those “next to it” are brought into

the cache
 The memory is segmented as cache lines

 Therefore we have both temporal and spatial
locality

Cache hit / Cache miss
 When referencing a byte in memory, the CPU

first looks for it in the cache
 If it’s in cache, we have a cache hit

 Cache hits are good because fast
 If it’s not in cache, we have a cache miss

 Cache misses are bad because slow
 But next time we need this byte or bytes next to it, it

may be in cache
 Not all perfect: when the cache becomes full,

cache lines are evicted from it
 So you need to reuse the same data in cache often

and use data next to it soon

Exercise
short Array[128];
for (i=0; i < 128; i++) {
 Array[i] = 42;
}

 How many cache misses assuming a 16-byte cache
line and assuming that Array[0] is at the beginning of a
cache line?

 Note that this is the best locality you could have

Exercise Solution
short Array[128];
for (i=0; i < 128; i++) {
 Array[i] = 42;
}

 How many cache misses assuming a 16-byte cache line and
assuming that Array[0] is at the beginning of a cache line?

 Array[0]: miss, Array[1]...Array[7]: hit
 Array[8]: miss, Array[9]...Array[15]: hit
 …
 Array[120]: miss, Array[121]…Array[127]: hit
 Answer: 128 / 8 = 16 cache misses (hit rate = (128-16)/128)

 The data is spread over 16 cache lines, which must be loaded

Common Assumptions

 To make things simpler, we typically make
the following assumptions:
 Arrays are aligned with cache lines
 Initially the cache is empty
 The Cache is fully-associative

 It can store any cache line as long as the cache is not
full

Exercise
int Array[128];
for (i=0; i < 128; i+=5) {
 Array[i] = 42;
}

 How many cache misses assuming an 80-byte cache
line and assuming that Array[0] is at the beginning of a
cache line?

Exercise Solution
int Array[128];
for (i=0; i < 128; i+=5) {
 Array[i] = 42;
}

 There are 80/4 = 20 elements per cache line
 Due to the i+=5, we only use 4 elements in each cache

line (indices 0, 5, 10, and 15)
 The first one is a miss, the next two are hits
 The patterns is MHHH MHHH MHHH MHHH…
 We have a miss for 0, 20, 40, …, 120, i.e., 7 misses in

total, for a total of 26 accesses
 We have 26 - 7 = 19 hits

2-D Arrays

 Row-major vs. Column-major
 The implication of storing 2-D arrays into

1-D memory is that there are good ways
and bad ways to cruise through the array

 Fundamental principle: contiguous
memory accesses are good because of
the cache and the use of cache line

Row-major Array

 Logical view of the array
 A[i][j]: i = row, j = column

Array in memory

 Going through the rows (for i, for j) leads to perfectly
sequential memory accesses (optimal hit rate)

 Going through the columns (for j, for i) leads to non-
sequential memory accesses (worst hit rate)

Three kinds access patterns
 Named after what the array indexing does
 Constant:

 for (i=0; i < N; i++) { a[0][j] = 12; }
 Keeps accessing the same element
 Perfect temporal locality

 Sequential:
 for (j=0; j < N; j++) { a[0][j] = 12; }
 Goes through a row
 Perfect spatial locality

 Strided:
 for (i=0; i < N; i++) { a[i][0] = 12; }
 Goes through a column
 Worst spatial locality

Matrix-Multiply

 In class we saw a characterization of
accesses of the inner-loop of Matrix
Multiplication
 Each access to each of the three matrices was

labelled as constant / sequential / strided

 Should we go through this again? or is this
clear at this point?

Speedup/Efficiency
 We’re accelerating a sequential program by parallelizing

a function and we want to compute relevant quantities
 Fraction of the sequential execution time that is due to that

function: f (a number between 0 and 1)
 OR 1 minus that fraction

 Number of cores used: p
 We assume perfect parallelization of the function

 Speedup = Seq time / Parallel time
 Seq time = T (= (1-f) T + f T)
 Parallel time = (1-f) T + f T / p

 Therefore, speedup = 1 / ((1-f) + f/p)
 Efficiency = Speedup / p
 And ... that’s IT!

 Find the unknown based on known quantities

Sample Exercise
 Say that the function accounts for 70% of the

execution time
 How many cores should be used to achieve a

speedup of 3? (what is p?)

Sample Exercise
 Say that the function accounts for 70% of the

execution time
 How many cores should be used to achieve a speedup

of 3? (what is p?)
 I define f as the fraction spent in the function
 speedup = 1 / ((1 - f) + f / p)

 speedup = 3
 f = 0.7
 Solve for p!

 1 - 0.7 + 0.7 / p = 1 / 3
➡ 0.3 p + 0.7 ~ 0.33p (bad approx of 1/3)
➡ p ~ 0.7 / 0.03 ~ 23.33
➡ p must be integer: answer is 24

Sample Exercise
 We want an efficiency at 80% using p=10 cores
 What fraction of the execution time should the

function account for?

Sample Exercise
 We want an efficiency at 80% using p=10 cores
 What fraction of the execution time should the function

account for?
 I define f as the time spent in the function
 speedup = 1 / (1 - f + f/p)
 efficiency = speedup / p = 1 / (p - f p + f)

 p = 10
 efficiency = 0.8
 solve for f!

 0.8 = 1 / (10 - f * 10 + f)
➡ 10 - 9f = 1/0.8
➡ f ~ 0.97

Sample Exercise

 If f = 90% (the fraction we know how to
parallelize), what’s the best speedup you
can hope to achieve?

Sample Exercise
 If f = 90% (the fraction we know how to parallelize),

what’s the best speedup you can hope to achieve?

 speedup = 1 / (1 - f + f / p)
 with f = .9:

 speedup = 1 / (1 - 0.9 + 0.9 / p)
 = 1 / (0.1 + 0.9 / p)

 As p → ∞, speedup → 1 / 0.1 = 10
 Answer: 10
 Easy to determine without any math: with an infinite

number of processors 90% of the time become zero,
leaving only 10% of the time, hence a speedup of 10

OpenMP

 You should know the basic pragmas
provided by OpenMP

 One “cool” feature of OpenMP is the
“schedule” schedule clause
 Make sure you understand the content in the

“Scheduling” slides
 The fundamental trade-off:

 If you have large work units, then overhead is
low but load-balancing can be bad

 If you have small work units, then load-
balancing is good, but the overhead can be bad

OpenMP
 If you know your work units (e.g., loop iterations)

are identical, you do static partitioning across
threads

 Once and for all: no overhead (your first Pthread assignment)

 If don’t know how long all your work units take, then
you can do dynamic partitioning

 A thread “gets” a work unit, does it, and goes to the next one
while (1) {

lock(mutex);
index_to_work_on = i;
i++;
unlock(mutex);
if (index_to_work_on >= N)
 break;
do_iteration(index_to_work_on);

}

Transaction Memory

 What’s the motivation?
 What problem does it solve?
 What’s the difference between eager/lazy

schemes
 Clearly nothing too in-depth since we didn’t

have any hands-on assignments

Lockfree Programming

 There will be some general questions on
lockfree programming

 What is the point of it?
 Is it easy/hard?
 What’s the ABA problem?
 Clearly nothing too in-depth since we didn’t

have any hands-on assignments

The End

 For questions that say “what is….”: NO
NEED TO WRITE A NOVEL :)
 keywords are important

 The final is scheduled for 2 hours, but
should be doable in much less time.

