
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Final Review

What to expect

 The final exam is non-cumulative
 But of course having knowledge of pre-

midterm material is needed (you can’t forget
what a lock is, etc.)

 Questions will be about post-midterm material
 Speedup/Efficiency
 Shared-memory programming
 OpenMP
 Programming for performance and locality
 Lockfree programming

Sequential Program Optimization

 Make sure you go through the lecture
notes and that you understand why some
of the optimizations work
 Loop unrolling
 Array reference removals
 Constant propagation
 What can a profiler do for you?
 etc.

 Any we should review now?

The Memory Bottleneck
 We have slow memories so our CPUs are not

fully utilized for typical programs
 Therefore we came up with the concept of a

cache: a small amount of memory that’s “close”
to the CPU
 Therefore it’s fast and affordable

 When a CPU references a byte in memory:
 This byte and all of those “next to it” are brought into

the cache
 The memory is segmented as cache lines

 Therefore we have both temporal and spatial
locality

Cache hit / Cache miss
 When referencing a byte in memory, the CPU

first looks for it in the cache
 If it’s in cache, we have a cache hit

 Cache hits are good because fast
 If it’s not in cache, we have a cache miss

 Cache misses are bad because slow
 But next time we need this byte or bytes next to it, it

may be in cache
 Not all perfect: when the cache becomes full,

cache lines are evicted from it
 So you need to reuse the same data in cache often

and use data next to it soon

Exercise
short Array[128];
for (i=0; i < 128; i++) {
	 Array[i] = 42;
}

 How many cache misses assuming a 16-byte cache
line and assuming that Array[0] is at the beginning of a
cache line?

 Note that this is the best locality you could have

Exercise Solution
short Array[128];
for (i=0; i < 128; i++) {
	 Array[i] = 42;
}

 How many cache misses assuming a 16-byte cache line and
assuming that Array[0] is at the beginning of a cache line?

 Array[0]: miss, Array[1]...Array[7]: hit
 Array[8]: miss, Array[9]...Array[15]: hit
 …
 Array[120]: miss, Array[121]…Array[127]: hit
 Answer: 128 / 8 = 16 cache misses (hit rate = (128-16)/128)

 The data is spread over 16 cache lines, which must be loaded

Common Assumptions

 To make things simpler, we typically make
the following assumptions:
 Arrays are aligned with cache lines
 Initially the cache is empty
 The Cache is fully-associative

 It can store any cache line as long as the cache is not
full

Exercise
int Array[128];
for (i=0; i < 128; i+=5) {
	 Array[i] = 42;
}

 How many cache misses assuming an 80-byte cache
line and assuming that Array[0] is at the beginning of a
cache line?

Exercise Solution
int Array[128];
for (i=0; i < 128; i+=5) {
	 Array[i] = 42;
}

 There are 80/4 = 20 elements per cache line
 Due to the i+=5, we only use 4 elements in each cache

line (indices 0, 5, 10, and 15)
 The first one is a miss, the next two are hits
 The patterns is MHHH MHHH MHHH MHHH…
 We have a miss for 0, 20, 40, …, 120, i.e., 7 misses in

total, for a total of 26 accesses
 We have 26 - 7 = 19 hits

2-D Arrays

 Row-major vs. Column-major
 The implication of storing 2-D arrays into

1-D memory is that there are good ways
and bad ways to cruise through the array

 Fundamental principle: contiguous
memory accesses are good because of
the cache and the use of cache line

Row-major Array

 Logical view of the array
 A[i][j]: i = row, j = column

Array in memory

 Going through the rows (for i, for j) leads to perfectly
sequential memory accesses (optimal hit rate)

 Going through the columns (for j, for i) leads to non-
sequential memory accesses (worst hit rate)

Three kinds access patterns
 Named after what the array indexing does
 Constant:

 for (i=0; i < N; i++) { a[0][j] = 12; }
 Keeps accessing the same element
 Perfect temporal locality

 Sequential:
 for (j=0; j < N; j++) { a[0][j] = 12; }
 Goes through a row
 Perfect spatial locality

 Strided:
 for (i=0; i < N; i++) { a[i][0] = 12; }
 Goes through a column
 Worst spatial locality

Matrix-Multiply

 In class we saw a characterization of
accesses of the inner-loop of Matrix
Multiplication
 Each access to each of the three matrices was

labelled as constant / sequential / strided

 Should we go through this again? or is this
clear at this point?

Speedup/Efficiency
 We’re accelerating a sequential program by parallelizing

a function and we want to compute relevant quantities
 Fraction of the sequential execution time that is due to that

function: f (a number between 0 and 1)
 OR 1 minus that fraction

 Number of cores used: p
 We assume perfect parallelization of the function

 Speedup = Seq time / Parallel time
 Seq time = T (= (1-f) T + f T)
 Parallel time = (1-f) T + f T / p

 Therefore, speedup = 1 / ((1-f) + f/p)
 Efficiency = Speedup / p
 And ... that’s IT!

 Find the unknown based on known quantities

Sample Exercise
 Say that the function accounts for 70% of the

execution time
 How many cores should be used to achieve a

speedup of 3? (what is p?)

Sample Exercise
 Say that the function accounts for 70% of the

execution time
 How many cores should be used to achieve a speedup

of 3? (what is p?)
 I define f as the fraction spent in the function
 speedup = 1 / ((1 - f) + f / p)

 speedup = 3
 f = 0.7
 Solve for p!

 1 - 0.7 + 0.7 / p = 1 / 3
➡ 0.3 p + 0.7 ~ 0.33p (bad approx of 1/3)
➡ p ~ 0.7 / 0.03 ~ 23.33
➡ p must be integer: answer is 24

Sample Exercise
 We want an efficiency at 80% using p=10 cores
 What fraction of the execution time should the

function account for?

Sample Exercise
 We want an efficiency at 80% using p=10 cores
 What fraction of the execution time should the function

account for?
 I define f as the time spent in the function
 speedup = 1 / (1 - f + f/p)
 efficiency = speedup / p = 1 / (p - f p + f)

 p = 10
 efficiency = 0.8
 solve for f!

 0.8 = 1 / (10 - f * 10 + f)
➡ 10 - 9f = 1/0.8
➡ f ~ 0.97

Sample Exercise

 If f = 90% (the fraction we know how to
parallelize), what’s the best speedup you
can hope to achieve?

Sample Exercise
 If f = 90% (the fraction we know how to parallelize),

what’s the best speedup you can hope to achieve?

 speedup = 1 / (1 - f + f / p)
 with f = .9:

 speedup = 1 / (1 - 0.9 + 0.9 / p)
 	 = 1 / (0.1 + 0.9 / p)

 As p → ∞, speedup → 1 / 0.1 = 10
 Answer: 10
 Easy to determine without any math: with an infinite

number of processors 90% of the time become zero,
leaving only 10% of the time, hence a speedup of 10

OpenMP

 You should know the basic pragmas
provided by OpenMP

 One “cool” feature of OpenMP is the
“schedule” schedule clause
 Make sure you understand the content in the

“Scheduling” slides
 The fundamental trade-off:

 If you have large work units, then overhead is
low but load-balancing can be bad

 If you have small work units, then load-
balancing is good, but the overhead can be bad

OpenMP
 If you know your work units (e.g., loop iterations)

are identical, you do static partitioning across
threads

 Once and for all: no overhead (your first Pthread assignment)

 If don’t know how long all your work units take, then
you can do dynamic partitioning

 A thread “gets” a work unit, does it, and goes to the next one
while (1) {

lock(mutex);
index_to_work_on = i;
i++;
unlock(mutex);
if (index_to_work_on >= N)
	 break;
do_iteration(index_to_work_on);

}

Transaction Memory

 What’s the motivation?
 What problem does it solve?
 What’s the difference between eager/lazy

schemes
 Clearly nothing too in-depth since we didn’t

have any hands-on assignments

Lockfree Programming

 There will be some general questions on
lockfree programming

 What is the point of it?
 Is it easy/hard?
 What’s the ABA problem?
 Clearly nothing too in-depth since we didn’t

have any hands-on assignments

The End	

 For questions that say “what is….”: NO
NEED TO WRITE A NOVEL :)
 keywords are important

 The final is scheduled for 2 hours, but
should be doable in much less time.

