
Henri Casanova (henric@hawaii.edu)

Basic Use of the
Linux/UNIX Shell

What is This “Lecture” About?	

 Some people in the class may need some type of
“UNIX refresher”

 So here we go...
 We could talk about all this for days, but I’ll let you

discover things on your own
 I won’t talk about text editors

 vim, emacs, etc.
 And there is obviously TONS of content on-line about all this

 If you’re familiar with UNIX/Linux, this is going to
be pretty boring :)

Basics
 You’ll be using the Shell: the command-line

interface to the system (in a “terminal”)
 Either by SSh-ing into a server
 Or by logging in to your own Linux (Virtual) box

 There are many kinds of Shell
 The most standard one is: /bin/bash

 We’re going to assume bash from now on
 To find out which shell your default is:

 echo $SHELL
 I use this font to denote commands you type

 SHELL is an environment variables
 More on this later

Commands
 Every command, system program, or API call has a “man page”

 man xxxx
 Commands take arguments, and/or input from stdin, and produce

output on stdout
 Commands you know, but that may have tons of cool options you

don’t know about
 ls, cp, mv, rm, mkdir, ...

 Reading man pages is a very worthwhile activity
 Common thing heard in the work place “go read the man page”

 Some man pages are very instructive
 man is a command, and you can do man man

 Let’s briefly go over few key “things”:
 wildcards, gcc, make, pwd, cat, grep, |, less, wc, jobs (&,^Z, kill, fg)

 I am just going to go through a bunch of “random” examples

Wildcards
 pwd

 Prints out the current directory
 ls *.c

 Shows the list of all files named xxxx.c in the current
directory

 ls -l *.h *.c */*.g
 Shows a detailed list of all xxx.h and xxx.c files in the

current directory and all xxx.g files in any q-level-deep
subdirectory

 ls -l dc??d*.c
 Shows all files in the current directory whose names

start with “dc”, then 2 arbitrary characters, then “d”, and
then an arbitrary number (possibly 0) of arbitrary
variables

cat and grep

 The cat command takes as argument a
file name and prints its content it to stdout
(i.e., you will see it in the Shell terminal)
 cat file.c

 grep finds a string in a file or in a set of
files and prints the corresponding lines to
stdout
 grep main file.c
 grep hello *.c */*.c
 grep -v hello somefile

 Will fine all lines that SO NOT contain “hello”

|, less, wc
 | is used to “pipe” commands together

 The standard output of the command on the left of the ‘|’ goes
to the standard input of the command on the right of the ‘|’

 less: sends a file to stdout but wait for user input to display
more than the window size

 e.g., cat file.c | less
 wc: counts lines, words, and characters in a file (-l for

counting lines)
 e.g., cat *.c | grep pthread_create | wc -l

 counts the number of lines of code that contain “pthread_create”
 e.g., ls | grep “a\.c” | wc -l

 counts the number of files that contain a.c
 The ‘\’ is used to “escape” the ‘.’ character, which is special (grep

uses it as a wildcard)

Job management
 You can always start a command “in the

background” with the & symbol
 ls -R | wc -l &

 You get control right away and the running
command is then called a “job”

 jobs is used to look at running jobs
 jobs can be accessed as %1, %2, ...
 fg %2 brings job #2 to the foreground
 If a job is already running, hitting ^Z suspends the

job and gives it a job id
 bg %4 resumes suspended job in the background
 kill %7 kills jobs #7

 kill -9 %7 is more violent

Environment Variables
 There are many environment variables:

 printenv
 echo $SHELL
 echo $HOME
 echo $USER

 Sometimes you’ll have to set/modify
environment variables

 Setting a new environment variable (or
overwriting another one):
 export NEWTHING= ”a:b/c”

 Adding to a new environment variable:
 export NEWTHING= ”$NEWTHING hello”

Changing the Shell
 If you log in to a machine, and the Shell isn’t the one you like,

you can always just type, e.g., bash
 The chsh /bin/bash command will change your default Shell to

bash forever
 Note that it needs the full path to the bash executable
 If you don’t pass it a valid path for bash, you’re in trouble

 Finding the path to a command:
 which ...
 e.g., which ls
 e.g., which gcc

 What’s in your path?
 echo $PATH
 An important environment variable

 Adding to your path?
 export PATH=$PATH:/some/new/directory/for/binaries

Customizing your Shell
 Default Shell behavior is stored in a file at the root

of your directory called .bashrc
 In that file you can:

 Create aliases
 Set environment variables
 And do a bunch of other things we won’t talk about

 There is an art to .bashrc files
 Changing the prompt is always amusing
 The Web is full of sample .bashrc files, some simple,

some less simple
 Let’s look at the basic two things above

Aliases and Env Variables
 In your .bashrc file, anywhere, you can have a line like: 	

	 	 alias foo=’blah’
 From now on, each time you type the foo command, the Shell

will replace it by the blah command
 Highly recommended aliases

 alias rm=’rm -i’
 alias mv=’mv -i’
 alias cp=’cp -i’

 In your .bashrc file you can also set environment variables: 	
	export FOO=BLAH
 Very useful for the PATH variables
 export PATH=$PATH:/home/casanova/bin

 Don’t forget to just add to the old path, which comes with good
default

 Doing export PATH=foo will not be good as your Shell won’t
be able to run any commands

Customizing the Shell

 Once you’ve modified your .bashrc file,
you need to “reset” the Shell
 you can log out and back in, or
 you can do source $HOME/.bashrc

TAB-completion, up arrow

 Tab-completion
 While typing Shell commands, the TAB key is

used to complete file names
 One of the most useful features as nobody

wants to type long file names
 If there are multiple possible completions,

hitting TAB again shows them all
 Up arrow

 Hitting the up arrow recalls the last commands
 Very useful to not re-type things over and over

 See the “history” command as well

That’s it for Now
 The Shell is much more powerful than many people think

and can do a lot for you
 Obviously we’ve only scratched the surface
 Bash scripts are real programs
 Being a Shell expert will impress your co-workers
 Knowing a scripting language (Perl, Python, etc.) is a good

idea for your future
 Could be useful for programming assignment #1 to avoid a

bunch of by-hand work
 Most people these days don’t really learn much Shell

programming and do everything in better scripting languages
for rapid development

 Take our Scripting Languages course (ICS215)

Conclusion

 Do not waste time on Shell/Linux issues if
you get stumped
 Google is your friend for resolving Shell

issues!
 Just ask questions, come to office hours
 Most students end the semester having

learned a lot, and some being “converts” :)

