Basic Use of the

Linux/UNIX Shell

Henri Casanova (henric@hawaii.edu)

"
What is This “Lecture” About?

® Some people in the class may need some type of
“UNIX refresher”

® S0 here we go...

We could talk about all this for days, but I'll let you
discover things on your own

| won't talk about text editors
® vim, emacs, etc.
And there is obviously TONS of content on-line about all this

m [f you're familiar with UNIX/Linux, this is going to
be pretty boring :)

" A
Basics

® You'll be using the Shell: the command-line
interface to the system (in a “terminal”)

Either by SSh-ing into a server
Or by logging in to your own Linux (Virtual) box

® There are many kinds of Shell

® The most standard one is: /bin/bash
We’'re going to assume bash from now on

® To find out which shell your default is:
echo S$SHELL

| use this font to denote commands you type
B SHELL is an environment variables
More on this later

" A
Commands

® Every command, system program, or API call has a “man page”
man XXXX

® Commands take arguments, and/or input from stdin, and produce
output on stdout

® Commands you know, but that may have tons of cool options you
don’t know about

ls, cp, mv, rm, mkdir, ...
m Reading man pages is a very worthwhile activity
Common thing heard in the work place “go read the man page”
® Some man pages are very instructive
man iS a command, and you can do man man
m | et’s briefly go over few key “things”:
wildcards, gcc, make, pwd, cat, grep, |, less, wc, jobs (&,AZ, kill, fg)
® | am just going to go through a bunch of “random™ examples

" A
Wildcards

m pwd
Prints out the current directory

mls *.c
Shows the list of all files named xxxx.c in the current
directory

mls -1 * h *.¢c */*.qg
Shows a detailed list of all xxx.h and xxx.c files in the
current directory and all xxx.g files in any g-level-deep
subdirectory

mls -1 dec??d*.c
Shows all files in the current directory whose names
start with “dc”, then 2 arbitrary characters, then “d”, and

then an arbitrary number (possibly 0) of arbitrary
variables

"
cat and grep

m The cat command takes as argument a

file name and prints its content it to stdout
(i.e., you will see it in the Shell terminal)
cat file.c

m grep finds a string in a file or in a set of

files and prints the corresponding lines to
stdout

grep main file.c

grep hello *.c */* . c

grep -v hello somefile

= Will fine all lines that SO NOT contain “hello”

" J——
|, less, wc

m | js used to “pipe’ commands together

The standard output of the command on the left of the ‘|’ goes
to the standard input of the command on the right of the ‘|’

B less: sends a file to stdout but wait for user input to display
more than the window size

e.g.,,cat file.c | less

® wc: counts lines, words, and characters in a file (-l for
counting lines)
e.g.,cat *.c | grep pthread create | wc -1
® counts the number of lines of code that contain “pthread_create”
e.g., 1s | grep “a\.c¢” | wec -1
= counts the number of files that contain a.c

= The \'is used to “escape” the ‘.’ character, which is special (grep
uses it as a wildcard)

" J
Job management

® You can always start a command “in the
background” with the & symbol
ls -R | we -1 &

® You get control right away and the running
command is then called a “job”

m jobs is used to look at running jobs
® jobs can be accessed as %1, %2, ...
m £fg %2 brings job #2 to the foreground

m |[f a job is already running, hitting *Z suspends the
Jjob and gives it a job id

m bg %4 resumes suspended job in the background

mkill %7 kills jobs #7
kill -9 %7 is more violent

Environment Variables

® There are many environment variables:
printenv

echo SSHELL
echo SHOME
echo SUSER

® Sometimes you'll have to set/modify
environment variables

m Setting a new environment variable (or
overwriting another one):

export NEWTHING= "“a:b/c”

®m Adding to a new environment variable:
export NEWTHING= ”“$NEWTHING hello”

" J
Changing the Shell

® |f you log in to a machine, and the Shell isn’t the one you like,
you can always just type, e.g., bash

The chsh /bin/bash command will change your default Shell to
bash forever

Note that it needs the full path to the bash executable

If you don'’t pass it a valid path for bash, you’re in trouble
® Finding the path to a command:

which ...

e.g., which 1s

e.g., which gcc
® \What's in your path?

echo S$PATH

An important environment variable
m Adding to your path?

export PATH=$PATH:/some/new/directory/for/binaries

" J
Customizing your Shell

m Default Shell behavior is stored in a file at the root
of your directory called .bashrc

® |n that file you can:
Create aliases

Set environment variables
And do a bunch of other things we won't talk about

® There is an art to .bashrc files
Changing the prompt is always amusing

The Web is full of sample .bashrc files, some simple,
some less simple

m | et’s look at the basic two things above

" A
Aliases and Env Variables

® |n your .bashrc file, anywhere, you can have a line like:
alias foo='blah’

From now on, each time you type the foo command, the Shell
will replace it by the blah command

® Highly recommended aliases
alias rm="rm -i’
alias mv="mv -i’
alias cp='cp -1i’
® |n your .bashrc file you can also set environment variables:
export FOO=BLAH

Very useful for the PATH variables
export PATH=S$PATH:/home/casanova/bin

= Don’t forget to just add to the old path, which comes with good
default

= Doing export PATH=foo will not be good as your Shell won’t
be able to run any commands

"
Customizing the Shell

® Once you've modified your .bashrc file,
you need to “reset” the Shell

you can log out and back in, or
you can do source $HOME/ .bashrc

" J
TAB-completion, up arrow

m Tab-completion

While typing Shell commands, the TAB key is
used to complete file names

One of the most useful features as nobody
wants to type long file names

If there are multiple possible completions,
hitting TAB again shows them all

m Up arrow
Hitting the up arrow recalls the last commands
Very useful to not re-type things over and over
® See the "history” command as well

" A
That’s it for Now

® The Shell is much more powerful than many people think
and can do a lot for you

® Obviously we've only scratched the surface

® Bash scripts are real programs

m Being a Shell expert will impress your co-workers

®m Knowing a scripting language (Perl, Python, etc.) is a good
idea for your future

Could be useful for programming assignment #1 to avoid a
bunch of by-hand work

Most people these days don’t really learn much Shell
programming and do everything in better scripting languages
for rapid development

Take our Scripting Languages course (ICS215)

Conclusion

® Do not waste time on Shell/Linux issues if
you get stumped

Google is your friend for resolving Shell
Issues!

Just ask questions, come to office hours

Most students end the semester having
learned a lot, and some being “converts™ ;)

