
Henri Casanova (henric@hawaii.edu)

Basic Use of the
Linux/UNIX Shell

What is This “Lecture” About?

 Some people in the class may need some type of
“UNIX refresher”

 So here we go...
 We could talk about all this for days, but I’ll let you

discover things on your own
 I won’t talk about text editors

 vim, emacs, etc.
 And there is obviously TONS of content on-line about all this

 If you’re familiar with UNIX/Linux, this is going to
be pretty boring :)

Basics
 You’ll be using the Shell: the command-line

interface to the system (in a “terminal”)
 Either by SSh-ing into a server
 Or by logging in to your own Linux (Virtual) box

 There are many kinds of Shell
 The most standard one is: /bin/bash

 We’re going to assume bash from now on
 To find out which shell your default is:

 echo $SHELL
 I use this font to denote commands you type

 SHELL is an environment variables
 More on this later

Commands
 Every command, system program, or API call has a “man page”

 man xxxx
 Commands take arguments, and/or input from stdin, and produce

output on stdout
 Commands you know, but that may have tons of cool options you

don’t know about
 ls, cp, mv, rm, mkdir, ...

 Reading man pages is a very worthwhile activity
 Common thing heard in the work place “go read the man page”

 Some man pages are very instructive
 man is a command, and you can do man man

 Let’s briefly go over few key “things”:
 wildcards, gcc, make, pwd, cat, grep, |, less, wc, jobs (&,^Z, kill, fg)

 I am just going to go through a bunch of “random” examples

Wildcards
 pwd

 Prints out the current directory
 ls *.c

 Shows the list of all files named xxxx.c in the current
directory

 ls -l *.h *.c */*.g
 Shows a detailed list of all xxx.h and xxx.c files in the

current directory and all xxx.g files in any q-level-deep
subdirectory

 ls -l dc??d*.c
 Shows all files in the current directory whose names

start with “dc”, then 2 arbitrary characters, then “d”, and
then an arbitrary number (possibly 0) of arbitrary
variables

cat and grep

 The cat command takes as argument a
file name and prints its content it to stdout
(i.e., you will see it in the Shell terminal)
 cat file.c

 grep finds a string in a file or in a set of
files and prints the corresponding lines to
stdout
 grep main file.c
 grep hello *.c */*.c
 grep -v hello somefile

 Will fine all lines that SO NOT contain “hello”

|, less, wc
 | is used to “pipe” commands together

 The standard output of the command on the left of the ‘|’ goes
to the standard input of the command on the right of the ‘|’

 less: sends a file to stdout but wait for user input to display
more than the window size

 e.g., cat file.c | less
 wc: counts lines, words, and characters in a file (-l for

counting lines)
 e.g., cat *.c | grep pthread_create | wc -l

 counts the number of lines of code that contain “pthread_create”
 e.g., ls | grep “a\.c” | wc -l

 counts the number of files that contain a.c
 The ‘\’ is used to “escape” the ‘.’ character, which is special (grep

uses it as a wildcard)

Job management
 You can always start a command “in the

background” with the & symbol
 ls -R | wc -l &

 You get control right away and the running
command is then called a “job”

 jobs is used to look at running jobs
 jobs can be accessed as %1, %2, ...
 fg %2 brings job #2 to the foreground
 If a job is already running, hitting ^Z suspends the

job and gives it a job id
 bg %4 resumes suspended job in the background
 kill %7 kills jobs #7

 kill -9 %7 is more violent

Environment Variables
 There are many environment variables:

 printenv
 echo $SHELL
 echo $HOME
 echo $USER

 Sometimes you’ll have to set/modify
environment variables

 Setting a new environment variable (or
overwriting another one):
 export NEWTHING= ”a:b/c”

 Adding to a new environment variable:
 export NEWTHING= ”$NEWTHING hello”

Changing the Shell
 If you log in to a machine, and the Shell isn’t the one you like,

you can always just type, e.g., bash
 The chsh /bin/bash command will change your default Shell to

bash forever
 Note that it needs the full path to the bash executable
 If you don’t pass it a valid path for bash, you’re in trouble

 Finding the path to a command:
 which ...
 e.g., which ls
 e.g., which gcc

 What’s in your path?
 echo $PATH
 An important environment variable

 Adding to your path?
 export PATH=$PATH:/some/new/directory/for/binaries

Customizing your Shell
 Default Shell behavior is stored in a file at the root

of your directory called .bashrc
 In that file you can:

 Create aliases
 Set environment variables
 And do a bunch of other things we won’t talk about

 There is an art to .bashrc files
 Changing the prompt is always amusing
 The Web is full of sample .bashrc files, some simple,

some less simple
 Let’s look at the basic two things above

Aliases and Env Variables
 In your .bashrc file, anywhere, you can have a line like:

 alias foo=’blah’
 From now on, each time you type the foo command, the Shell

will replace it by the blah command
 Highly recommended aliases

 alias rm=’rm -i’
 alias mv=’mv -i’
 alias cp=’cp -i’

 In your .bashrc file you can also set environment variables:
 export FOO=BLAH
 Very useful for the PATH variables
 export PATH=$PATH:/home/casanova/bin

 Don’t forget to just add to the old path, which comes with good
default

 Doing export PATH=foo will not be good as your Shell won’t
be able to run any commands

Customizing the Shell

 Once you’ve modified your .bashrc file,
you need to “reset” the Shell
 you can log out and back in, or
 you can do source $HOME/.bashrc

TAB-completion, up arrow

 Tab-completion
 While typing Shell commands, the TAB key is

used to complete file names
 One of the most useful features as nobody

wants to type long file names
 If there are multiple possible completions,

hitting TAB again shows them all
 Up arrow

 Hitting the up arrow recalls the last commands
 Very useful to not re-type things over and over

 See the “history” command as well

That’s it for Now
 The Shell is much more powerful than many people think

and can do a lot for you
 Obviously we’ve only scratched the surface
 Bash scripts are real programs
 Being a Shell expert will impress your co-workers
 Knowing a scripting language (Perl, Python, etc.) is a good

idea for your future
 Could be useful for programming assignment #1 to avoid a

bunch of by-hand work
 Most people these days don’t really learn much Shell

programming and do everything in better scripting languages
for rapid development

 Take our Scripting Languages course (ICS215)

Conclusion

 Do not waste time on Shell/Linux issues if
you get stumped
 Google is your friend for resolving Shell

issues!
 Just ask questions, come to office hours
 Most students end the semester having

learned a lot, and some being “converts” :)

