
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Brief Overview
of JavaFX

Why Talk about this in ICS432?
 Recall that there are two main motivations for

using concurrency: interactivity and performance
 We’ll cover both uses in the semester, but we’ll

start with interactivity
 Interactivity is often needed in the context of

Graphical User Interfaces (GUIs)
 So in this course you will be exposed to the

principles behind using threads in GUIs
 The goal is not to develop anything fancy or

particularly nice-looking, but to focus more on the
inner workings of GUIs

 See HCI courses for how to design interfaces

Java GUIs with JavaFX
 The way to develop GUIs in Java is JavaFX

 Successor to Swing, itself successor to awt
 Swing is still used by developers

 Show of hands: Who has done anything with JavaFX
before?

 There are many on-line JavaFX tutorials and of course full
Javadoc documentation

 These slides will be very light on JavaFX itself, and focus
mostly on one multi-threading aspect

 Besides, I’ll give you starter code that showcases already quite a
few JavaFX features

 You will have very little JavaFX development to do, and when in
doubt ask questions

The Hello Word JavaFX Program

 Program ButtonInFrameJavaFX.java on the course
Web site

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(
 new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Clicked!");
 }
 });
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(
 EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Clicked!");
 }
 });
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

Can be
replaced with
a lambda

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(event-> System.out.println(“Clicked!”));
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(event-> System.out.println(“Clicked!”));
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

Let’s look at the real code
and run it…

JavaFX Classes
 JavaFX has many, many classes
 They can be used to develop professional GUIs

 FXML allows you to define GUIs in XML and then
generate a lot of JavaFX code automatically

 Very useful for complex GUIs, and not used in the
ics432imgapp at all :)

 The objective in our upcoming assignments is not for you
to create amazing GUIs

 You will only add to an existing JavaFX application
 You just need basic understanding of JavaFX; going

further it totally up to you
 Some people really enjoy GUI development, some really

do not…
 I don’t, so the ics432imgapp likely isn’t as great as it

could be

JavaFX is multi-threaded
 Even though your JavaFX application may not create any

threads, it is multi-threaded
 In the code in the previous slides, there are two threads!

 Your (main) thread
 The JavaFX Application thread

 The JavaFX Application thread is in charge of “GUI stuff”
(e.g., reacting for mouse clicks)

 The javafx.Platform.isFxApplicationThread()
method returns true if it is called by the JavaFX
Application thread, false otherwise

 Let’s add some of these calls to this program and see this
is action…

Golden Rule
 A lot of the code you write in your JavaFX app is executed by the

JavaFX Application thread
 And yet, this thread is in charge of bunch of stuff to make sure the

GUI works as expected
 Golden Rule: once the GUI is visible, the JavaFX Application

thread should only call methods that return quickly
 If you break that rule, you will have the dreaded “frozen GUI”

problem
 While the JavaFX Application thread is running your code, it cannot,

e.g., respond to mouse clicks
 You should pay attention to the golden rule above always, but in

particular when implementing handle(ActionEvent event)
methods

 Let’s add a second button to our application and showcase the
frozen GUI problem…

Thread Proliferation
 What if I need to do something that takes time?

 Say in some window there is a button that, when
clicked, will do something that takes 20 minutes

 I don’t want all the other windows to be frozen!
 The answer: do it in a thread!
 Whenever you’re writing code that the JavaFX

Application thread will execute and that may take a
while: Instead spawn a thread to do the work and
have the JavaFX Application thread return quickly
to its intended work of handling GUI events

 This may require some re-engineering of the
application code, as we’ll see

More Thread Proliferations
 Sometimes, JavaFX will enforce that some code be executed by

the JavaFX Application Thread
 In these cases, you’ll get the exception:
“java.lang.IllegalStateException: Not on FX
application thread”

 The solution: use Platform.runLater() to do it in a thread!
 Note that if you are already in the JavaFX Application Thread and

you call Platform.runLater(), that will run… well.. “later”
 The JavaFX Application Thread maintains a “todo list” and goes through

it in order
 So, yeah, plenty of threads

 And as you add threads, you may encounter more of the above
exception, leading to even more threads!!!

 There are already Platform.runLater() calls in the started
ics432imgapp application...

Conclusion
 JavaFX is huge, but it’s well-documented and tutorials are clear
 It’s up to you how much of a JavaFX expert you want to become

in this course
 The only thing that matters to us is concurrency
 We just saw one concurrency issue with JavaFX
 We’ll see others!
 All GUI systems are pretty much alike, with a few differences, and

the same concurrency issues occur
 We’re just using JavaFX because you all know Java and Java

development is as easy as can be

 For now, make sure you read/understand the ics432imgapp
JavaFX code

 Coming to class with questions about the ics432imgapp code will help
everyone and is highly encouraged

