
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Brief Overview
of JavaFX

Why Talk about this in ICS432?
 Recall that there are two main motivations for

using concurrency: interactivity and performance
 We’ll cover both uses in the semester, but we’ll

start with interactivity
 Interactivity is often needed in the context of

Graphical User Interfaces (GUIs)
 So in this course you will be exposed to the

principles behind using threads in GUIs
 The goal is not to develop anything fancy or

particularly nice-looking, but to focus more on the
inner workings of GUIs

 See HCI courses for how to design interfaces

Java GUIs with JavaFX
 The way to develop GUIs in Java is JavaFX

 Successor to Swing, itself successor to awt
 Swing is still used by developers

 Show of hands: Who has done anything with JavaFX
before?

 There are many on-line JavaFX tutorials and of course full
Javadoc documentation

 These slides will be very light on JavaFX itself, and focus
mostly on one multi-threading aspect

 Besides, I’ll give you starter code that showcases already quite a
few JavaFX features

 You will have very little JavaFX development to do, and when in
doubt ask questions

The Hello Word JavaFX Program

 Program ButtonInFrameJavaFX.java on the course
Web site

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(
 new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Clicked!");
 }
 });
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(
 EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Clicked!");
 }
 });
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

Can be
replaced with
a lambda

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(event-> System.out.println(“Clicked!”));
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

The source code
public class ButtonInFrameJavaFX extends Application {

 private Button button;

 public static void main(String[] args) {
 launch(args);
 }

 public void start(Stage primaryStage) {
 button = new Button("Click Me");
 button.setOnAction(event-> System.out.println(“Clicked!”));
 FlowPane layout = new FlowPane();
 layout.getChildren().add(button);
 primaryStage.setScene(new Scene(layout, 100, 100));
 primaryStage.show();
 }
}

Let’s look at the real code
and run it…

JavaFX Classes
 JavaFX has many, many classes
 They can be used to develop professional GUIs

 FXML allows you to define GUIs in XML and then
generate a lot of JavaFX code automatically

 Very useful for complex GUIs, and not used in the
ics432imgapp at all :)

 The objective in our upcoming assignments is not for you
to create amazing GUIs

 You will only add to an existing JavaFX application
 You just need basic understanding of JavaFX; going

further it totally up to you
 Some people really enjoy GUI development, some really

do not…
 I don’t, so the ics432imgapp likely isn’t as great as it

could be

JavaFX is multi-threaded
 Even though your JavaFX application may not create any

threads, it is multi-threaded
 In the code in the previous slides, there are two threads!

 Your (main) thread
 The JavaFX Application thread

 The JavaFX Application thread is in charge of “GUI stuff”
(e.g., reacting for mouse clicks)

 The javafx.Platform.isFxApplicationThread()
method returns true if it is called by the JavaFX
Application thread, false otherwise

 Let’s add some of these calls to this program and see this
is action…

Golden Rule
 A lot of the code you write in your JavaFX app is executed by the

JavaFX Application thread
 And yet, this thread is in charge of bunch of stuff to make sure the

GUI works as expected
 Golden Rule: once the GUI is visible, the JavaFX Application

thread should only call methods that return quickly
 If you break that rule, you will have the dreaded “frozen GUI”

problem
 While the JavaFX Application thread is running your code, it cannot,

e.g., respond to mouse clicks
 You should pay attention to the golden rule above always, but in

particular when implementing handle(ActionEvent event)
methods

 Let’s add a second button to our application and showcase the
frozen GUI problem…

Thread Proliferation
 What if I need to do something that takes time?

 Say in some window there is a button that, when
clicked, will do something that takes 20 minutes

 I don’t want all the other windows to be frozen!
 The answer: do it in a thread!
 Whenever you’re writing code that the JavaFX

Application thread will execute and that may take a
while: Instead spawn a thread to do the work and
have the JavaFX Application thread return quickly
to its intended work of handling GUI events

 This may require some re-engineering of the
application code, as we’ll see

More Thread Proliferations
 Sometimes, JavaFX will enforce that some code be executed by

the JavaFX Application Thread
 In these cases, you’ll get the exception:
“java.lang.IllegalStateException: Not on FX
application thread”

 The solution: use Platform.runLater() to do it in a thread!
 Note that if you are already in the JavaFX Application Thread and

you call Platform.runLater(), that will run… well.. “later”
 The JavaFX Application Thread maintains a “todo list” and goes through

it in order
 So, yeah, plenty of threads

 And as you add threads, you may encounter more of the above
exception, leading to even more threads!!!

 There are already Platform.runLater() calls in the started
ics432imgapp application...

Conclusion
 JavaFX is huge, but it’s well-documented and tutorials are clear
 It’s up to you how much of a JavaFX expert you want to become

in this course
 The only thing that matters to us is concurrency
 We just saw one concurrency issue with JavaFX
 We’ll see others!
 All GUI systems are pretty much alike, with a few differences, and

the same concurrency issues occur
 We’re just using JavaFX because you all know Java and Java

development is as easy as can be

 For now, make sure you read/understand the ics432imgapp
JavaFX code

 Coming to class with questions about the ics432imgapp code will help
everyone and is highly encouraged

