Java Threads

(a review)

1CS432
Concurrent and High-Performance
Programming

Henri Casanova (henric@hawaii.edu)

Threads in Programming Languages

® Almost all programming languages provide
constructs/abstractions for writing
concurrent programs

even old ones (Modula, Ada, etc.)
® Java provides:

Thread class

Runnable interface

m Java also provides a Callable interface
and higher level abstractions, which we’ll
see later in the semester

It's important to first master the “low-level” stuff

"
Extending the Thread class

m Extend the thread class
m Override the run () method with what the thread should do

If you forget to override run (), your thread won’t do anything
m Call the start () method to start the thread

Thread subclass

public class MyThread extends Thread {
MyThread() { ... }

@override
public void run() { // code for whatever the thread should do }

Y

public class MyProgram {
public static void main(...) {
MyThread myThread= new MyThread();
myThread.start();
/[At this point, 2 threads are running!

}

}

" JE
run() vs. start()

m You implement the thread’s code in run ()
m You start the thread with start ()

m WARNING: Calling run () does not create
a thread, but it works (it's just a normal

method call)
®m The start () method, which you should not

override, does all the thread launching

It places whatever system calls are needed to start a
thread (e.g., the clone, aka fork, system call in Linux)

And then makes it so that the newly created thread'’s
fetch-decode-execute cycle begins with the first line of

code of the run() method

" A
The Runnable Interface

® Using the Runnable interface is preferred
because then you can still extend another class

Java doesn’'t have multiple inheritance

Typically if you can use an implements
instead of an extends, you should

= So that you keep the extends option open for
another purpose

m | et's see an example...

"
Using the Runnable Interface

Runnable class

public class MyRunnable implements Runnable {
MyRunnable() { ... }

@override
public void run() {// code for whatever the thread should do }

Y

public class MyProgram {

public static void main(...) {
/I Create an instance of the runnable class
MyRunnable myRunnable = new MyRunnable();
// Pass it to the Thread constructor
Thread thread = new Thread(myRunnable);
// Start the thread
thread.start();
I At this point, 2 threads are running!

}
}

" B
In-line Thread Creation

B Sometimes it's cumbersome to create all kinds of
Runnable classes, so one can “lambda it” ;)

public class MyProgram {
public static void main(...) {

/[Start an anonymous thread with a single statement
new Thread(new Runnable() {

@Override

public void run() {

;
}).start();

}

" J
The isAlive() Method

m After you spawned a thread you may not really know if it's
terminated or not

® [t may be useful to know
To see if the thread’s work is done for instance

B The isAlive () method returns true is the thread is
running, false otherwise

® Could also be useful to remember whether you have called
start () on a thread, or to restart a thread

if ('t.isAlive()) {
t.start () ;
}

" A
Your Two Threads

Host

® A Java program terminates only when all your threads have
terminated (unlike in many other languages)

m But there are many more threads in the JVM!
Let’s find out how many by writing some code...

"
Many Threads in

Host

® Thread JVM threads are called “daemon threads”

®m Some you already know about (garbage collector), some we’ll talk
about (JavaFX Application Thread), some we won'’t discuss

" A
Non-deterministic Execution!

® Remember from your OS course that the OS
schedules when a thread runs (by taking it out of the
ready queue and giving a time quantum on one core)

In ICS332 you learned some of the “smarts” implemented in
the kernel to schedule threads efficiently

® So if your main thread prints a bunch of “*” and your
newly created thread prints a bunch of “#”, there is no
way to tell what the output will be

And the output will be different each time

® This can make debugging really difficult

The age-old “my program breaks only once every 1000
executions”
m But you cannot make assumptions about thread
scheduling since the OS is in charge, not you

"
Influencing Thread Scheduling

m \\Ve throw a bunch of threads in, the OS
“shakes the bag”, and we don't really know
what will happen

m But the JVM provides some ways to influence
what happens
Thread.yield() (a static method)
Thread.setPriority(int p) (a non static method)

m |_et's review these briefly...

"
Thread.yield()

® \When a thread calls yield() it is saying "l am willingly
giving up the CPU right now”

® Somehow, many programmers use yield(), typically to
ensure some interactivity, sprinkling their code with
yield() calls everywhere

m Since Java 7, the Javadoc has been saying “A hint to
the scheduler that the current thread is willing to
yield its current use of a processor. The scheduler is
free to ignore this hint [...] It is rarely appropriate to
use this method.”

m DO NOT USE Thread.yield()
Only acceptable use: for debugging purposes

" A
Thread Priorities

® The Thread class has a setPriority() and a
getPriority() method

A new Thread inherits the priority of the thread
that created it

B Thread priorities are integers ranging
between Thread.MIN_ PRIORITY and
Thread.MAX PRIORITY

The higher the integer, the higher the priority

Thread Priorities and Scheduling

® \Whenever there is a choice between multiple runnable
threads, the JVM should pick the higher priority one
® The JVM is preemptive
If a new higher priority thread is started, it gets to run now

m |n spite of all this:

The JVM can only influence the way in which threads are
scheduled

Ultimately, the decision is left to the OS

® S50, again, these are hints: A JVM is free to implement
priorities in any way it chooses, including ignoring the
value!

m A few years ago | had designed a programming assignment

that used priorities, and half the students in the class had a
JVM implementation that ignored priorities!

"
Influencing Thread Scheduling?

m The Java APl provides a few methods for this,
as we saw, but they just cannot be relied upon
for correctness

After all, the JVM is not the OS, so it's not in charge
®m S0 if you use these methods, your program

may work ok on your JVM and your machine,
but not ok at all on another system

m Bottom Line: We have to rely on other
(deterministic) mechanisms to orchestrate the
execution of our threads

m | et's see the simplest such mechanism...

"
The join() method

m The join () method causes a thread to wait for
another thread’s termination

Example program

public class JoinExample ({
public static void main(String args[]) {
// Create a thread
Thread t = new Thread (new Runnable () {
@Override
public void run() { . . . }});

// Spawn it
t.start () ;

// Do some work myself

// Wait for the thread to finish
try {
t.join() ;
} catch (InterruptedException ignore) ({}

" J
The setDaemon() method

B Sometimes we want to start threads that will
run forever, but we want them to be "daemon
threads”

l.e., the program can terminate even though these
threads are still running

Remember that by default a Java program does
not terminate until all its non-daemon-threads
have terminated

Thread t = new Thread(...);
t.setDaemon(true);

" A
Conclusion

m Best way to create threads in Java:
implement the Runnable interface and
create a new Thread object

®m Thread scheduling is complex, not
deterministic, and providing hints to the JVM
must not be relied upon to guarantee
program correctness

m Up next: super-quick JavaF X intro

