
Henri Casanova (henric@hawaii.edu)

ICS432 
Concurrent and High-Performance  

Programming

Java Threads 
(a review)



Threads in Programming Languages

 Almost all programming languages provide 
constructs/abstractions for writing 
concurrent programs 
 even old ones (Modula, Ada, etc.) 

 Java provides: 
 Thread class 
 Runnable interface 

 Java also provides a Callable interface 
and higher level abstractions, which we’ll 
see later in the semester  
 It’s important to first master the “low-level” stuff



Extending the Thread class
 Extend the thread class 
 Override the run() method with what the thread should do 

 If you forget to override run(), your thread won’t do anything 
 Call the start() method to start the thread

Thread subclass

public class MyThread extends Thread { 
  MyThread() { … } 

  @override 
  public void run() { // code for whatever the thread should do } 
}

Main  program

public class MyProgram { 
  public static void main(…) { 
     MyThread myThread= new MyThread();    
     myThread.start(); 
     // At this point, 2 threads  are running! 
  } 
}



run() vs. start()

 You implement the thread’s code in run() 
 You start the thread with start() 

 WARNING: Calling run() does not create 
a thread, but it works (it’s just a normal 
method call) 

 The start() method, which you should not 
override,  does all the thread launching 

 It places whatever system calls are needed to start a 
thread (e.g., the clone, aka fork, system call in Linux) 

 And then makes it so that the newly created thread’s 
fetch-decode-execute  cycle begins  with the first line of  
code of the run() method



The Runnable Interface
 Using the Runnable interface is preferred 

because then you can still extend another class 
 Java doesn’t have multiple inheritance 
 Typically if you can use an implements 

instead of an extends, you should 
 So that you keep the extends option open for 

another purpose 

 Let’s see an example…



Using the Runnable Interface
Runnable class

public class MyRunnable implements Runnable { 
  MyRunnable() { … } 

  @override 
  public void run() { // code for whatever the thread should do } 
}

Main  program

public class MyProgram { 

  public static void main(…) { 
     //  Create an instance of the runnable class 
     MyRunnable myRunnable = new MyRunnable(); 
     // Pass it to the Thread constructor 
     Thread thread = new Thread(myRunnable); 
     // Start the thread 
     thread.start(); 
    // At this point, 2 threads  are running! 
  } 
}



In-line Thread Creation

Main  program

public class MyProgram { 

  public static void main(…) { 

    // Start an anonymous thread with a single statement 
    new Thread( new Runnable() { 

 @Override 
 public void run() { 
    …  
 } 

     }).start(); 

   } 
}

 Sometimes it’s cumbersome to create all kinds of 
Runnable classes, so one can “lambda it” :)



The isAlive() Method
 After you spawned a thread you may not really know if it’s 

terminated or not 
 It may be useful to know 

 To see if the thread’s work is done for instance  
 The isAlive() method returns true is the thread is 

running, false otherwise 
 Could also be useful to remember whether you have called 
start() on a thread, or to restart a thread

if (!t.isAlive()) { 
  t.start(); 
}



Your Two Threads
HostJVM process

Your  
program’s 

main thread

Newly  
created  
thread

 A Java program terminates only when all your threads have 
terminated (unlike in many other languages) 

 But there are many more threads in the JVM! 
 Let’s find out how many by writing some code…



Many Threads in
HostJVM process

Your  
program’s 

main thread

Newly  
created  
thread

JVM ThreadJVM ThreadJVM Thread
JVM ThreadJVM ThreadJVM Thread…

 Thread JVM threads are called “daemon threads” 
 Some you already  know about (garbage collector), some we’ll talk 

about (JavaFX Application Thread), some we won’t discuss



Non-deterministic Execution!
 Remember from your OS course that the OS 

schedules when a thread runs (by taking it out of the 
ready queue and giving a time quantum on one core) 

 In ICS332 you learned some of the “smarts” implemented in 
the kernel to schedule threads efficiently 

 So if your main thread prints a bunch of “*” and your 
newly created thread prints a bunch of “#”, there is no 
way to tell what the output will be 

 And the output will be different each time 
 This can make debugging really difficult 

 The age-old “my program breaks only once every 1000 
executions” 

 But you cannot make assumptions about thread 
scheduling since  the OS is in charge, not you



Influencing Thread Scheduling

 We throw a bunch of threads in, the OS 
“shakes the bag”, and we don’t really know 
what will happen 

 But the JVM provides some ways to influence 
what happens 
 Thread.yield()   (a static method) 
 Thread.setPriority(int p)   (a non static method) 

 Let’s review these briefly…



Thread.yield()
 When a thread calls yield() it is saying "I am willingly 

giving up the CPU right now”  
 Somehow, many programmers use yield(), typically to 

ensure some interactivity, sprinkling their code with 
yield() calls everywhere 

 Since Java 7, the Javadoc has been saying “A hint to 
the scheduler that the current thread is willing to 
yield its current use of a processor. The scheduler is 
free to ignore this hint [ …] It is rarely appropriate to 
use this method.” 

 DO NOT USE Thread.yield() 
 Only acceptable use: for debugging purposes



Thread Priorities

 The Thread class has a setPriority() and a 
getPriority() method 
 A new Thread inherits the priority of the thread 

that created it 
 Thread priorities are integers ranging 

between Thread.MIN_PRIORITY and 
Thread.MAX_PRIORITY 
 The higher the integer, the higher the priority



Thread Priorities and Scheduling
 Whenever there is a choice between multiple runnable 

threads, the JVM should pick the higher priority one 
 The JVM is preemptive 

 If a new higher priority thread is started, it gets to run now 
 In spite of all this: 

 The JVM can only influence the way in which threads are 
scheduled 

 Ultimately, the decision is left to the OS 
 So, again, these are hints: A JVM is free to implement 

priorities in any way it chooses, including ignoring the 
value! 

 A few years ago I had designed a programming assignment 
that used priorities, and half the students in the class had a 
JVM implementation that ignored priorities!



Influencing Thread Scheduling?

 The Java API provides a few methods for this, 
as we saw, but they just cannot be relied upon  
for correctness 
 After all, the JVM is not the OS, so it’s not in charge 

 So  if you use these methods, your program 
may work ok on  your JVM and your machine, 
but not ok at all on another system 

 Bottom Line: We have to rely on other 
(deterministic) mechanisms to orchestrate the 
execution of our threads 

 Let’s see the simplest such mechanism…



The join() method
 The join() method causes a thread to wait for 

another thread’s termination
Example program

public class JoinExample { 
  public static void main(String args[]) { 
    // Create a thread 
    Thread t = new Thread (new Runnable() { 
      @Override   
      public void run() { . . . }}); 
    
    // Spawn it 
    t.start(); 
     
    // Do some work myself 
    . . . 

    // Wait for the thread to finish 
    try {  
      t.join();  
    } catch (InterruptedException ignore) {} 
  } 
}



The  setDaemon() method

 Sometimes we want to start threads that will 
run forever, but we want them to be “daemon 
threads” 
 i.e., the program can terminate even though these 

threads are still running 
 Remember that by default a Java program does 

not terminate until all its non-daemon-threads 
have terminated

Thread t =  new Thread(…); 
t.setDaemon(true);



Conclusion

 Best way to create threads in Java: 
implement the Runnable interface and 
create a new Thread object 

 Thread scheduling is complex, not 
deterministic, and providing hints to the JVM  
must not be relied upon to guarantee 
program correctness 

 Up next: super-quick JavaFX intro


