
Henri Casanova (henric@hawaii.edu)

ICS432
Concurrent and High-Performance

Programming

Java Threads
(a review)

Threads in Programming Languages

 Almost all programming languages provide
constructs/abstractions for writing
concurrent programs
 even old ones (Modula, Ada, etc.)

 Java provides:
 Thread class
 Runnable interface

 Java also provides a Callable interface
and higher level abstractions, which we’ll
see later in the semester
 It’s important to first master the “low-level” stuff

Extending the Thread class
 Extend the thread class
 Override the run() method with what the thread should do

 If you forget to override run(), your thread won’t do anything
 Call the start() method to start the thread

Thread subclass

public class MyThread extends Thread {
 MyThread() { … }

 @override
 public void run() { // code for whatever the thread should do }
}

Main program

public class MyProgram {
 public static void main(…) {
 MyThread myThread= new MyThread();
 myThread.start();
 // At this point, 2 threads are running!
 }
}

run() vs. start()

 You implement the thread’s code in run()
 You start the thread with start()

 WARNING: Calling run() does not create
a thread, but it works (it’s just a normal
method call)

 The start() method, which you should not
override, does all the thread launching

 It places whatever system calls are needed to start a
thread (e.g., the clone, aka fork, system call in Linux)

 And then makes it so that the newly created thread’s
fetch-decode-execute cycle begins with the first line of
code of the run() method

The Runnable Interface
 Using the Runnable interface is preferred

because then you can still extend another class
 Java doesn’t have multiple inheritance
 Typically if you can use an implements

instead of an extends, you should
 So that you keep the extends option open for

another purpose

 Let’s see an example…

Using the Runnable Interface
Runnable class

public class MyRunnable implements Runnable {
 MyRunnable() { … }

 @override
 public void run() { // code for whatever the thread should do }
}

Main program

public class MyProgram {

 public static void main(…) {
 // Create an instance of the runnable class
 MyRunnable myRunnable = new MyRunnable();
 // Pass it to the Thread constructor
 Thread thread = new Thread(myRunnable);
 // Start the thread
 thread.start();
 // At this point, 2 threads are running!
 }
}

In-line Thread Creation

Main program

public class MyProgram {

 public static void main(…) {

 // Start an anonymous thread with a single statement
 new Thread(new Runnable() {

 @Override
 public void run() {
 …
 }

 }).start();

 }
}

 Sometimes it’s cumbersome to create all kinds of
Runnable classes, so one can “lambda it” :)

The isAlive() Method
 After you spawned a thread you may not really know if it’s

terminated or not
 It may be useful to know

 To see if the thread’s work is done for instance
 The isAlive() method returns true is the thread is

running, false otherwise
 Could also be useful to remember whether you have called
start() on a thread, or to restart a thread

if (!t.isAlive()) {
 t.start();
}

Your Two Threads
HostJVM process

Your
program’s

main thread

Newly
created
thread

 A Java program terminates only when all your threads have
terminated (unlike in many other languages)

 But there are many more threads in the JVM!
 Let’s find out how many by writing some code…

Many Threads in
HostJVM process

Your
program’s

main thread

Newly
created
thread

JVM ThreadJVM ThreadJVM Thread
JVM ThreadJVM ThreadJVM Thread…

 Thread JVM threads are called “daemon threads”
 Some you already know about (garbage collector), some we’ll talk

about (JavaFX Application Thread), some we won’t discuss

Non-deterministic Execution!
 Remember from your OS course that the OS

schedules when a thread runs (by taking it out of the
ready queue and giving a time quantum on one core)

 In ICS332 you learned some of the “smarts” implemented in
the kernel to schedule threads efficiently

 So if your main thread prints a bunch of “*” and your
newly created thread prints a bunch of “#”, there is no
way to tell what the output will be

 And the output will be different each time
 This can make debugging really difficult

 The age-old “my program breaks only once every 1000
executions”

 But you cannot make assumptions about thread
scheduling since the OS is in charge, not you

Influencing Thread Scheduling

 We throw a bunch of threads in, the OS
“shakes the bag”, and we don’t really know
what will happen

 But the JVM provides some ways to influence
what happens
 Thread.yield() (a static method)
 Thread.setPriority(int p) (a non static method)

 Let’s review these briefly…

Thread.yield()
 When a thread calls yield() it is saying "I am willingly

giving up the CPU right now”
 Somehow, many programmers use yield(), typically to

ensure some interactivity, sprinkling their code with
yield() calls everywhere

 Since Java 7, the Javadoc has been saying “A hint to
the scheduler that the current thread is willing to
yield its current use of a processor. The scheduler is
free to ignore this hint […] It is rarely appropriate to
use this method.”

 DO NOT USE Thread.yield()
 Only acceptable use: for debugging purposes

Thread Priorities

 The Thread class has a setPriority() and a
getPriority() method
 A new Thread inherits the priority of the thread

that created it
 Thread priorities are integers ranging

between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY
 The higher the integer, the higher the priority

Thread Priorities and Scheduling
 Whenever there is a choice between multiple runnable

threads, the JVM should pick the higher priority one
 The JVM is preemptive

 If a new higher priority thread is started, it gets to run now
 In spite of all this:

 The JVM can only influence the way in which threads are
scheduled

 Ultimately, the decision is left to the OS
 So, again, these are hints: A JVM is free to implement

priorities in any way it chooses, including ignoring the
value!

 A few years ago I had designed a programming assignment
that used priorities, and half the students in the class had a
JVM implementation that ignored priorities!

Influencing Thread Scheduling?

 The Java API provides a few methods for this,
as we saw, but they just cannot be relied upon
for correctness
 After all, the JVM is not the OS, so it’s not in charge

 So if you use these methods, your program
may work ok on your JVM and your machine,
but not ok at all on another system

 Bottom Line: We have to rely on other
(deterministic) mechanisms to orchestrate the
execution of our threads

 Let’s see the simplest such mechanism…

The join() method
 The join() method causes a thread to wait for

another thread’s termination
Example program

public class JoinExample {
 public static void main(String args[]) {
 // Create a thread
 Thread t = new Thread (new Runnable() {
 @Override
 public void run() { . . . }});

 // Spawn it
 t.start();

 // Do some work myself
 . . .

 // Wait for the thread to finish
 try {
 t.join();
 } catch (InterruptedException ignore) {}
 }
}

The setDaemon() method

 Sometimes we want to start threads that will
run forever, but we want them to be “daemon
threads”
 i.e., the program can terminate even though these

threads are still running
 Remember that by default a Java program does

not terminate until all its non-daemon-threads
have terminated

Thread t = new Thread(…);
t.setDaemon(true);

Conclusion

 Best way to create threads in Java:
implement the Runnable interface and
create a new Thread object

 Thread scheduling is complex, not
deterministic, and providing hints to the JVM
must not be relied upon to guarantee
program correctness

 Up next: super-quick JavaFX intro

